
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/226757208

An Ada library to program fault-tolerant distributed applications

Conference Paper · June 1997

DOI: 10.1007/3-540-63114-3_21 · Source: dx.doi.org

CITATIONS

16
READS

27

4 authors, including:

Francisco Javier Miranda González

Universidad de Las Palmas de Gran Canaria

33 PUBLICATIONS 112 CITATIONS

SEE PROFILE

Alejandro Alvarez

Universidad Politécnica de Madrid

8 PUBLICATIONS 30 CITATIONS

SEE PROFILE

Sergio Arévalo

Universidad Politécnica de Madrid

78 PUBLICATIONS 806 CITATIONS

SEE PROFILE

All content following this page was uploaded by Sergio Arévalo on 11 April 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/226757208_An_Ada_library_to_program_fault-tolerant_distributed_applications?enrichId=rgreq-1bb59dab5fcbfa07380b87a309c767c6-XXX&enrichSource=Y292ZXJQYWdlOzIyNjc1NzIwODtBUzo5OTAzOTY5MzUwODYyNkAxNDAwNjI0MzExNDYw&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/226757208_An_Ada_library_to_program_fault-tolerant_distributed_applications?enrichId=rgreq-1bb59dab5fcbfa07380b87a309c767c6-XXX&enrichSource=Y292ZXJQYWdlOzIyNjc1NzIwODtBUzo5OTAzOTY5MzUwODYyNkAxNDAwNjI0MzExNDYw&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-1bb59dab5fcbfa07380b87a309c767c6-XXX&enrichSource=Y292ZXJQYWdlOzIyNjc1NzIwODtBUzo5OTAzOTY5MzUwODYyNkAxNDAwNjI0MzExNDYw&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Francisco_Gonzalez18?enrichId=rgreq-1bb59dab5fcbfa07380b87a309c767c6-XXX&enrichSource=Y292ZXJQYWdlOzIyNjc1NzIwODtBUzo5OTAzOTY5MzUwODYyNkAxNDAwNjI0MzExNDYw&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Francisco_Gonzalez18?enrichId=rgreq-1bb59dab5fcbfa07380b87a309c767c6-XXX&enrichSource=Y292ZXJQYWdlOzIyNjc1NzIwODtBUzo5OTAzOTY5MzUwODYyNkAxNDAwNjI0MzExNDYw&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_de_Las_Palmas_de_Gran_Canaria?enrichId=rgreq-1bb59dab5fcbfa07380b87a309c767c6-XXX&enrichSource=Y292ZXJQYWdlOzIyNjc1NzIwODtBUzo5OTAzOTY5MzUwODYyNkAxNDAwNjI0MzExNDYw&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Francisco_Gonzalez18?enrichId=rgreq-1bb59dab5fcbfa07380b87a309c767c6-XXX&enrichSource=Y292ZXJQYWdlOzIyNjc1NzIwODtBUzo5OTAzOTY5MzUwODYyNkAxNDAwNjI0MzExNDYw&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alejandro_Alvarez16?enrichId=rgreq-1bb59dab5fcbfa07380b87a309c767c6-XXX&enrichSource=Y292ZXJQYWdlOzIyNjc1NzIwODtBUzo5OTAzOTY5MzUwODYyNkAxNDAwNjI0MzExNDYw&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alejandro_Alvarez16?enrichId=rgreq-1bb59dab5fcbfa07380b87a309c767c6-XXX&enrichSource=Y292ZXJQYWdlOzIyNjc1NzIwODtBUzo5OTAzOTY5MzUwODYyNkAxNDAwNjI0MzExNDYw&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_Politecnica_de_Madrid?enrichId=rgreq-1bb59dab5fcbfa07380b87a309c767c6-XXX&enrichSource=Y292ZXJQYWdlOzIyNjc1NzIwODtBUzo5OTAzOTY5MzUwODYyNkAxNDAwNjI0MzExNDYw&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alejandro_Alvarez16?enrichId=rgreq-1bb59dab5fcbfa07380b87a309c767c6-XXX&enrichSource=Y292ZXJQYWdlOzIyNjc1NzIwODtBUzo5OTAzOTY5MzUwODYyNkAxNDAwNjI0MzExNDYw&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sergio_Arevalo?enrichId=rgreq-1bb59dab5fcbfa07380b87a309c767c6-XXX&enrichSource=Y292ZXJQYWdlOzIyNjc1NzIwODtBUzo5OTAzOTY5MzUwODYyNkAxNDAwNjI0MzExNDYw&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sergio_Arevalo?enrichId=rgreq-1bb59dab5fcbfa07380b87a309c767c6-XXX&enrichSource=Y292ZXJQYWdlOzIyNjc1NzIwODtBUzo5OTAzOTY5MzUwODYyNkAxNDAwNjI0MzExNDYw&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidad_Politecnica_de_Madrid?enrichId=rgreq-1bb59dab5fcbfa07380b87a309c767c6-XXX&enrichSource=Y292ZXJQYWdlOzIyNjc1NzIwODtBUzo5OTAzOTY5MzUwODYyNkAxNDAwNjI0MzExNDYw&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sergio_Arevalo?enrichId=rgreq-1bb59dab5fcbfa07380b87a309c767c6-XXX&enrichSource=Y292ZXJQYWdlOzIyNjc1NzIwODtBUzo5OTAzOTY5MzUwODYyNkAxNDAwNjI0MzExNDYw&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sergio_Arevalo?enrichId=rgreq-1bb59dab5fcbfa07380b87a309c767c6-XXX&enrichSource=Y292ZXJQYWdlOzIyNjc1NzIwODtBUzo5OTAzOTY5MzUwODYyNkAxNDAwNjI0MzExNDYw&el=1_x_10&_esc=publicationCoverPdf

An Ada Library to Program Fault-tolerantDistributed Applications?F. Guerra, J. Miranda, A. Alvarez and S. Ar�evaloUniversity of Las Palmas de Gran Canaria and Technical University of Madridfguerra@cic.teleco.ulpgc.es, jmiranda@cma.ulpgc.es,aalvarez@dit.upm.es, sarevalo@�.upm.esAbstract. This paper describes a library written in Ada which facilit-ates the construction of fault-tolerant distributed applications based onthe active replication paradigm [18]. The library, called Group IO [10],o�ers a simple interface to the implementation of reliable, atomic, causal,and uniform multicast. The work on Group IO has been motivated byour experience with Isis [3] and similar reliable multicast frameworks.The library allows also client{server interactions where the client maybe a group|this interaction is not supported by ISIS| and relies on anown consensus protocol [8, 9] to implement the uniform broadcast pro-tocols. Group IO is the base on which the programming language Drago[2, 15, 16] has been implemented, however it does not require Drago forits use.Keywords: Distributed Systems, Fault-Tolerant Systems, Ada, Isis.1 IntroductionThe increasing dependence of modern society on computer systems calls forincreasing degrees of reliability which become very expensive to implement withtraditional hardware and software techniques. In particular, the use of ad-hocreplicated hardware to mask out failures requires special components with costsmuch higher than the ones of standard, mass produced hardware. As a result, theuse of modern solutions in which the tolerance to hardware failures is obtained bymeans of specialized software running on top of standard, inexpensive hardware,is attracting a considerable degree of attention. However, the construction ofthis specialized software is a rather complex task, and so the need for softwarelibraries that support these new programming paradigms arises.The basic approach to fault-tolerance using standard hardware componentsis the use of distributed systems with hardware and software replication. Thetwo main software techniques used there are the primary-backup approach, andthe active replication paradigm [19]. Compared with the primary-backup ap-proach, the active replication technique o�ers the additional advantage that it? This work has been partially funded by the Spanish Research Council (CICYT), con-tract numbers TIC94{0162{C02{01 and TIC96{0614.

allows for continuous service in the presence of failures. That is, the system cancontinue giving service without the need to interrupt for any length of time tobe recon�gured or in any way recover it after a failure.In order to build programs with active replication and minimal additionale�ort from the programmer, there is a need for transparent mechanisms to handlethe communicationwhen a group of replicas receives a service request or requestsan external service [13]. In particular, for every single message sent to a groupof process replicas, the underlying system should transparently ensure that themessage is replicated and a copy of it sent to each replica of the process|this isknown as \1-to-n" communication. When all interaction among processes takesthe form of message exchanges, all replicas of the same process must receive thesame messages, even in the presence of (partial) failures|this is known as \all-or-none" communication|and in the same order. Symmetrically, (replicated)messages sent by the replicas themselves shall be �ltered so that only a singlecopy of each replicated message is actually issued to the rest of the system|thisis known as \n-to-1" communication.The problem of \1-to-n" communication has been discussed at length innumerous publications, where is has received the name of reliable broadcast [4][17] [14]. By contrast, references to \n-to-1" communication cannot be easilyfound.It has been proven that uniform reliable|atomic|and totally ordered broad-cast is equivalent to distributed consensus [11]. In the consensus protocol, a num-ber of processes start each one proposing a possibly di�erent value, and at theend of the protocol all (correct) processes end up agreeing on the same value,even if some of them happen to fail during the execution of the protocol itself.To see how both mechanisms are equivalent, one only needs to consider a (se-quence of) consensus where the values to agree upon are the actual messagesthe di�erent processes wish to broadcast, and to understand the agreement toselect a particular message as the delivery2 of that message in all the processesinvolved in that consensus. In addition, when one process �nds that its messagehas not been selected in a consensus, it just stubbornly insists on proposing thesame message until it eventually gets selected. As a result, all processes involvedin the (sequence of) consensus end up receiving the same messages and in thesame (total) order.The work on Group IO has been motivated by our experience with Isis, withsimilar reliable multicast frameworks, and with the development of di�erentconsensus protocols. By contrast, systems such as PVM [6] and MPI [7] had noinuence on Group IO as they only provide a basic broadcast service, withoutfeatures like causality, order or atomicity, which are needed to program replicasin the fault-tolerant active replication model.After this brief introduction, in the next two sections we present a short de-scription of ISIS and Drago, respectively. We then have a section on the interface2 For other than the basic broadcast, delivery of messages is an event di�erent fromreception; the distinction is needed in order to enforce the required message order,in spite of the actual transmission times.

o�ered by Group IO, followed by another section with some programming ex-amples. Three more sections then discuss implementation aspects of Group IO,and its relation with Ada 95 and Drago. The paper closes with some conclusions,and with references to related work.2 ISISISIS [3] is a toolkit that goes a long way in the active replication line justdescribed and which has been the original inspiration for Group IO. In ISISprogrammers can de�ne groups of processes and then refer to them by a singlename.Communicationwith a group of processes is by means of (di�erent versionsof) reliable3 broadcast4, which can be used to implement replicated (as well ascooperative5) process groups.However, from our experience with ISIS the system has three major draw-backs. First, ISIS broadcast is not uniform, that is, there is no guarantee thatnon-failed processes receive a message which has anyhow been received by aprocess failing subsequently to the reception of that message. And the problemwith this approach is that if the failed process has taken any actions after re-ceiving that message and before failing, its remaining replicas will be out of syncwith it. As a consequence, it is close to impossible to implement active processreplication in ISIS along the lines described above.The second problem with ISIS is that it does not support full n-to-1 commu-nication6. Last but not least, ISIS provides no linguistic support. In fact, ISIS isjust a collection of libraries written in C, and as such its use leads to code whichis both complex and error-prone.3 DragoDrago[16] is an experimental language developed as an extension of Ada for theconstruction of fault-tolerant distributed applications. The hardware assump-tions are a distributed system with no memory shared among the di�erent nodes,a reliable communication network with no partitions, and fail-silent nodes. (Thatis nodes, which once failed are never heard from again by the rest of the system.)The language is the result of an e�ort to impose discipline and give linguisticsupport to the main concepts of ISIS[3], as well as to experiment with the group3 What ISIS calls reliable is actually called atomic by other authors to reect its \all-or-none" property.4 Actually, a kind of multicast remote procedure call, but we will use here the termbroadcast to follow ISIS convention.5 Member processes of a cooperative group usually do not perform exactly the samefunction, and make use of this fact to \cooperate" in the provision of one or moreservices.6 In particular, when a replicated process group issues a call to another process, be ita single process or a group, as many calls as group members are issued.

communication paradigm. To help build fault-tolerant distributed applications,Drago explicitly supports two process group paradigms, replicated process groupsand cooperative process groups. Replicated process groups allow for the program-ming of fault-tolerance applications according to the active replication model[18],while cooperative process groups permit programmers to express parallelism andso increase throughput.A process group in Drago is actually a collection of agents, which is the wayprocesses are called in the language. Agents are rather similar in appearanceto Ada tasks (they have an internal state not directly accessible from outsidethe agent, an independent ow of control, and special operations named entries)although they are the unit of distribution in Drago and so perform a role similarto Ada 95 active partitions and Ada 83 programs. Each agent resides in a singlenode of the network, although several agents may reside in the same node. ADrago program is composed of a number of agents residing at a number of nodes.Aside from distribution, the main di�erence they have with Ada tasks is thatcalls to its entries are automatically ordered by the underlying Drago global run-time message system to enforce reliable, causal, uniform coordination among theagents of the same group. This is actually the essence of Drago, and what makesit most useful.4 Group IO InterfaceGroup IO is a library built as a generic Ada package that provides operationsand types to perform distributed client-server interactions among Ada programsorganized as groups according to the active replication model. In this modelclients|either a single Ada program or a group of them|issue requests to serv-ers made up of groups of Ada program replicas|running in di�erent networknodes|and then wait for replies. Group IO transparently masks out possiblefailures of nodes running the Ada program replicas.Group IO provides a generic interface that expects the user to de�ne the max-imum size of requests and replies, the retransmition time, and other parametersthat depend on the particular system and distributed application at hand. Basictypes provided by a generic instance of Group IO are:subtype T_Data is STRING (1 .. Max_Length_Data);subtype T_Name is STRING (1 .. Max_Length_Name);type T_Group_Id is private;type T_Request_Id is private;All the information contained in the requests and replies sent through thenetwork are strings of type T Data. It is the responsibility of user programs toknow how to use the messages delivered and to perform type conversion whenneeded. Group names are strings of type T Name. Group IO also provides twotypes to declare handlers for groups and requests, respectively: T Group Id andT Request Id.The way to use Group IO depends on whether the user software behaves asa client, a server, or a replica.

Client interface:{ Before a client requests a service to a server group, it must start with a callto join that group as a client:procedure Join_Group_Client (Grp_Name : in T_Name;Grp : out T_Group_Id);Join Group Client creates the data structures and tasks associated with theclient role and returns a group handler (Grp.) The exception Inactive Groupis raised in case there is no group named Grp Name.{ After a user program has obtained a group handler Grp, it can send a requestto the associated group:procedure Send_Request (Grp : in T_Group_Id;Mess : in T_Data;Req : out T_Request_Id);Send Request blocks the caller only until the request arrives to all live mem-bers of server group Grp, and then it returns the request handler Req. Theexception Inactive Group is raised if the caller is not a client of group Grpor when no members of the group Grp are alive anymore.{ The number of replies is not �xed because members of a group may fail. Auser program can get the number of pending replies|each group membergives its own reply|with the function:function Replies_Number (Req : T_Request_Id) return Natural;The exception Invalid Handler is raised when Req is an invalid request hand-ler.{ After Send Request returns the request handler, the user program can re-trieve the replies received|all members of the server group reply|one byone: procedure Receive_Reply(Req : in out T_Request_Id;Mess : out T_Data);The exception Invalid Handler is raised when Req is an invalid request hand-ler; the exception No Replies is raised when all replies from live membershave already been delivered.{ A user program only gets the number of replies it wishes. In particular, itcan use a reply before getting the next one, and this will be the usual case inwhich the �rst reply to arrive will be used and all the rest will be discarded.User programs can indicate that they do not wish to receive any more of thereplies belonging to a certain request calling the procedure:procedure Close_Request(Req : in out T_Request_Id);Close Request either marks the handler Req as invalid or raises the exceptionInvalid Handler if it is already invalid before the call.

Server interface:{ All server members must �rst join the group:procedure Join_Group_Server(Grp_Name : in T_Name)Grp : out T_Group_Id);Join Group Server creates the data structures and tasks associated with theserver role and returns a group handler. The exception Inactive Group israised if there is no group named Grp Name.{ Every member of the server group can get the next request made to thegroup: procedure Receive_Request(Grp : in T_Group_Id;Req : out T_Request_Id;Mess : out T_Data);Receive Request returns the handler Req associated with the request Mess.This handler is used later to send the associated reply. The exception In-active Group is raised when the user code calling Receive Request is not amember of server group Grp.{ Servers send its replies associated to a request with the procedure:procedure Send_Reply(Req : in out T_Request_Id;Mess : in T_Data);After the reply is sent, the handler becomes invalid|every group membercan only send a single reply. The exception Invalid Handler is raised whenthe handler Req is invalid.Replicated client interface: To implement a fault-tolerant service by meansof a group of replicas we should only use the server interface. However, when thisgroup of replicas needs to request a service|the group of replicas can be clientof any other group|it is necessary to add to the client interface some operationswhere the client's group of replicas is referenced.{ Every replica must still call �rst Join Group Server as before. However, be-fore the group of replicas issues a request, every replica must execute the nextprocedure, passing the replica group handler Replica Grp and the name ofthe server group Grp Name as parameters:procedure Join_Group_Client(Replica_Grp : in T_Group_Id;Grp_Name : in T_Name;Grp : out T_Group_Id);Join Group Client creates the data structures and tasks associated with thereplicated client role and returns a group handler. The exception Inact-ive Group is raised when the caller is not a member of the group Replica Grpor when there is no group named Grp Name.

{ When a replica sends a request to a server group, it must also pass thehandler associated with the group of replicas.procedure Send_Request(Replica_Grp : in T_Group_Id;Server_Grp : in T_Group_Id;Mess : in T_Data;Req : out T_Request_Id);Again, Send Request blocks the caller only until the request arrives to all livemembers of server group Grp, and then returns the request handler Req. Theexception Inactive Group is raised when the caller is not a member of groupReplica Grp, the replica group is not a client of group Grp, or all membersof group Grp have already failed.{ It is crucial that all the replicas have the same code, perform the sameactions, and go through the same sequence of states, and in the same order.Group IO delivers the same sequence of requests|server role|and replies|client role|to all replicas. However, it is necessary to call the next procedureto �nd out the kind of the next message delivered because requests andreplies are delivered by di�erent procedures7 .type T_Operation_Id is (Replica_Request, Replica_Reply, Final_Reply);procedure Next_Operation(Replica_Grp : in T_Group_Id;Req : out T_Request_Id;Operation : out T_Operation_Id);Next Operation returns the handler Req associated to the next request (orreply) and the kind of operation|Operation is equal to Replica Request orReplica Reply. This handler is also returned when there are no more repliesassociated with a request|Operation is equal to Final Reply, and so doesnot need to call Replies Number repeatedly. The exception Inactive Groupis raised when the caller is not a member of the group Replica Grp.5 Programming with Group IOEvery user program must create its own instance of Group IO, passing genericactual parameters de�ning its system and distributed application. For example:with Group_IO;package My_Group_IO isnew Group_IO(Max_Length_Mess => 128,Max_Groups => 5,Max_Members_Per_Group => 15,Max_Asinc => 4);My Group IO is an instance that de�nes the maximum length of a requestor reply message; the maximum number of groups; the maximum number of7 This is particularly important for those cases in which the programming languageused includes non-deterministic constructs, as is the case with Ada tasks; all non-determinism must then be resolved in the same way for all process replicas.

members per group; and the maximum number of requests that can be pendingto be delivered to any server group member. Additional parameters of Group IOtake the default formal parameter values. Let's see some examples of use ofMy Group IO:{ Server. A server has a loop where it gets the requests, performs the service,and sends the associated reply.with My_Group_IO;use My_Group_IO;procedure Server isGrp_Id : T_Group_Id;Req_Id : T_Request_Id;Req_Mess,Ans_Mess : T_Data;beginJoin_Group_Server("G1", Grp_Id); -- It is member of group G1loopReceive_Request(Grp_Id, Req_Id, Req_Mess); -- The next request is delivered-- ... -- THE SERVICE IS PERFORMED-- ... -- THE REPLY IS PLACED IN Ans_MessSend_Reply(Req_Id, Ans_Mess); -- The reply is sentend loop;end Server;{ Client. This example presents the code associated with a client that sendsa request and waits for all replies.with My_Group_IO;use My_Group_IO;procedure Client isGrp_Id : T_Group_Id;Req_Id : T_Request_Id;Req_Mess,Ans_Mess : T_Data;beginJoin_Group_Client("G1", Grp_Id); -- It is client of group G1-- ... -- THE REQUEST IS PLACED IN Req_MessSend_Request(Grp_Id, Req_Mess, Req_Id); -- The request is sentWhile Replies_Number(Req_Id)>0 loop -- While there are repliesReceive_Reply(Req_Id, Ans_Mess); -- The next reply is delivered-- ... -- THE REPLY CAN BE USEDend loop; -- endClose_Request(Req_Id); -- The handler is marked as invalidend Client;{ Replicated client. Let's now see the code of a group of replicas which issimultaneously server and client of other groups.with My_Group_IO;use My_Group_IO;procedure Client_Server_Replica isReplica_Grp_Id, Server_Grp_Id : T_Group_Id;Req_Id : T_Request_Id;Replica_Req_Mess, Req_Mess, Ans_Mess : T_Data;OP : T_Operation_Id;begin

Join_Group_Server("G1", Replica_Grp_Id); -- It is member of replicas group G1Join_Group_Client(Replica_Grp_Id, -- The group G1 is a client of"G2", -- group G2Server_Grp_Id);-- ... -- THE REQUEST IS PLACED IN-- Replica_Req_MessSend_Request(Replica_Grp_Id, Server_Grp_Id,Replica_Req_Mess, Req_Id); -- The request is sentloopNext_Operation(Replica_Grp_Id, Req_Id, OP);-- The next event is receivedcase OP iswhen Replica_Request =>Receive_Request(Replica_Grp_Id, -- A Request is deliveredReq_Id,Req_Mess);-- ... -- THE SERVICE IS PERFORMED-- ... -- THE REPLY IS PLACED IN Ans_MessSend_Reply(Req_Id, Ans_Mess); -- The reply is sentwhen Replica_Reply =>Receive_Reply(Req_Id, -- The next reply is deliveredAns_Mess);-- ... -- THE REPLY CAN BE USEDwhen Final_Reply =>Close_Request (Req_Id); -- The handler is invalidend case;end loop;end Client_Server_Replica;Next Operation is also used when the group of replicas is just a client ofvarious server groups because it must know the request handler associatedwith every delivered reply.6 Group IO ImplementationGroup IO is currently implemented over an Ethernet with Sun Sparc stationsand uses Paradise [5] as its basic communication service|Paradise only blocksthe task issuing an IO operation and not the whole Ada process. The proto-cols implemented in Group IO assume a distributed hardware system with nomemory shared among the di�erent nodes, a reliable communication networkwith no partitions, and fail-silent hardware nodes; namely, when one of thenodes fails the rest of the system never hears from it again.Each user program can be seen as a logical machine in the distributed system.Several logical machines may execute on the same physical machine, but eachneeds its own instance of Group IO| see �gure 1.The Group IO body is composed of three levels: MediumAccess Level, GroupProtocol Level, and User Operation Level. The Medium Access Level uses Para-dise to get access to Berkeley sockets. The Group Protocol level uses the servicesof Medium Access Level to implement the multicast protocols [10] and providesthe services required by the User Operation Level. Finally, the User OperationLevel implements the user program interface.Each Group IO instance has common information used by all the three levels.For every group the user program belongs to, either as a client or as a server,

GROUP_IO

1

GROUP_IO GROUP_IO

2 N

NETWORK

USER

PROGRAM

USER

PROGRAM

USER

PROGRAM

Fig. 1. User programs connected by Group IO.
PROTOCOL

GROUP

LEVEL

MEDIUM

ACCESS

LEVEL

NETWORK

GROUP DATA

USER PROGRAM

LEVEL

USER

OPERATIONFig. 2. Internal levels of Group IO.this information describes:{ Name of the group.{ Identity of the user program to communicate with the group.{ Role(s) of the program within the used group: client, server, or replica.{ View of the group (number of members and linear order of each one.){ Pointers to the tasks that execute the di�erent role(s) the user program haswithin the group.There are two task types in the Group Protocol Level: the type T Clientexecutes the role associated with a client and the type T Member de�nes therole associated with a server that is member of a group. As an example, the userprogram with the Group IO instance shown in �gure 3, is both a client of groupA and a member of group B. Furthermore, this program communicates alsowith the rest of members of group B because t is also a client of this group|the

members of group B may cooperate to give the requested services, this is knownas intragroup interaction.
CLIENT

B

A
CLIENT

MEMBER B

GROUP PROTOCOL LEVEL

DATA GROUP

GROUP A

GROUP B

USER

LEVEL

MEDIUM

ACCESS

LEVEL

OPERATIONFig. 3. Example of Group Protocol LevelCurrently the groups con�guration is static and it is speci�ed by means oftwo �les:{ Logic Names.Dat de�nes the names associated with every user program, theInternet address (IP) of the machine where the program executes, and theport address (UDP) through which the program communicates. Each line ofthis �le has the following format:PROCESS_NAME, INTERNET_ADDR, PORT_NUMBER{ Groups Con�guration.Dat de�nes the names of the groups and the membersof every group according to the next syntax:GROUP_NAME := PROCESS_NAME {,PROCESS_NAME};7 Group IO and Ada 95Group IO has been implemented in Ada 83 and has been used with Ada 83 pro-grams. We believe that some features of Ada 95 can be used to improve theimplementation of Group IO, protected objects in particular. What is not clearto us is whether we can take advantage of the distributed partition paradigminstead of a socket library. However, we don't see any problems for Ada 95 pro-grams to make use of the Group IO library.A di�erent issue is how distributed programs built with Ada and Group IO(let's call them Group IO programs) compare with distributed programs builtwith Ada 95 distributed active partitions.

One important di�erence between Group IO programs and active partitionsis that the �rst accept services explicitly issuing a receive request as part of theirow of control, while the second export passive subprograms declared in theirRCI package speci�cations. This di�erence makes the �rst kind of programsdeterministic in its behavior, while the behavior of the second ones is dependenton the runtime system. As we will see below, determinism is essential in theactive replication model.The main di�erence between Group IO programs and the distributed pro-gramming model of Ada 95 is that Group IO provides direct support for theactive replication model in order to build fault-tolerant applications. WhereAda 95 provides a single remote call, Group IO transparently gives program-mers multiple send requests to all the programs of a replicated group. And moreimportant, the multiple send requests are automatically coordinated so that allprograms of the same group are guaranteed to receive the same requests, andin the same (causally consistent) order, even in the presence of hardware nodefailures midway in the sequence of calls. And because replicated Group IO pro-grams have a deterministic behavior all members of the same group go throughthe same sequence of internal states, and so give exactly the same replies to allincoming calls. This way live members of a group can mask out transparentlythe possible failure of other group members, something that cannot be obtainedin Ada 95 without a considerable e�ort from the part of programmers.On the question of what is the relation between Group IO and the Distrib-uted Systems Annex of Ada 95 and, in particular, on whether Group IO can beintegrated into the PCS to implement transparent replication of active partitionsin Ada95, the answer is yes (with one natural caveat.)There would be no need to change the speci�cation of System.RPC, nor thecompiler or the language itself, only rewrite the implementation of System.RPCso that it calls Group IO when needed, that is, when the actual remote call is dir-ected towards a procedure of a replicated partition. Whether a certain partitionis replicated or not would be decided at con�guration time (after compile timeand before link time) and that information could be stored in a con�guration�le, from where the code of System.RPC would retrieve it at run-time.It is clear nevertheless, that replicated partitions in no case could be servingmore than one request at the same time. This is a restriction required not byGroup IO but by the replicated state-machine model, in orden to guaranteereplica determinism.8 Group IO and DragoThe language Drago uses Group IO as its communication subsystem and so sup-ports the same group mechanisms as Group IO. This similarity allows Ada andDrago programs to interoperate in a straightforward manner. For example, wecan have one or several fault-tolerant services implemented in Drago executingin a distributed system, and then compile and run \Ada-with-Group IO" clientsthat use those services in a manner analogous to the one described in section 5

above. The only thing the clients need to know are the logical names of the Dragogroups that implement those services|and those names are within the con�g-uration �les. In this way the Drago code may be as complex as the applicationrequires while the interface to the Ada clients can be kept quite simple.9 ConclusionsThis paper has described a reliable multicast library written in Ada, Group IO,that can be used to easily build fault-tolerant distributed applications, them-selves also written in Ada. The programming paradigm supported is the activereplication state-machine model.The current implementation of Group IO runs on a SUN/OS network withthe SUN-Ada compiler, and provides reliable atomic broadcast using an ori-ginal consensus protocol[1][8][9]. All the communications are based on standardTCP/IP protocols and use the PARADISE[5] library of UNIX kernel calls.The implementation is rather crude as far as e�ciency goes|mainly due tothe use of TCP/IP protocols|and no measures of performance have yet beentaken. The con�guration and load work is currently performed by hand with aminimal support from the �le system, basically a con�guration �le kept at allparticipating nodes. We are reimplementing Group IO on top of GNAT withLinux, and investigating how to handle dynamic groups where members enterand leave groups at run-time.The interface proposed is the result of an e�ort to impose discipline and givean Ada binding to the main concepts of ISIS [3]. This interface also permitsclient-server interactions where the client may be a group|this interaction isnot supported by ISIS|and it has been designed and implemented to supportthe code generation for the Drago language [2, 15, 16].At any rate, the funcionality of Group IO does not relate much to Ada 95nor Ada 83, but to the future of Ada instead, i.e. Ada 0X. It is likely that by thetime of the new revision of Ada, aspects such as fault-tolerance by replicationand reliable broadcast will have to be considered into the new standard. And sothe interest of the Ada community to start experimenting with these techniques.10 AcknowledgmentsWe wish to thank the members of the Distributed Systems Seminar in the Tech-nical University of Madrid for their help in clarifying the ideas contained in thispaper.References1. Ar�evalo, S. and Gehani N. H. 1989. Replica Consensus in Fault Tolerant ConcurrentC. Technical Report AT&T Bell Laboratories, Murray Hill, New Jersey 07974.

2. Ar�evalo, S., �Alvarez, A., Miranda, J. and Guerra, F.: A Fault-tolerant Program-ming Language Based on Distributed Consensus, Cabernet'94 Workshop, Dublin(March 1994)3. Birman, K., R. Cooper, T. Joseph, K. Marzullo, M. Makpangou, K. Kane,F. Schmuck, and M. Wood. The Isis System Manual. Version 2.1. September1990.4. Chang, J. M. and Maxemchuck, N. 1984. Reliable Broadcast Protocols. ACMTrans. on Computer Systems, 2(3), pages 251{273.5. Courtel, N., PARADISE: Package of Asynchronous Real-Time Ada Drivers forInterconnected Systems Exchange, version 3.2. GNU (January 1993).6. Geist, A. et al.: PVM: Parallel Virtual Machine; A User's Guide and Tutorial forNetworked Parallel Computing. The MIT Press, Cambridge, Mass. (1994)7. Gropp, W., Lusk, E., and Skjellum, A.: Using MPI: Portable Parallel Programmingwith the Message-Passing Interface. The MIT Press, Cambridge, Mass. (1994)8. Guerra, F., Ar�evalo, S., �Alvarez, A., and Miranda, J. A Distributed ConsensusProtocol with a Coordinator. IFIP International Conference on Decentralized andDistributed Systems ICDDS'93. Palma de Mallorca (Spain). September 1993.9. Guerra, F., Ar�evalo, S., �Alvarez, A., and Miranda, J. A Quick Distributed Con-sensus Protocol. Microprocessing and Microprogramming 39 (1993) pp.111{114.10. Guerra, F. 1995. E�cient Consensus Protocols for Distributed Systems. DoctoralDissertation. Technical University of Madrid. (In Spanish.)11. Hadzilacos V. and Toueg, S. 1993. Fault-tolerant broadcasts and related problems.In Sape Mullender, editor, Distributed Systems, chapter 5, pages 97{145. Addison-Wesley.12. Intermetrics, Inc. 1995. Ada 95 Language Reference Manual. Intermetrics, Inc.,Cambridge, Mass. (January).13. Liang, L., Chanson, S.T., and Neufeld, G.W.: Process Groups and Group Commu-nications: Classi�cation and Requirements. IEEE Computer. (February 1990)14. Malki, D., Amir, Y., Dolev, D., and Kramer, S. 1994. The Transis approach to highavailable cluster communication. Technical Report CS-94-14, Institute of ComputerScience, The Hebrew University of Jerusalem, 1994.15. Miranda, J. 1994. Drago: A Language to Program Fault-tolerant and CooperativeDistributed Applications. Doctoral Dissertation. Technical University of Madrid.(In Spanish.)16. Miranda, J., Alvarez, A., Ar�evalo, S. and Guerra, F. Drago: An Ada Extensionto Program Fault-Tolerant Distributed Applications. Proceedings of the ReliableSoftware Technologies|Ada-Europe�96 Conference, LNCS 1088, Springer Verlag.17. Moser, L., Amir, Y., Melliar-Smith, P., and Agarwal, D. 1994. Extended VirtualSynchrony. In IEEE 14th Intl. Distributed Computing Systems, pages 56{67, June.18. Schneider, F.B. Implementing Fault-tolerant Services Using the State MachineApproach: A Tutorial. ACM Computing Surveys, 22(4), December 1990.19. Guerraoui, R. and Schiper, A. Fault-Tolerance by Replication in Distributed Sys-tems. Proceedings of the Reliable Software Technologies|Ada-Europe�96 Confer-ence, LNCS 1088, Springer Verlag.This article was processed using the LATEX macro package with LLNCS style
View publication statsView publication stats

https://www.researchgate.net/publication/226757208

