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Abstract. Soil-structure interaction involves kinematic and inertial effects that affect the
dynamic behaviour of the structures. Thus, a proper assessment of their dynamic response
requires the development of models that incorporate, in a rigorous manner, the interaction be-
tween the structure and the soil on which it is founded. Theseinteraction phenomena depend
on factors such as: the foundation type, its geometry and embedment depth, the soil type and
stratigraphy as well as the characteristics of the structure. In line with other authors’ studies
for shallow [7] and embedded foundations [15], a simple substructuring model of soil-structure
interaction in the frequency domain is proposed herein to evaluate the influence of these factors
on the dynamic response of structures founded on pile groupswhen subjected to seismic loads.
A BEM-FEM coupling model [5] is used to compute the impedancefunctions and the kinematic
interaction factors. A simple and stable procedure is developed in order to estimate the pe-
riod and damping of structures supported by different configurations of pile groups considering
soil-structure interaction. For this purpose, several modifications are introduced in the strategy
presented by Avilés and Ṕerez-Rocha [15] for embedded foundations. A diagonal impedance
matrix that takes into account the cross-coupled impedances of pile groups, which allows get-
ting manageable equations, is obtained in the lines of Maravas et al. [16] in the case of single
piles. All equations are expressed in terms of dimensionless parameters. An analysis of the
influence of some of the main characteristics of the foundation affecting the system response is
accomplished. The results show that cross-coupled impedances and soil-structure interaction
effects should not be neglected.
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1 INTRODUCTION

The dynamic characteristics of the interacting system, as well as the ground motion around
the foundation, are both influenced by kinematic and inertial effects associated to soil-structure
interaction (SSI). The exact analysis of this interaction for building structures may be imple-
mented through a substructuring methodology, which enables, moreover, to accomplish para-
metric analysis in the broad sense with low computational effort. It is common knowledge
that two fundamental problems have to be solved in these models in order to carry out a SSI
harmonic analysis: the evaluation of the impedance functions and the input motion (kinematic
interaction) of the foundation. Then soil-structure system is analized through a rigid-base struc-
ture over springs and dashpots representing the soil-foundation system and subjected to a base
excitation due to the kinematic interaction factors obtained for the type of foundation analized.

On the other hand, direct approaches, modelling simultaneously the main aspects of the
problem and their mutual interactions more rigorously [1–5], are both more complex and more
demanding from the computational point of view, and are consequently not frequently used
for the analysis of this kind of problems. Even so, these methods are specially competitive
in the analysis of interaction phenomena among nearby structures, and in problems involving
nonlinearities.

The effects of SSI on the effective period and damping of soil-structure systems have been
extensively studied either for surface-supported foundations (e.g. [6–12]) or for embedded foun-
dations [13, 14]. However, they have been examined at the exclusion of the kinematic interac-
tion. Avilés et al. [15] evaluate the effects of foundationembedment on the effective period and
damping and the response of soil-structure systems, considering both kinematic and inertial in-
teraction. Among other simplifying assumptions, all thesesolutions neglect the cross-coupled
stiffness and damping terms.

On the other hand, there are few studies in the scientific literature that analyse the dynamic
characteristics of pile-supported structures. In this line, Maravas et al. [16] presented an approx-
imate iterative procedure placing the reference system at adepth such that a diagonal impedance
matrix is obtained. This procedure allows to study the SSI effects on single-pile supported one-
storey shear structures considering the influence of cross-coupled impedances on their dynamic
response.

The aim of this work is to evaluate the influence of SSI on the period and damping of struc-
tures founded on square pile groups, in homogeneous viscoelastic half-spaces subjected to ver-
tically incident S waves. The analysis is performed by a substructuring model in the frequency
domain that takes into account both kinematic and inertial interaction effects. In order to do
this, a simplified, stable and accurate procedure is proposed herein. This procedure allows
to determine the dynamic characteristics of an equivalent viscously damped single-degree-of-
freedom (SDOF) oscillator, which being subjected to the free-field ground motion, causes the
same response in terms of shear force at the base of the structure as the coupled system involv-
ing kinematic and inertial interaction with the foundationground within the range where the
peak response occurs.

All equations are expressed in terms of the main dimensionless parameters of the problem
which considerably facilitates the analysis of their influence on the system dynamic response.

In this study, the harmonic response of the soil-structure system is computed by making use
of impedance functions and kinematic interaction factors,which are both frequency-dependent
functions, computed by a BEM-FEM coupling model [5].

Finally, results for different piles configurations are presented. The influence of some of the
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parameters involved (mass density ratio, fixed-base struture damping, pile-soil Young’s modu-
lus ratio, number of piles) are studied over practical ranges of interest.

2 PROBLEM DEFINITION

A model consisting of a single-degree-of-freedom system inits fixed-base condition, as the
one represented in Figure1, is used in this paper to study thedynamic behaviour of linear shear
structures. This model may represent either one-storey buildings or one mode of vibration of
multi-storey multi-mode structures. The structure is considered to be founded on a square pile
group embedded in a homogeneous, viscoelastic and isotropic half-space. The pile cap that
constrains the pile heads is assumed to be a rigid square plate of negligible thickness which is
not in contact with the half-space. The columns of the structure are supposed to be massless
and axially inextensible. Both the foundations mass and thestructural mass are considered to
be uniformly distributed over square areas. The pile group configuration, which is illustrated in
Figure 1, is defined by foundation halfwidthb, centre-to-centre spacing between adjacent piles
s, lengthL and sectional diameterd of piles, cap massmo and cap moment of inertia about a
horizontal axis passing through the centre of gravity of thecapIo. The dynamic behaviour of
the structure can be defined by its fixed-base fundamental periodT , the heighth of the resultant
of the inertia forces for the first mode, the massm participating in this mode, the moment of
inertia of the vibrating massI, the structural stiffnessk, and the viscous damping ratioξ.

Figure 1: Problem definition.

The system response, when soil-structure interaction is considered, can be approximated
by that of a three-degree-of-freedom system defined by the structural horizontal deflectionu
together with the foundation horizontal displacementuc and rockingϕc. Vertical and torsional
motions are neglected in this study.

3 SUBSTRUCTURE MODEL

This problem can be studied using the substructure methodology which provides accurate
results for this kind of problems and at the same time allows performing parametric analy-
sis with very little computational effort. For this purposethe system is subdivided intosoil-
foundationstiffness and damping, represented by means of springs and dashpots (see Figure 2),
andbuilding-capsuperstructure. The solution can be broken into three steps, as proposed by
Kausel and Roësset [17]. In the case under study, the first step consist in the determination of
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the frequency dependent kinematic interaction factors which represent the horizontal (ug) and
rocking (ϕg) motions of the massless pile cap when subjected to the same input motion as the
total solution. In the present case of deep foundations, even vertically incident S waves in a half-
space (for which the free-field motion at the ground surface is exclusively horizontal) generate
rocking kinematic response at the pile cap. The second step is to obtain the impedances whose
mathematical representation isKij = kij + iaocij . The dimensionless frequency is defined as
ao = ωb/cs; whereω is the excitation circular frequency,cs =

√

µs/ρs the speed of propagation
of shear waves in the halfspace, andρs andµs the soil mass density and shear modulus of elas-
ticity, respectively. These complex-valued frequency-dependent functions(kxx, cxx), (kθθ, cθθ)
and (kxθ, cxθ) represent the stiffness and damping of the soil in the horizontal, rocking and
cross-coupled horizontal-rocking vibration modes,respectively. When computed numerically,
the cross-coupled terms(kxθ, cxθ) and (kθx, cθx), which should be identical, are not exactly
equal to one another. Given that this difference is not significant for practical purposes, they are
considered identical in this approach. Lastly, the response of the structure supported on springs
and subjected to the motion computed in the first step is computed at each frequency.

Figure 2: (a) Substructure model of a one-storey structure. (b) Equivalent single-degree-of-
freedom oscillator

Hence, the equations of motion of the system depicted in Figure 2(a), assuming small dis-
placements, can be expressed in terms of relative motions, as

m · [ü+ üc
r + üg + h(ϕ̈g + ϕ̈c

r)] +K · u = 0 (1)

mo · [ü
c
r + üg] +Kxx · u

c
r +Kxθ · ϕ

c
r −K · u = 0 (2)

m · h[ü+ üc
r + üg + h(ϕ̈g + ϕ̈c

r)] + I(ϕ̈c
r + ϕ̈g)

+Kθx · u
c
r +Kθθ · ϕ

c
r + Io(ϕ̈

c
r + ϕ̈g) = 0

(3)

where eq. (1) represents the horizontal force equilibrium of the structure, eq. (2) the horizon-
tal force equilibrium of the soil-foundation system and eq.(3) the moment equilibrium of the
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structure-foundation system about the centre of gravity ofthe pile cap. This set of equations
can be expressed in a matrix form as
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(4)

whereK = k + i2ωnmξω, beingωn = 2π/T the fixed-base natural frequency of the super-
structure, and motions have been assumed to be time-harmonic of the typeu(t) = u eiωt. Once
the foundation input motion is computed and the right-hand vector and the coefficient matrix
are known, the structural deflection and foundation relative motions can be computed for every
frequency.

4 DIMENSIONLESS PARAMETERS

A set of dimensionless parameters, covering the main features of SSI problems, has been
repeatedly used in the related literature to perform parametric analyses [7, 8, 13, 15]. Follow-
ing these authors, the parameters that will be used herein tocharacterize the soil-foundation-
structure system are:

• The wave parameterσ = csT/h, measuring the soil-structure relative stiffness.

• The structural slenderness ratioh/b, measuring the relation between structure height and
foundation half-width.

• The mass density ratioδ = m/(4ρsb
2h) between structure and supporting soil.

• The foundation-structure mass ratiomo/m.

• The dimensionless fixed-base natural frequency of the structure, that can be expressed by
means of the ratioλ = ωn/ω.

• The fixed-base structure damping ratioξ.

• The dimensionless excitation frequencyao = ωb/cs = (b/d)(ωd/cs).

• The Poisson’s ratioνs and damping ratioξs of the soil.

On the other hand, the following dimensionless parameters are considered regarding the pile
foundations:

• The pile spacing ratios/d, expressed as the ratio between the centre-to-centre spacing
between adjacent piles and their sectional diameter.

• The embedment ratioL/b, measuring the relation between pile length and foundation
half-width.
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• The pile slenderness ratioL/d, measuring the relation between length and sectional di-
ameter of piles.

• The pile-soil Young’s modulus ratioEp/Es, measuring the pile-soil relative stiffness.

• The soil-pile densities ratioρs/ρp.

• The size of the square pile group.

• The dimensionless frequencyao.

5 DIMENSIONLESS SYSTEM EQUATIONS

It can be shown that the equation of motion of the system (eq. (4)) can be expressed as a
function of the dimensionless parameters already defined, as follows
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(5)

Equation (5) is obtained by introducing the structural stiffness and damping expressions,
that corresponds to a viscous damping model, into the equation (4); adding the two firsts rows
of the equation so that the second equation represents the horizontal balance of the whole;
replacing the structural stiffness by its expressionk = ω2

nm; extracting the structural massm,
as a common factor, from both sides of the equation and addingthe matrices of the first term of
the equation; extractingω2/ω2

n as a common factor from de first term of the equation; dividing
by h the third row of the equation and the third column of the system matrix; replacing the
rotational inertiasIo andI by their expressionsIo = mob

2/3 andI = mb2/3, respectively;
normalizing the kinematic interaction factors and the impedance functions; and expressing the
later ones in a dimensionless form.

The impedance functions are normalized as follows:K̃xx = Kxx/µsb, K̃θθ = Kθθ/µsb
3

andK̃xθ = Kxθ/µsb
2, and the kinematic interaction factors are normalized withthe free-field

motion at the surfaceugo, beingIu = ug/ugo andIϕ = ϕgb/ugo, both being functions of the
dimensionless frequencyao.

Negligible differences were obtained from the comparison between the results computed by
using this model and those reported by Veletsos [7] for shallow foundations, and Avilés and
Pérez-Rocha [15] for embedded foundations.

6 SOLUTION STRATEGIES

The objective is to find the dynamic characteristics of an equivalent viscously damped single-
degree-of-freedom (SDOF) oscillator, as that shown in Fig.2 (b), which being subjected to the
free-field ground motion, causes the same response in terms of shear force at the base of the
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structure as the coupled system involving kinematic and inertial interaction with the foundation
ground within the range where the peak response occurs. ThisSDOF system can be defined by
its undamped natural period̃T and its damping ratiõξ.

A procedure based on finding the eigenvalueλ̃ of the 3DOF system is proposed in this paper
to determine the dynamic characteristics of the equivalentSDOF system. This procedure is
similar to that proposed by Avilés and Pérez-Rocha [15] for embedded foundations. However,
contrary to what they do, herein the cross-coupled horizontal-rocking terms and the high-order
terms involving products of damping coefficients are considered. Neglecting the cross-coupled
stiffness and damping termskxθ and cxθ is not acceptable for pile foundations, not even for
certain configurations of embedded foundations, even though such assumption has been exten-
sively used by many authors [6–14].

In order to obtain manageable approximated expressions forthe period and damping of the
interacting system while keeping all the impedances, the soil-foundation interaction is con-
densed to a point at a certain virtual depthD(ω) = −Kxθ/Kxx (see Figure 3) such that the
impedance matrix becomes diagonal, as some authors propose[16, 18]. If, in addition,mo, I
andIo are neglected as usual (see, for instance [15]), eq. (5) becomes

Figure 3: Equivalent model with diagonalized impedance matrix
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Solving the complex system of algebraic equations given in (6) for ω2
nu/ügo yields the fol-

lowing expression forQ, which represents the ratio of the shear force at the base of the structure
to the effective earthquake force [19].

Q(λ) =

∣
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The first rootλ′ of equation (15) leads to a SDOF system whose peak response does not
always lead to an acceptable approximation for the 3DOF system peak response. However,
better resuts are obtained by neglecting all second-order damping terms, which leads to the
following approximate expression forA

A(λ) = 1−
1

λ2
−

1

λ2α2
xx

−
1

λ2α2
θθ

(17)

The dimensionless undamped natural frequency of the SDOF systemλ̃ = ωn/ω̃n can be
found as the root of the equation (17). This is equivalent to the resolution of the eigenvalue
problem from equation (6), without considering damping.
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As, in this case,̃ξ = 1/(2Q(λ̃)), and taking the expression forQ(λ̃) obtained from taking
equations (15) and (16) as values ofA andB, the effective damping ratiõξ can be written as
follows
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∣
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The obtained values of the dynamic characteristics, effective system period̃T and damping
ξ̃, are used to build modified response spectra that include SSIeffect which allow to obtain more
accurate design criteria for building structures.

7 RESULTS

Herein, the described procedure is applied to several configurations of pile supported struc-
tures in order to perform parametric studies of the influenceof SSI effects on their dynamic
response. In this paper, some conclusions are drawn from analysing the influence of the varia-
tion of parameters such as the size of the pile group, the fixed-base structure damping ratioξ,
the mass density ratioδ, the pile-soil Young’s modulus ratioEp/Es, the wave parameterσ and
the structural slenderness ratioh/b.

Different pile group configurations, for which the values ofthe dimensionless parameters are
listed in Table 1, are analysed. All configurations follow the pattern represented in Figure 4.

Table 1: Pile groups configurations

L/b L/d
s/d

2× 2 3× 3 4× 4

1
7.5 7.5 5 3.75
15 15 10 7.5

2
7.5 3.75 2.5 1.875
15 7.5 5 3.75
30 15 10 7.5

4
15 3.75 2.5 1.875
30 7.5 5 3.75

Figure 4: Geometric configuration of groups of2× 2 , 3× 3 and4× 4 piles

It is assumed thatmo/m = 0; ξ = 0.05; ξs = 0.05 and νs = 0.4. These values are
representative for typical buildings and soils [15]. Moreoverρs/ρp = 0.7.
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7.1 Impedances and kinematic interaction factors

In this paper, all impedance functions and kinematic interaction factors are computed using a
boundary element (BEM)- finite element (FEM) coupling model[5]. Piles are modelled directly
using FEM as beams according to the Bernoulli hypothesis, while soil is modelled using BEM
as a linear, isotropic, homogeneous, viscoelastic medium.Welded boundary contact conditions
at the pile-soil interfaces are assumed and the pile heads are constrained by a rigid pile-cap
which is not in contact with the half-space.

Figures 11 to 15 show the impedances of the pile groups under investigation. On the other
hand, Figures 12 to 16 present their kinematic interaction factors (see appendix).

7.2 Influence of the mass density ratioδ

Figure 5 illustrates the relevant influence that the mass density ratio between structure and
supporting soil has on the system response. This response can be represented in terms of ef-
fective periodT̃ /T and damping̃ξ and maximum shear force at the base of the structure per
effective earthquake force unitQm = Max[|ω2

nu/ω
2ugo|] . An increase ofδ implies a decrease

of the system stiffness which results in greater values ofT̃ /T and ξ̃. Thus, lower values of
Qm are achieved. The influence of the aforementioned effects becomes more remarkable for
increasing values ofh/b. For the results provided below, the value of this parameteris taken
asδ = 0.15 because it is representative for typical buildings and soils and has been used in
previous works (e.g. [7,15]).

7.3 Influence of the fixed-base structure damping ratioξ

Figure 6 shows how the variation of the fixed-base structure damping ratio influences the
effects of SSI on the system dynamic response. It can be observed that this parameter has
no influence on the system effective periodT̃ /T . However, as it is expected, it affects to the
system effective damping̃ξ that reaches greater values asξ increases. This effect becomes more
remarkable for greater values of the wave parameterσ. By contrast, its influence is negligible
when1/σ ≥ 0.4. These variations on the system effective damping leads to increasing values
of Qm for decreasing values of the fixed-base structure damping ratio ξ. Furthermore, greater
values of the structural slenderness ratioh/b implies a wider range of the parameterσ where
the variation ofξ has a significant influence.

For the results provided in this paper, the value of this parameter is taken asξ = 0.05 because
it is representative for typical buildings and has been usedin previous works (e.g. [7,15]).

7.4 Influence of the pile-soil Young’s modulus ratioEp/Es

As it can be seen in Figures 17 to 22, the variation of the pile-soil Young’s modulus ratio
affects to impedance functions and kinematic interaction factors. Consequently, SSI effects on
the system dynamic response are also influenced.

In order to analyse the influence ofEp/Es on the dynamic characteristics of the system,
Figure 7 presents the results considering two different values of this parameter.

Considering constant properties for the material of piles,lower values ofEp/Es imply an
increase of the soil stiffness which leads to greater valuesof the system effective period̃T/T
and lower values of the effective dampingξ̃. Consequently, higher values ofQm are reached.
This effect is more remarkable for greater values of the pileslenderness ratioL/d.
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Figure 5: Effective periodT̃ /T , damping ratioξ̃ and maximum structural response valueQm

for a 3 × 3 pile group withL/d = 7.5, L/b = 1, ξ = 0.05, Ep/Es = 103 and ξs = 0.05.
Influence of the mass density ratioδ
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Figure 6: Effective periodT̃ /T , damping ratioξ̃ and maximum structural response valueQm

for a 3 × 3 pile group withL/d = 30, L/b = 2, δ = 0.15, Ep/Es = 103 and ξs = 0.05.
Influence of the fixed-base structure damping ratioξ
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Figure 7: Effective periodT̃ /T , damping ratioξ̃ and maximum structural response valueQm

for 2× 2 pile groups withL/b = 2, δ = 0.15, ξ = 0.05 andξs = 0.05. Influence of the pile-soil
Young’s modulus ratioEp/Es
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Figure 8: Effective periodT̃ /T , damping ratioξ̃ and maximum structural response valueQm

for 4 × 4 pile groups withL/d = 15, L/b = 4 and ξs = 0.05. Influence of cross-coupled
impedances

7.5 Influence of cross-coupled impedances

Figure 8 illustrates the influence of the cross-coupled impedances on the system dynamic
response. As it can be seen, for configurations withh/b ≥ 5 the system dynamic response in
terms ofQm is subestimated when these elements of the matrix of impendances are neglected.
The relative error, in terms ofQm, committed by neglecting the cross-coupled impedances,
could reach a40%. Therefore, all the results presented in this paper are obtained considering
all the elements of the matrix of impedances.

7.6 Influence of kinematic interaction factors

In order to show how kinematic interaction influences the system dynamic response, Fig-
ure 9 presents the results involving total soil-structure interaction (both kinematic and inertial
interaction) or only inertial interaction. The system effective periodT̃ /T is not affected by kine-
matic interaction. However, generally, the effective damping ξ̃ decreases when these factors are
considered. Therefore, the results for the system dynamic response computed without taking
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Figure 9: Effective periodT̃ /T , damping ratioξ̃ and maximum structural response valueQm

for 4×4 pile groups withL/d = 15, L/b = 4 andξs = 0.05. Influence of kinematic interaction
factors

kinematic interaction effects into account are not on the side of safety except for non-slender
structuresh/b ≤ 1, in which case this trend could be reversed.

7.7 Influence of pile group size

A decrease of the number of piles leads to a reduction of the system stiffness, which implies
an increase of the effective period that becomes more remarkable for greater values ofh/b, as
it can be seen in Figure 10. Regarding the effective dampingξ̃, for h/b ≤ 2, it reaches greater
values as the number of piles increases which leads to smaller values ofQm.

8 CONCLUSIONS

In this paper, several parametric analysis are presented inorder to study the influence of SSI
on the dynamic characteristics of structures founded on square pile groups, in homogeneous
viscoelastic half-spaces subjected to vertically incident S waves. The analysis is performed by a
substructuring model in the frequency domain that takes into account both kinematic and inertial
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Figure 10: Effective periodT̃ /T , damping ratioξ̃ and maximum structural response valueQm

for pile groups withL/d = 15, L/b = 2 andξs = 0.05. Influence of pile group size
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interaction effects. In order to do this, a simplified, stable and accurate procedure is proposed
herein. This procedure allows to determine the effective period and damping of an equivalent
viscously damped single-degree-of-freedom (SDOF) oscillator, which being subjected to the
free-field ground motion, causes the same response in terms of shear force at the base of the
structure as the coupled system involving kinematic and inertial interaction with the foundation
ground within the range where the peak response occurs.

All the results provided herein have a dimensionless character, thus their physical interpre-
tation must be carefully done and requires a specific data processing taking into account the
influence of every dimensionless parameter.

The main conclusions are summarised below.

• The kinematic interaction does not influence the system effective period but leads to lower
values of the system damping, except for non-slender structures.

• Increasing values of the number of piles result in an increase of the foundation stiffness
which leads to lower values of̃T/T and greater values of̃ξ.

• In the same line, lower values of the pile-soil Young’s modulus ratioEp/Es result in an
increase of the foundation stiffness which leads to lower values of the effective period
and greater values of the effective damping.

• An increase of the mass density ratio implies greater valuesof the system effective period
and damping.

• The effective period is not affected by variations of the fixed-base structure damping ratio
ξ. However, the influence of this variation on the effective damping is more important as
the wave parameter increases.

• For slender buildings, the system effective damping remains close to that corresponding
to fixed-base condition or lower.

Soil-structure interaction effects significantly influences the system response. Period and
damping curves have been obtained considering these effects and they show noticeable differ-
ences in relation to those obtained considering fixed-base condition. These effects are more
decisive for pile foundations than for embedded or surface-supported foundations and its influ-
ence depends substantially on the configuration of the foundation.
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Figure 11: Impedance functions of different2× 2 pile groups;Ep/Es = 103 andξs = 0.05.
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Figure 13: Impedance functions of different3× 3 pile groups;Ep/Es = 103 andξs = 0.05.
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Figure 15: Impedance functions of different4× 4 pile groups;Ep/Es = 103 andξs = 0.05.
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Figure 17: Impedance functions for a2×2 pile group withL/d = 7.5, L/b = 2 andξs = 0.05.
Influence of the pile-soil Young’s modulus ratioEp/Es
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Figure 18: Kinematic interaction factors for a2 × 2 pile group withL/d = 7.5, L/b = 2 and
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Figure 19: Impedance functions for a2× 2 pile group withL/d = 15, L/b = 2 andξs = 0.05.
Influence of the pile-soil Young’s modulus ratioEp/Es
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Figure 20: Kinematic interaction factors for a2 × 2 pile group withL/d = 15, L/b = 2 and
ξs = 0.05. Influence of the pile-soil Young’s modulus ratioEp/Es
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Figure 21: Impedance functions for a2× 2 pile group withL/d = 30, L/b = 2 andξs = 0.05.
Influence of the pile-soil Young’s modulus ratioEp/Es
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Figure 22: Kinematic interaction factors for a2 × 2 pile group withL/d = 30, L/b = 2 and
ξs = 0.05. Influence of the pile-soil Young’s modulus ratioEp/Es
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[17] E. Kausel, J. M. Roësset, Soil-structure interactionfor nuclear containment, in:Electric
Power and Civil Engineer. Power Div. ASCE Specialty Conf, Boulder, Colorado, pp. 469–
498, 1974.

[18] E. Kausel,Structures in seismic regions, Technical Report, Technische universitt Berlin
and MIT, 1984.

[19] A. K. Chopra, Dynamic of structures.Theory and applications to earthquake engineering.,
Prentice-Hall (NJ), 2001.

[20] G. Gazetas, K. Fan, T. Tazoh, K. Shimizu, M. Kavvadas, N.Makris, Seismic pile-
groupstructure interaction,Geothec Spec Publ, ASCE, 34, 56–93, 1992.

[21] K. Fan, G. Gazetas, A. M. Kaynia, E. Kausel, S. Ahmad, Kinematic seismic response of
single piles and pile groups,J Geothec Eng Div, ASCE, 117(12), 1860–1879, 1991.

[22] S. Nikolaou, G. Mylonakis, G. Gazetas, T. Tazoh, Kinematic pile bending during earth-
quakes: Analysis and field measurements,Géothecnique, 51(5), 425–440, 2001.
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