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Abstract. A Procedure for fast pattern matching in protein sequences is
presented. It uses a biological metric, based on the substitution matrices
as PAM or BLOSUM, to compute the matching. Biological sensitive pat-
tern matching does pattern detection according to the available empirical
data about similarity and affinity relations between amino acids in pro-
tein sequences. Sequence alignments is a string matching procedure used
in Genomic; it includes insert/delete operators and dynamic program-
ming techniques; it provides more sophisticate results that other pattern
matching procedures but with higher computational cost. Heuristic pro-
cedures for local alignments as FASTA or BLAST are used to reduce this
cost. They are based on some successive tasks; the first one uses a pat-
tern matching procedure with very short sequences, also named k-tuples.
This paper shows how using the L1 metric this matching task can be effi-
ciently computed by using SIMD instructions. To design this procedure,
a table that maps the substitution matrices is needed. This table defines
a representation of each amino acid residue in a n-dimensional space of
lower dimensionality as possible; this is accomplished by using techniques
of Multidimensional Scaling used in Pattern Recognition and Machine
Learning for dimensionality reduction. Based on the experimental tests,
the proposed procedure provides a favorable ration of cost vs matching
quality.

Keyword: Pattern Matching, Biological Pattern Analysis, Sequence Align-
ments, Multidimensional Scaling, SIMD Processing.

1 Introduction

The fast growing of information contained in the biological databases[1] requires
more efficient processing systems to find functionality and meaning in the DNA
and protein sequences. More efficient systems are obtained by hardware and
architectural improvements, and also by defining more efficient computational
procedures. Artificial Intelligence, Pattern Recognition and Machine Learning
techniques can provide additional approaches to allow better computational per-
formances in Gemomic related systems[2]. This paper uses Pattern Recognition



and Machine Learning techniques applied in Bioinformatics[3] to define a match-
ing procedure to get some architectural improvements in alignment procedures of
biological sequences. These architectural improvements are initially introduced
for multimedia and information retrieval applications, but by means of special
software design they can also be used in genomic related computations.

Single Instruction Multiple Data(SIMD) instructions are included in most
microprocessors of low cost computer systems, as Intel and AMD. They can
be used to speed up workstations and servers in Genomic, but special designs
are needed because available compilers do not take advantage of these instruc-
tions for general software. Modern computer items as cache hierarchy, memory
access and SIMD processing upgrade the performance of generic software, but
additional increase of the power in genomic based procedures can be obtained
if they are designed according to the above processor characteristics[4]. Some
works have dealt with the use of parallel computation for sequence analysis[5, 6],
and also with the use of SIMD instructions in the improvements of local align-
ments[7, 8]. However, this work presents a process for the first stages of some
local alignment procedures. The proposal requires the computation of some ta-
bles to map the amino acid residues in a n-dimensional space according to the
biological properties represented in the score or substitution matrices, as PAM[9]
and BLOSUM[10].

The search of local alignment between biological sequences is one of the
most used tools in discovering the functional and evolutionary similarities. The
Smith-Waterman procedure[11], based on dynamic programming, has the high-
est biological significance. However, its computational cost is greater than other
heuristics procedures as FASTA[12] and BLAST[13] which have lower computa-
tional cost having a high level of biological significance. The first stage of both
FASTA and BLAST is the searching of very short pre-coded sequences, named
k-tuples, in the sequences included in the biological databases. The matching
of k-tuples, named ktup in FASTA and w-mers in BLAST, between a query
sequence and the database can be efficiently computed by information retrieval
procedures.

However instead of naive ASCII code matching, a n-dimensional code match-
ing based on the biological information contained in the score or substitution
matrices is proposed in this paper. The information retrieval procedure takes ad-
vantage of two architectural improvements of modern microprocessors: parallel
computation with multiple data processing units, and sequential memory access
which increases the cache throughput. This paper present the process to map
the amino acid residues in a virtual meaning less n-dimensional space. This is
accomplished by non-linear dimensionality reduction methods used in Multidi-
mensional Scaling(MDS)[14–18] which are mainly used in Pattern Recognition
and Machine Learning for feature selection and also for visualization of high
dimensional data sets.



2 Pattern Matching of k-tuples

An efficient procedure for pattern matching of k-tuples is proposed. The distance
D(U, V ) between two vector U and V in RM based on the L1 norm is defined
as:

D(U, V ) =
M∑

i=1

| Ui − Vi | (1)

The Intel IA-32 computer architecture includes an instruction to compute
this distance with M = 8 in a single system clock cycle. The norm for M = 8×m
also can be fast computed from the previous. The continuous increasing of micro-
processor clock frequency provides a powerful method to speed up many of data
processing tasks which can be re-formulated to fit in a L1 norm. This instruc-
tion is part of the MMX instruction set included to improve the performance of
multimedia, text retrieval and signal processing applications. Most of problems
related with sequence analysis are based on score matrices to model the amino
acid distances and similarities; this is not an efficient choice to use the power that
current hardware provides. If A is the amino acid symbols set, instead of using
a score matrix s(a, b); a, b ∈ A, a distance based on norm L1 can be required:

DX(a, b) =
n∑

i=1

| Xi(a)−Xi(b) | (2)

where X(a) is a n-dimensional vector which is the representation of the amino
acid, and DX(a, b) is the desired distance. In raw text searching of query sequence
in a biological database, this vector is the 1-dimensional ASCII code of the
residue symbol. However, this is a too simplistic representation of the amino acid
properties which ignores the biological meaning and the affinity relations. The
similarity relations of amino acid require the introduction of a representation
in a multidimensional space with the lowest dimensionality as possible. This
representation must contain the biological information of similarity which is
gathered in the substitution matrices. PAM and BLOSUM matrices are defined
from statistical properties related with residues substitutions from evolutionary
or blocks alignments. They are nor distance neither similarity functions. They are
score factors which verifies: s(a, b) = s(b, a) and also generally: s(a, a) ≥ s(a, b).
From a score matrix several distance functions, d(a, b), can be proposed; the
considered in this paper is:

d(a, b) = s(a, a) + s(b, b)− 2s(a, b) (3)

This verifies the symmetrical property: d(a, b) = d(b, a), is lower bounded:
d(a, b) ≥ 0 and also verifies: d(a, a) = 0, but is not a metric. When is verified
that s(a, a) > s(a, b), it is also verified that if d(a, b) = 0 it must be: a ≡ b.
The triangular properties is not verified in the general case, thus the proposed
function is a distance, but not a metric one. This distance has also a probabilistic



expression when is computed from the PAM and BLOSUM substitution matri-
ces. Both are obtained by means of a probabilistic ratio obtained from different
empirical environments. In these cases, the score matrix and the distance are
defined as:

s(a, b) =
1
λ

log
p(a, b)
papb

d(a, b) = − 2
λ

log
p(a, b)√

p(a, a)p(b, b)
(4)

where p(a, b) is the probability of substitution between two residues, pa term is
defined from the p(a, b), and λ is a suitable parameter. The score of a k-tuple
of two sequences U and V is computed in the alignment procedures[11, 19] by
using substitution matrices as:

s(U, V ) =
k∑

j=1

s(uj , vj) (5)

where u(j) and v(j) correspond to the amino acid in the k-tuple. If the distance
of this k-tuple, d(U, V ), is defined as: d(U, V ) = s(U,U) + s(V, V )− 2s(U, V ), it
can be computed as:

d(U, V ) =
k∑

j=1

d(uj , vj) ' DX(U, V ) =
k∑

j=1

n∑

i=1

| Xi(uj)−Xi(vj) | (6)

If d(a, b) can be computed by DX(a, b) with a reduced error. This last is a L1

norm with M = n × k. Due to hardware constraints, the optimal computation
can be achieved when n × k = 8 ×m. The high k value reduces the sensibility
whereas the low k value implies a lower significative; BLAST uses k = 3, 4, 5, to
compute the hits or initial alignment clues. The k-tuple matching between two
sequences is computed in this paper as:

T (h, l) =
k∑

j=1

n∑

i=1

| Xi(uh+j−1)−Xi(vl+j−1) | (7)

2.1 Multidimensional Scaling

A problem which must be solved is how compute DX(a, b) as a good approx-
imation of d(a, b); this requires the computing of the vector set: X(a), a ∈ A.
The Sammon method [20] is used to achieve this goal; it provides a good ratio of
result quality to computational complexity[16–18]. It maps a distance function
to a reduced dimensionality space based on the minimization of an objective
function assigning to each amino acid tentative coordinates. These coordinates
are meaning less, and they are useful only to compute the distance. The Sammon
method is based on the minimization of a non-lineal goal function related with
the error between the original distances and the tentative ones, consequently
several solutions can be obtained if some local minimum exists. The procedure



requires the minimization of the goal function S(X) which can be assimilated
to a relative error of the mapping process:

min
X

S(X) =

∑
a

∑
b<a

[DX(a,b)−d(a,b)]2

d(a,b)∑
a

∑
b<a d(a, b)

(8)

while the relative error is compute as:

E(X) =
2

N(N − 1)

∑
a

∑

b<a

[DX(a, b)− d(a, b)]2

d2(a, b)
(9)

where N is the amino acid number. The X solution is not unique due to the
geometrical transformations that preserve the distance DX . For the L1 metric
the freedom degrees are less that in euclidean or L2 metric, because the rota-
tion group is finite dimensional in the first case instead of infinite dimensional
of the second case. The vector X(a) provided by the optimization procedure is
transformed to the Y(a) vector in the byte values range [0, 255] by geometrical
transformations of translation and scaling. Table 1 contains the second coordi-
nate type for 1,2,4 and 8-dimensional mapping. Due to the hardware restrictions
these dimensional values are the most useful for practical proposes. The trans-
lation to the origin of coordinates does not modify the distances, whereas the
scaling to fit the [0, 255] range modifies the distance with a constant factor ρ
related with the scaling transformation. The relation between the distances com-
puted by mean of the two vector type is:

DX(a, b) = ρDY (a, b) (10)

3 Results

Both Genetic and Gradient optimization methods can be used to achieve the
minimization of the goal function. Gradient procedures have better convergence
around local minima, while Genetic procedures allow a better global optimization
by considering several local minima. Many solutions are expected in the proposed
problem, covering a wide range of both local minimum due to non-linearity and
also due to geometrical transformations.

A Genetic Algorithm is used to obtain a solution which is afterward refined
by applying a Gradient procedure based on Quasi-Newton algorithm. Genetic
algorithm are good to jump far of tentative local minima. However, in practice
after a number of iterations the genetic algorithm is mainly working in the
refinement of a local minimum, but for this task the gradient procedures are more
efficient. The minimum of several trial cases of genetic and gradient procedures
is chosen as the solution. GAOT[21] is a public domain Genetic Toolbox that
is used for the first stage and the MATLAB Optimization Toolbox[22] for the
second one. Figure 1 shows the graphical representation of the value S(X) of
the Sammon function and the relative error E(X) vs the dimensionality n of
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Fig. 1. Goal function S(X) and error E(X) vs the mapping space dimensionality n.

the mapping space. Table 1 contains the obtained Y coordinates for 1,2,4, and
8-dimensionality.

To illustrate the pattern matching procedure an example with two protein
sequences is used. These proteins have the entry names GTH2 TOBAC and
GTH1 MAIZE in SWISS-PROT database; both are related proteins, member of
the Glutathione S-transferases family[23], included in the GST C entry of the
Pfam protein families database[24].

Figure 2 at left shows the standard dotplot representation of both proteins.
The dotplot is the simplest matching procedure, it is a 1-tuple matching. In
this figure each point means a score value greater that a threshold. In this case
s(a, b) ≥ 4 according with the BLOSUM65 matrix. The previous alignment of
both sequence shows a significative match in the 49-75 region. Other matches
are too weak to be considered. Also, Figure 2 at right shows the solution of the
matching procedure with tuple size k = 4, the mapping dimensionality n = 2, by
using a threshold DY (U, V ) ≤ 20. As shown the significative region is detected
as can be supplied to next stages of heuristics procedures as FASTA or BLAST.

Figure 3 shows a comparative evaluation of the computational time of some
matching procedures. The sequence of the protein GTH1 MAIZE is matched
with some randomly chosen sequences in the SWISS-PROT database. The length
of the GTH1 MAIZE sequence is 213 amino acids, the figure shows the compu-
tational cost in msec. of each protein match vs the sequence length. To avoid
the noise produced by the operating system interruptions and services, no other
user task was running and each represented value is the mean over a thousand
cases. The computation of the dotplot is compared with the computation of the
matching procedure defined in equation (7) with k = 4 and n = 2; the latter
is computed by coding in C language and also by using the MMX instruction
set in assembler language. The processor used is a Intel Pentium IV at 2Ghz.
It is concluded that the 4-tuple matching coded in MMX has similar cost that
the dotplot, but the quality of results is better as shown in Figure 2. The MMX



Table 1. Mapping coordinates for 1,2,4 and 8-dimensionality of BLOSUM62 trans-
formed to integer [0,255] range for use in fast matching procedures

n = 1 n = 2 n = 4 n = 8

Amino Acid Y1 Y1 Y2 Y1 Y2 Y3 Y4 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

A 140 100 180 182 94 68 49 31 66 120 85 139 105 98 40
R 180 161 113 181 16 108 79 24 89 105 38 0 97 77 24
N 203 198 191 244 26 73 71 94 83 35 46 63 89 90 41
D 216 227 168 255 59 51 98 117 62 82 66 64 175 84 72
C 31 0 166 154 191 61 56 31 87 149 114 100 0 178 63
Q 164 184 146 173 10 65 100 34 68 88 35 36 129 43 50
E 190 177 175 205 36 54 110 13 66 87 53 49 176 85 46
G 228 148 233 230 105 101 61 88 67 88 70 175 63 71 11
H 239 207 92 193 0 0 66 25 67 0 69 40 81 73 126
I 97 63 142 157 65 50 8 36 34 158 17 115 103 115 80
L 89 76 124 154 50 70 0 22 24 144 4 101 88 106 66
K 173 170 134 181 42 88 123 24 121 109 42 63 132 73 25
M 115 95 127 151 33 81 23 28 41 149 0 95 98 50 56
F 59 91 76 97 52 37 45 0 20 207 61 88 78 75 96
P 255 129 255 167 65 164 97 37 34 56 167 107 150 69 25
S 154 139 171 199 76 74 76 69 77 102 81 88 107 86 47
T 131 113 198 142 85 73 89 54 30 101 61 77 107 150 34
W 0 121 0 0 46 82 61 33 0 255 69 52 44 0 0
Y 71 129 62 117 44 8 63 37 10 184 74 40 79 71 122
V 105 70 153 163 70 55 16 37 34 157 35 121 116 115 64

ρ 0.1444 0.1036 0.0802 0.0421

procedure is slight faster than the dotplot in long sequence and also slight slower
in short sequences. In all case the 4-tuple matching in C is the slower option.
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Fig. 2. At left, Dotplot representation between two proteins, GTH2 TOBAC and
GTH1 MAIZE. Both are related proteins members of the Glutathione S-transferases
family. Each point has a score s(a, b) ≥ 4 using the BLOSUM62 substitution matrix.
The two local alignments between the proteins are shown below with the position in
the sequence. Each amino acid symbol means exact match, while the - symbol means
mismatch. The stronger similarity is in the 49-75 region, also very week alignments are
detected in the 27-48 and 139-167 regions. At right, k-Tuple matching representation
between both proteins by using a tuple size k = 4 and a mapping dimensionality n = 2
of the BLOSUM65 matrix. Shown points have a tuple distance DY (U, V ) ≤ 10.
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