
Chapter 4
Wind Field Diagnostic Model

E. Rodrı́guez, G. Montero and A. Oliver

Abstract This chapter describes Wind3D, a mass-consistent diagnostic model with
an updated vertical wind profile and atmospheric parameterization. First, a descrip-
tion of Wind3D is provided, along with their governing equations. Next, the finite
element formulation of the model and the description of the solver of the corre-
sponding linear system is presented. The model requires an initial wind field, inter-
polated from data obtained in a few points of the domain. It is constructed using a
logarithmic wind profile that consider the effect of both stable boundary layer (SBL)
and the convective boundary layer (CBL). One important aspect of mass-consistent
models is that they are quite sensitive to the values of some of their parameters.
To deal with this problem, a strategy for parameter estimation based in a memetic
algorithm is presented. Finally, a numerical experiment over complex terrain is pre-
sented along with some concluding remarks.

4.1 Mass consistent model

Diagnostic models apply conservation of mass, momentum, and energy singularly
or fully, considering the terrain effects on an initial flow field. Although these mod-
els are used to obtain wind fields at a given time, the results usually represent winds
of a time-averaged period. Diagnostic models are limited in comparison with prog-
nostic models because they don’t take into account the transient and thermal effects
so they cannot simulate the evolution of the boundary layer; however, the computa-
tional requirements of the former are much lower than the latter.
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Diagnostic models can be classified into three different categories according to
the conservation laws applied. The first category comprises the diagnostic mod-
els that are based only on the conservation of mass; see, e.g., [21, 16, 4]. These
models obtain a divergence-free flow that minimizes the differences with an ini-
tial known wind field. Mass-consistent models have been applied to the dynamical-
downscaling of NWP models for local and regional scale wind forecasting, e.g.,
the WindNinja model [25]. The second category considers a linearized momentum
equation [26, 19]. Non-linear momentum effects in steep terrain are not represented
by these models [11]. Compared to the mass-consistent models, computational cost
is comparable providing similar results [27, 3]. Nevertheless, mass-consistent mod-
els are better suited than linearized models for some atmospheric dispersion prob-
lems where a fast response is required [10]. The third type of diagnostic model
applies conservation of both mass and momentum to some form of turbulence clo-
sure [2, 12, 24, 11], and even conservation of energy [14]. The RANS RNG k− ε

turbulence model has handled non-linear flow effects better than mass-consistent
models [11] but it is computationally more expensive.

Wind3D uses the logarithmic wind profile to construct the initial wind field. Un-
der this profile, the value of z0 is the height above ground level where the wind speed
follows the logarithmic law and below that height the wind speed is considered zero.
The value of d preserves the logarithmic law above tall obstacles [6]. Both z0 and
d determines the effect of the land cover to the near-surface airflow [1]. Therefore,
the values of these parameters are directly related to the vegetation and topograph-
ical characteristics of the terrain, which can be defined by the land coverage of the
terrain, as explained in Chapter 2.

4.1.1 Governing equation

We consider a mass-consistent model [21, 16, 18, 7] to compute a wind field u in
a domain Ω with a boundary Γ = Γa ∪Γb, which satisfies the mass continuity
equation in Ω , for an incompressible flow, and the impermeability condition on the
terrain Γa:

∇ ·u = 0 in Ω (4.1)
n ·u = 0 in Γa (4.2)

where n is the outward-pointing normal unit vector and Γb the free boundary. The
model formulates a least-squares problem in the domain Ω to find a wind field
u(ũ, ṽ, w̃) such that it is adjusted as much as possible to an interpolated wind field
v0(u0,v0,w0). The adjusting functional for a field u(ũ, ṽ, w̃) is defined as:

E(ũ, ṽ, w̃) =
∫

Ω

[α2
1

(
(ũ−u0)

2 +(ṽ− v0)
2
)
+α

2
2 (w̃−w0)

2] dΩ (4.3)
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being α1 and α2 the Gauss Precision moduli, considered equal for the horizontal
direction. Mass consistent models are very sensitive to the values chosen for α1 and
α2, so special care must be taken in its selection. Dividing equation 4.3 by α2

2 leads
to the so called stability parameter α ,

α =
α1

α2
(4.4)

Note that coefficients α1 and α2 are the adjusting weights for the horizontal and
vertical components of wind velocity. For α� 1 vertical wind component has more
weight, so wind tends to pass over terrain barriers; with α � 1 wind tends to sur-
round such barriers. In particular, there is pure vertical adjustment for α→∞, while
α → 0 means pure horizontal adjustment.

In order to find the wind field v(u,v,w) the following problem must be solved:
“Find v ∈ K such that,

E(v) = min
u∈K

E(u), K =
{

u;∇ ·u = 0, n ·u|Γb = 0
}

” (4.5)

This problem is equivalent to finding the saddle point (v,φ) of Lagrangian [28],

L(u,λ ) = E(u)+
∫

Ω

λ∇ ·udΩ (4.6)

The Lagrange multiplier technique can be used to obtain the saddle point of equa-
tion (4.6), L(v,λ )≤ L(v,φ)≤ L(u,φ), such that the solution field v can be obtained
from Euler-Lagrange equations,

v = v0 +T ∇φ (4.7)

being φ Lagrange multiplier and T = (Th,Th,Tv) the diagonal transmissivity tensor

Th =
1

2α2
1
, Tv =

1
2α2

2
y

Tv

Th
= α

2 (4.8)

If α1 and α2 are considered constant in the whole domain, variacional formula-
tion leads to an elliptic equation defined in φ . Substituting equation (4.7) in (4.1)
results in

−∇ · (T ∇φ) = ∇ ·v0 (4.9)

which can be completed with null Dirichlet condition in the permeable boundaries
of the domain (vertical boundaries)

φ = 0 in Γa (4.10)

and a Neumann condition in the non-permeable boundaries (terrain and upper
boundary)
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n ·T ∇φ =−n ·v0 in Γb (4.11)

Taking into account that the initial wind field v0 is horizontal in the upper bound-
ary, condition 4.11 becomes

n ·T ∇φ = 0 (4.12)

Considering Th and Tv as constants, equation (4.9) becomes

∂ 2φ

∂x2 +
∂ 2φ

∂y2 +α
2 ∂ 2φ

∂ z2 =− 1
Th

(
∂u0

∂x
+

∂v0

∂y
+

∂w0

∂ z

)
(4.13)

4.1.2 Finite element formulation

The classic formulation given in equations (4.9), (4.10) and (4.11) is solved using
the finite element method (FEM) and tetrahedral meshes (see Chapter 3).

Note that in the variational formulation of the problem, integrals in the bound-
ary with Neumann condition are canceled using equation (4.11), while those corre-
sponding to Dirichlet conditions are eliminated canceling out the corresponding test
function.

This leads to a set of elemental matrices of dimension 4×4 asociated to the ele-
ment Ωe, being ψ̂i the shape function corresponding to the i− th node, i = 1,2,3,4,
defined in the reference element Ω̂e and |J| the jacobian of the transformation of Ωe
into Ω̂e,

{Ae}i j =
∫

Ω̂e

{(∂ψ̂i

∂ξ

∂ξ

∂x
+

∂ψ̂i

∂η

∂η

∂x
+

∂ψ̂i

∂ϕ

∂ϕ

∂x
)(

∂ψ̂ j

∂ξ

∂ξ

∂x
+

∂ψ̂ j

∂η

∂η

∂x
+

∂ψ̂ j

∂ϕ

∂ϕ

∂x
)

+(
∂ψ̂i

∂ξ

∂ξ

∂y
+

∂ψ̂i

∂η

∂η

∂y
+

∂ψ̂i

∂ϕ

∂ϕ

∂y
)(

∂ψ̂ j

∂ξ

∂ξ

∂y
+

∂ψ̂ j

∂η

∂η

∂y
+

∂ψ̂ j

∂ϕ

∂ϕ

∂y
)+ (4.14)

+
Tv

Th
(

∂ψ̂i

∂ξ

∂ξ

∂ z
+

∂ψ̂i

∂η

∂η

∂ z
+

∂ψ̂i

∂ϕ

∂ϕ

∂ z
)(

∂ψ̂ j

∂ξ

∂ξ

∂ z
+

∂ψ̂ j

∂η

∂η

∂ z
+

∂ψ̂ j

∂ϕ

∂ϕ

∂ z
)}·|J| dξ dη dϕ

and elemental vectors of dimension 4×1,

{be}i =
∫

Ω̂e

− 1
Th
{u0(

∂ψ̂i

∂ξ

∂ξ

∂x
+

∂ψ̂i

∂η

∂η

∂x
+

∂ψ̂i

∂ϕ

∂ϕ

∂x
)+

+v0(
∂ψ̂i

∂ξ

∂ξ

∂y
+

∂ψ̂i

∂η

∂η

∂y
+

∂ψ̂i

∂ϕ

∂ϕ

∂y
)+ (4.15)

+w0 (
∂ψ̂i

∂ξ

∂ξ

∂ z
+

∂ψ̂i

∂η

∂η

∂ z
+

∂ψ̂i

∂ϕ

∂ϕ

∂ z
)} · |J| dξ dη dϕ
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4.1.3 Linear system resolution

The application of finite element method to these problems leads to the resolution of
large and symmetric linear systems of equations with a sparse matrix of coefficients
(stiffness matrix):

Ax = b (4.16)

Using iterative solvers is an appropriate strategy to solve such linear systems. In par-
ticular, the conjugated gradient method [9] is the most efficient Krylov’s subspace
method for solving symmetric linear systems.

In the case of a sparse matrix, major memory requirement reductions can be
achieved by storing only the non-zero entries in the computer memory. In partic-
ular, the compressed storage row technique uses three one-dimensional arrays to
represent the stiffness matrix, that respectively contain nonzero values, the extents
of rows and column indices. An storage of order 3× n (being n the matrix dimen-
sion) is needed, in contrast to n2 needed for the whole representation (including
zero coefficients). The trade-off is that accessing the individual elements becomes
more complex and additional structures are needed to be able to recover the original
matrix unambiguously.

The solution, φ , of the linear system is used to obtain the wind field with equa-
tion 4.7.

The rate of convergence of methods based on Krylov subspaces, and conjugated
gradient in particular, can be improved with the use of preconditioning techniques.
In general, they consist of replacing the original system of equations (4.16) by an-
other one with identical solution, in such a way that the condition of the matrix of
the new system is lower than that of A. In general, a preconditioning matrix M−1 is
considered, being M an approximation of A,

M−1Ax = M−1b (4.17)

such that, κ
(
M−1A

)
< κ (A).

The lowest value corresponds to ideal case M = A, κ
(
A−1A

)
= 1, with the sys-

tem converging in one iteration, but the computational cost of obtaining A−1 would
be equivalent to solve the system by means of a direct method. The objective is to
calculate a matrix M as close to A as possible with low computational cost.

Matrix M should also be easily invertible in order to have a reasonable computa-
tional cost in M−1–vector products in the preconditioned algorithms.

The preconditioning may be carried out in three different ways,

M−1Ax = M−1b (Left preconditioning)
AM−1Mx = b (Right preconditioning)
M−1

1 AM−1
2 M2x = M−1

1 b (Both sides preconditioning)
(4.18)

if M can be factorized as M = M1M2. Preconditioned Conjugated Gradient method
is shown in algorithm 2.
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A number of preconditions have been developed and widely used in several ap-
plication fields; see, e.g., [15]. Despite we have achieved good results in our simu-
lations with Wind3D using the Jacobi precondition, i.e., M = diag(A), in [23] can
be found a specific precondition for this wind problem.

Algorithm 2 Preconditioned Conjugate Gradient (PCG).
1: Initial approximation x0. r0 = b−Ax0;
2: Solve Mz0 = r0, p0 = z0;
3: while ‖ r j ‖ / ‖ r0 ‖≥ ε ( j = 0,1,2,3, . . .) do

4: α j =

〈
r j,z j

〉〈
Ap j,p j

〉 ;

5: x j+1 = x j +α jp j;
6: r j+1 = r j−α jAp j;
7: Solve Mz j+1= r j+1;

8: β j =

〈
r j+1,z j+1

〉〈
r j,z j

〉 ;

9: p j+1 = z j+1 +β jp j;
10: end while

4.1.4 Construction of the interpolated wind field

The first step of Wind3D is to create an initial wind field using wind data available
only in a few locations on the domain. Data is typically obtained from wind mea-
surement stations or from large scale numerical weather models with coarse grids.
With this data, a suitable interpolation is performed in order to construct a wind field
on the whole domain, using a logarithmic vertical profile.

At this stage, we want to interpolate the available wind data at any point located
at a height zm over zt +d, where zt is the terrain surface height. If we have a set of
dispersed data, a simple technique for this interpolation is formulated as a weighted
sum of the inverse-square law and the height difference interpolation [16]:

u0(zm) = ξ

nh
∑

i=1

uh
i

δ 2
i

nh
∑

i=1

1
δ 2

i

+(1−ξ )

nh
∑

i=1

uh
i

|∆hi|
nh
∑

i=1

1
|∆hi|

, (4.19)

where the value of uh
i is the wind velocity at the point i; nh is the number of available

points; δi is the horizontal distance between point i and the point of interest; |∆hi| is
their height difference, and ξ is a weighting parameter (0≤ ξ ≤ 1) that determines
to what degree the focus is put on the inverse-square law or the height difference
interpolation.
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When a grid of wind data is available, e.g., downscaling HARMONIE-AROME
or ECMWF wind results, it is preferable to interpolate the wind field with a simple
bilinear Lagrange interpolation in the cell containing the studied point.

The next step is the construction of the vertical wind profile. We have imple-
mented the log wind profile proposed in [30] for stable/neutral conditions (see Chap-
ter 2):

u =
u∗
k

(
ln

ζ

ζ0
+b1 (ζ −ζ0)+b2 (ζ −ζ0)

2 +b3 (ζ −ζ0)
3
)
,

v =−u∗
k

δ

(
−(ζ −ζ0) ln(ζ −ζ0)+a1 (ζ −ζ0)+a2 (ζ −ζ0)

2 +a3 (ζ −ζ0)
3
)
,

(4.20a)

(4.20b)

for z > d + z0, where u and v are the components of the horizontal wind velocity
along the x and y axis of a right-hand Cartesian coordinate system with the x-axis
along the surface stress; ζ = (z−d)/h and ζ0 = z0/h are dimensionless heights; k≈
0.4 is the von Kármán constant; δ = f h/(ku∗) = γ/k is the dimensionless rotation
rate parameter; a1 = 4/δ 2 +Π , a2 = − 3

2 Π , a3 = 1
3

(
1−4/δ 2 +2Π

)
, b1 = Π −

3, b2 = − 3
2 Π , b3 = 2

3 (Π +1), with Π = CRδ 2 +CL
kh
L +CN

Nh
u∗

and Π = CRδ 2 +

CL
kh
L +CN

Nh
u∗

; and L = −u3
∗/(kBs) is the Monin-Obukhov length. This model uses

the values of estimates of the dimensionless constants obtained by [30] on the basis
of empirical and numerical (LES) data: CR = 7, CL = 4.5, CN = 0.4, CR = 0, CL =
−7, CN =−1. In addition, the original expression in [30] has been slightly modified
to verify u(z) = 0 and v(z) = 0 at z = d + z0. The vertical component w of the wind
velocity is assumed to be zero. From (4.20a), the surface friction velocity may be
computed using the horizontal wind velocity interpolated at z = zm, u0(zm):

ln
zm−d

z0
u3
∗−
[

ku0(zm)−
(

CR
γ

k2 +
CNN2h−h

f
− 3

γ

)
f (zm− (d + z0))

]
u2
∗

−CLk2Bs(zm− (d + z0)) = 0
(4.21)

where the squared and cubic terms of the wind profile were neglected at z = zm.

The estimation of the CBL height is provided by the mesoscale model esti-
mations (see Chapter 2). If the ratio between the mechanical velocity scale V∗ =
(2Uu∗)1/3 and the convective velocity scale W∗=(Bsh)1/3 is negligible, i.e., V∗/W∗�
1, we have a Purely Convective Layer (PCL). Otherwise, it is a Mechanically-
Convective Layer (MCL) [31]. The log wind profile in the CBL was given in [29]
as follows:

|u|=


u∗
k

ln
z−d

z0
z0 +d < z<

ζu |L|
k

+d,

u∗
k

[
au +Cu

(
k(z−d)

L

)− 1
3
+ ln
−L
kz0

]
ζu |L|

k
+d ≤ z≤ h,

(4.22a)

(4.22b)

where ζu ≈ 0.1, au ≈ 0.7 and Cu ≈ 1.4 are dimensionless constants (see [4]). The
angle of wind turn in the boundary layer is given by the expression:
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sinα = sin(αs−αh−0) =
aα

k

(
hk
|L|

)− 1
3 u∗
|u|

sign f , (4.23)

where αs and αh−0 are the angles between the wind direction and x-axis at the terrain
and z = h, respectively. The estimation of aα = 3 was proposed in [29]. The mean
wind velocity |u| in the CBL is obtained from:

|u|= |u|h−0 =
u∗
k

[
au + ln

−L
kz0

]
, (4.24)

if we consider h� |L|. In practice, we assume that the wind turn angle varies lin-
early with height and reaches zero at the top of the CBL Finally, note that in the
CBL wind profile, the calculation of the surface friction velocity u∗ from the hor-
izontal wind velocity interpolated at z = zm, u0(zm), is generally straightforward
using (4.22a):

u∗ =
k |u0(zm)|

ln
zm−d

z0

. (4.25)

In the case that zm ≥
ζu |L|

k
+d, we have to use (4.22b).

4.2 Parameter estimation

The results of the mass-consistent modeling have proved to be very sensitive to the
values of α , ξ , z0, and d. Thus, an accurate definition of these parameters is critical
to obtain a reliable downscaling wind field. We have to estimate a value of α and ξ

for the whole domain [18], and a value of z0 and d for each land cover class. This
means that the number of unknowns depends on the number of the different land
covers in the region of interest.

The objective of the optimization is to find the values of the parameters such that
the wind computed with the model is the most similar to a known wind at some
control points. The wind values at the control points can be known from a NWP
model (i.e. HARMONIE-AROME) or from measurement stations. To measure the
error between the model and the known data, we use the RMSE, i.e.,

RMSE =

√
1
nc

nc

∑
i=1

(uxi−uc
xi)

2 +(uyi−uc
yi)

2 +(uzi−uc
zi)

2, (4.26)

where nc is the number of control points, (uxi,uyi,uzi) and (uc
xi,u

c
yi,u

c
zi) are, respec-

tively, the wind velocity obtained with the mass-consistent model and the known
wind at the ith control point. So, the parameter estimation consists of the minimiza-
tion of the RMSE. Note that for each evaluation of the fitness function, the wind
model has to be executed.
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Evolutionary algorithms are a family of heuristic optimization methods using
techniques inspired in biology to find out optimal configuration for a specific system
within given constraints. For this reason they can be used to estimate the parameters
stated above.We have successfully used a classic genetic algorithm [17, 20] algo-
rithm to estimate parameters of a simplified version of Wind3D that does not con-
sider any land cover parameters. In the next section we present a memetic algorithm
to optimize the fitness function (4.26).

Note that the values of z0 and d obtained in a particular numerical experiment
are not representative values for a given land cover; they only represent the opti-
mal solution compared to the available wind measurements for the land covers in
the domain of interest. However, the general methodology can be applied to any
combination of regions, databases, and downscaling wind models. So, the final aim
of the proposed strategy is to improve the results of a downscaling wind model by
estimating the optimum aerodynamic parameters values.

4.2.1 Memetic Algorithm

As stated before, an evolutionary algorithm is a suitable technique to find the op-
timal values of the parameters of the wind field model. A population of individual
representing different values of the parameters is allowed to evolve during a number
of iterations (generations). In each one, the selected individuals, according to the fit-
ness function, are combined to create the next population. During the process, some
of the individuals can go under mutation. Finally, the fittest individual is chosen as
solution of the optimization problem.

The generic denomination of Memetic Algorithms (MAs) is used to encompass
a broad class of metaheuristics (i.e. general purpose methods aimed to guide an un-
derlying heuristic). In this case, we propose a memetic method composed of three
tools: the differential evolution algorithm (DE) [22], a Rebirth Operator (RBO) [8],
and the L-BFGS-B algorithm [5]. DE is an evolutionary algorithm that utilizes a
population composed of a fixed number nv of D-dimensional parameter vectors pi,g
for each generation g; g= 1, . . . ,ng. The initial population, which must cover the pa-
rameter searching space, is chosen randomly. The mutation procedure modifies an
existing vector by adding to itself a weighted difference between two other vectors.
In the crossover step, these mutated vectors are mixed with another target vector
to obtain the so-called trial vector. If the trial vector yields a lower fitness function
value than the target vector, the target vector is replaced by the trial vector (se-
lection). Each population vector has to serve as target vector at least once, so nv
competitions will take place per generation.

The accuracy of the results obtained using DE may be insufficient. To increase it,
we have run ne DE experiments and have performed a statistic analysis of the results
obtained for each one. This analysis will allow us to reduce the search interval. Let
p j

i,ng
( j = 1, . . . ,ne; i= 1, . . . ,nu) be the estimation of the nu unknown parameters ob-

tained in each of the ne experiments. We can compute its average pi,ng , and standard
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deviation σi,ng . Then, the search interval can be reduced to the confidence interval
of each variable, i.e., pi,ng ±

σi,ng√
ne

Tne−1, τ
2
, where 1− τ is the confidence coefficient

and T , the Student’s t-distribution. If one extreme of the new interval exceeds the
old extreme, the latter is preserved. This allows the rebirth of a new population to
restart DE. This procedure may be repeated as many times as required. Note that the
ne DE experiments can be run in parallel.

When the last generation of the last reborn population is evaluated, the best pa-
rameter vector among all the DE experiments is selected to be the starting point of
the L-BFGS-B algorithm. This algorithm is a procedure for solving large non-linear
optimization problems with simple bounds. It is based on the gradient projection
method and uses a limited memory BFGS matrix to approximate the Hessian of the
fitness function. The results of this final minimization will be the estimated param-
eters.

4.3 Numerical experiment

In this section we characterize the roughness length and displacement height in the
island of Gran Canaria (N27◦58′ W15◦36′), Spain. To this end, a map of z0 and d
is constructed. Many authors have concluded that the roughness length and height
displacement values depend on the wind speed and direction, as well as on the at-
mospheric stability class. Therefore, the characterization is performed for different
typical meteorological episodes. For this reason, we have studied the characteris-
tics of the wind in Gran Canaria for the summer months of 2015, i.e., from June to
September.

(a) Daytime (b) Night-time

Fig. 4.1: Wind Rose of Gran Canaria at 10m relating to the period from June 1 to
September 30 of the year 2015.



4 Wind Field Diagnostic Model 99

Figure 4.1 represents the wind roses of Gran Canaria in the selected months. For
convenience, we have separated daytime and night-time. Based on this classification
in speeds and directions, we have selected eight characteristic winds that represent
about 71.90% of daytime and 77.88% of night-time.

Table 4.1: Most frequent wind speeds and directions in the island of Gran Canaria
during the summer months.

Cases Daytime

Surface Surface AROME/HARMONIE AROME/HARMONIE Incoming Pasquill
wind wind speed 10 m wind 10 m wind solar stability

direction range (m/s) speed direction radiation class

NNE > 6 7.61 32.89 530.85 D
NE > 6 9.01 37.29 583.39 D
N > 6 7.11 349.53 494.75 D

NE 5−6 5.57 40.50 665.60 C
N 3−5 4.16 4.26 797.14 B

NNE 5−6 5.88 12.76 771.82 C
NNE 3−5 3.54 12.70 586.43 C

N 5−6 5.39 350.28 695.26 C

Cases Night-time

Surface Surface AROME/HARMONIE AROME/HARMONIE Cloud Pasquill
wind wind speed 10 m wind 10 m wind amount stability

direction range (m/s) speed direction (oktas) class

NNE > 6 9.87 25.75 4.59 D
NE > 6 8.07 34.16 3.39 D
N > 6 6.82 355.35 7.04 D

NE 5−6 5.10 42.58 2.24 D
N 3−5 4.99 359.27 6.45 D

NNE 5−6 5.13 19.94 0.61 D
NNE 3−5 4.90 12.56 0.00 E

N 5−6 5.62 353.72 1.86 D

Table 4.1 displays the chosen episodes. The AROME/HARMONIE forecast wind
speeds and directions are taken at a representative point located in the sea in the NE
of the island with a height of 10m above the sea. The Pasquill stability class has
been obtained from the daytime incoming solar radiation and the night-time cloud
amount [13].

So, we are going to estimate the parameters α , ξ , as well as z0 and d for each
of the 30 basic land covers of Gran Canaria for each of the eight episodes. The land
use of Gran Canaria is obtained from the SIOSE database. According to it, in the
island there are 5237 different zones with its particular linear combinations of these
30 basic classes; see Figure 4.2.



100 E. Rodrı́guez, G. Montero and A. Oliver

Fig. 4.2: SIOSE land cover polygons in the Island of Gran Canaria.

Table 4.2: Location in UTM zone 28N coordinates and height above the sea level of
the anemometers used in the numerical application in Gran Canaria.

Code Name x(m)x(m)x(m) y(m)y(m)y(m) z(m)z(m)z(m)

C619X Agaete 429982 3108624 15
C629Q Mogán, Puerto Rico 429927 3073056 20
C648N Telde, Centro Forestal Doramas 454970 3095890 354
C649R Telde, Melenara 462854 3095804 19
C656V Teror 446227 3105674 693
C659M Plaza de la Feria 458627 3109809 25
C669B Arucas 450225 3113015 96
C689E Maspalomas 441057 3068075 35

In addition, wind measures at 7 stations of the State Meteorological Agency of
Spain (AEMET) network are available. Its UTM coordinates and heights above sea
level are given in Tab. 4.2 and shown in Fig. 4.3.
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Fig. 4.3: Location of the wind measurement stations.

Fig. 4.4: Detail of the terrain of the adaptive mesh of Gran Canaria island.
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The application is solved in a region of 76× 85km2 that contains the island of
Gran Canaria and is limited by an upper plane at a height of 4km. We have generated
a tetrahedral mesh adapted to the terrain with local refinement around the measure-
ment stations and the shoreline; see a detail of the terrain triangulation in Figure 4.4.
The mesh contains 1492804 tetrahedra and 326101 nodes. To compute the interpo-
lated wind field we have used the AROME/HARMONIE predictions of wind veloc-
ities at 10m above the terrain. Finally, we have estimated the parameters using the
memetic method described in section 4.2.1. We have chosen 11 control points: the
measurements from the seven station and four AROME/HARMONIE wind forecast
values located at 10m over the sea in the corners of the mesh. Remember that for
each evaluation of the fitness function (RMSE) the mass–consistent model has to be
applied.

The results obtained for each wind episode are presented in Tab. 4.3 and 4.4
for daytime and night-time, respectively. In all of the eight episodes, using the es-
timated parameters, the wind predicted by the mass–consistent model has reduced
the AROME/HARMONIE error . This reduction has gone from 4.97% to 56.21%
in the daytime, and from 22.49% to 58.93% in the night-time. However, this ap-
proach is strongly dependent on the forecast values of the mesoscale model, which
determines the quality of the predicted wind.

The literature points to a relationship between these parameters and the atmo-
spheric state (wind speed, direction, and its stability). However, from the results
presented here it is difficult to obtain a correlation between them. Particular conclu-
sions may be drawn for some specific parameters. For example, zARR

0 decreases when
the wind direction goes from N to NE. Another outcome is that the range of variation
of many of the parameters is considerably shorter than that given in Tab. 2.1. This
is the case, e.g., for the values of z0 corresponding to HMA, HSM, LAA, LVI, SNE
and ZQM, and d in CNF, HMA, HSM, LFC, LFN, LOC, LVI, MTR, PST, RMB,
SDN, SNE, ZEV and ZQM. What is clear from these experiments is that the optimal
values of z0 and d are different from the nominal values found in the literature. So,
it is convenient to correct them for the region of the Canary Islands.

Concerning the values of α , there is not a direct conclusion from the results. It
seems that α is normally lower at night-time than daytime, where it is more irregular,
but further experiments should be carried out. Regarding ξ , it often reached values
near 1.

Another important aspect to be considered is a sensibility study of all the involved
parameters in the resulting wind field. This analysis may lead to a reduction of the
number of unknowns by not considering those parameters with a negligible effect on
the final result. One of the limitations of this approach is that one basic coverage may
affect different regions with very different characteristics. However, in the current
implementation each parameter is represented by a single value, but their optimal
values could be different in each region. For this reason, if the sensibility analysis
determines that the results of the model are highly dependent on those parameters,
one can split them and consider different unknowns for each region.

Finally, this methodology can be applied to construct a reduced basis for its use
in wind forecasting, but a larger period must be studied (at least one year) so that
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Table 4.3: Results of the daytime experiments in Gran Canaria (z0 and d in m).

Wind direction N NNE NE N NNE NE N NNE
Wind speed (ms−1)(ms−1)(ms−1) v> 6v> 6v> 6 v> 6v> 6v> 6 v> 6v> 6v> 6 5< v≤ 65< v≤ 65< v≤ 6 5< v≤ 65< v≤ 65< v≤ 6 5< v≤ 65< v≤ 65< v≤ 6 3< v≤ 53< v≤ 53< v≤ 5 3< v≤ 53< v≤ 53< v≤ 5

Pasquill stability D D D C C C B C

RMSE(AROME/HARMONIE) 2.19 2.31 2.81 1.58 1.81 1.81 1.05 1.78
RMSE(Wind3D) 1.25 1.21 2.11 1.30 1.08 0.79 0.81 1.70

α 9.98 0.34 0.19 0.72 0.28 0.35 0.48 9.84
ξ 0.99 0.99 0.92 0.99 0.63 0.99 0.83 0.98

zACM
0 0.15 0.07 0.09 0.07 0.14 0.08 0.05 0.11

zAEM
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
zALC

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
zALG

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
zAMO

0 0.02 0.00 0.00 0.02 0.01 0.00 0.02 0.02
zARR

0 0.04 0.00 0.00 0.17 0.16 0.06 0.17 0.14
zCLC

0 0.00 0.02 0.02 0.01 0.04 0.06 0.02 0.04
zCNF

0 1.03 0.31 0.54 1.64 0.32 0.30 1.85 1.44
zCHL

0 0.69 0.01 0.19 0.21 0.01 0.07 0.07 0.28
zEDF

0 3.69 0.70 0.74 0.71 3.69 3.68 0.70 1.39
zFDC

0 0.75 1.35 1.09 0.32 0.54 1.15 0.99 0.20
zFDP

0 1.64 2.60 2.64 1.84 1.85 2.59 1.10 0.64
zHMA

0 0.04 0.05 0.05 0.01 0.04 0.04 0.10 0.07
zHSM

0 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.03
zLAA

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
zLFC

0 0.35 0.03 0.03 0.13 0.30 0.03 0.03 0.07
zLFN

0 0.92 0.89 0.17 0.11 0.94 0.90 0.07 0.09
zLOC

0 0.06 0.07 0.07 0.03 0.06 0.06 0.04 0.07
zLV I

0 0.27 0.40 0.33 0.36 0.38 0.23 0.33 0.38
zMT R

0 0.01 0.34 0.01 0.01 0.99 0.99 0.01 0.01
zOCT

0 0.06 0.86 0.47 0.08 0.57 0.30 0.20 0.06
zPDA

0 0.03 0.00 0.01 0.03 0.02 0.03 0.00 0.03
zPST

0 0.07 0.13 0.13 0.08 0.00 0.05 0.12 0.13
zRMB

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
zSDN

0 0.03 0.00 0.00 0.01 0.01 0.01 0.03 0.00
zSNE

0 0.02 0.00 0.01 0.01 0.03 0.00 0.00 0.02
zVAP

0 0.00 0.08 0.28 0.05 0.00 0.37 0.00 0.10
zZAU

0 0.03 1.12 0.71 0.04 0.03 1.22 0.04 0.04
zZEV

0 0.14 0.00 0.00 0.00 0.15 0.13 0.09 0.08
zZQM

0 0.55 0.39 0.79 0.44 0.44 0.73 0.86 0.81
dACM 37.5 14.5 56.8 16.0 6.68 76.2 36.6 7.91
dARR 0.38 0.53 0.80 0.45 0.53 0.54 0.48 0.18
dCLC 0.21 0.09 0.17 0.19 0.12 0.32 0.23 0.24
dCNF 10.4 12.0 17.8 7.43 12.8 12.8 8.89 8.83
dCHL 2.71 2.03 0.75 0.23 2.51 2.41 1.00 0.94
dEDF 17.2 17.4 15.4 16.5 7.05 10.7 7.15 19.6
dFDC 18.3 8.68 14.7 16.1 6.81 19.5 12.3 16.5
dFDP 14.6 24.6 3.99 24.3 29.2 30.4 9.20 10.8
dHMA 0.63 0.46 0.45 0.55 0.62 0.45 0.60 0.52
dHSM 0.11 0.12 0.04 0.03 0.11 0.10 0.03 0.13
dLFC 3.79 0.04 1.17 1.45 3.87 3.32 1.04 3.75
dLFN 1.64 3.60 1.06 1.93 2.77 3.24 1.42 2.69
dLOC 0.31 0.39 0.30 0.44 0.27 0.28 0.31 0.32
dLV I 0.81 1.18 0.70 1.06 0.71 0.51 1.06 1.18

dMT R 6.94 5.26 5.88 2.46 1.13 4.51 1.35 6.61
dOCT 2.34 4.91 3.09 2.43 12.8 11.2 3.52 2.21
dPDA 0.18 0.15 0.14 0.16 0.21 0.06 0.09 0.31
dPST 0.25 0.60 0.07 0.30 0.33 0.60 0.49 0.57
dRMB 0.00 0.00 0.01 0.01 0.01 0.00 0.02 0.01
dSDN 0.16 0.11 0.07 0.09 0.11 0.12 0.17 0.13
dSNE 0.12 0.06 0.08 0.12 0.16 0.15 0.03 0.15
dVAP 2.24 1.71 1.76 0.54 0.15 1.51 0.53 0.07
dZAU 13.3 10.8 12.5 13.8 11.6 4.05 11.5 13.7
dZEV 0.16 0.37 0.22 0.16 0.25 0.69 0.23 0.33
dZQM 2.69 5.35 3.79 4.23 4.41 3.95 1.42 4.58
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Table 4.4: Results of the night-time experiments in Gran Canaria (z0 and d in m).

Wind direction N NNE NE N NNE NE N NNE
Wind speed (ms−1)(ms−1)(ms−1) v> 6v> 6v> 6 v> 6v> 6v> 6 v> 6v> 6v> 6 5< v≤ 65< v≤ 65< v≤ 6 5< v≤ 65< v≤ 65< v≤ 6 5< v≤ 65< v≤ 65< v≤ 6 3< v≤ 53< v≤ 53< v≤ 5 3< v≤ 53< v≤ 53< v≤ 5

Pasquill stability D D D D D D D E

RMSE(AROME/HARMONIE) 3.47 3.92 3.03 2.53 2.23 1.54 2.19 2.79
RMSE(Wind3D) 1.47 1.61 1.34 1.28 1.73 1.10 1.19 1.43

α 0.10 0.10 0.10 0.10 9.48 0.10 0.22 0.10
ξ 0.90 0.33 0.65 0.99 0.99 0.99 0.99 0.99

zACM
0 0.10 0.11 0.06 0.10 0.17 0.13 0.11 0.07

zAEM
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

zALC
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

zALG
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

zAMO
0 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.01

zARR
0 0.11 0.02 0.00 0.15 0.02 0.01 0.16 0.03

zCLC
0 0.04 0.04 0.01 0.02 0.05 0.03 0.05 0.03

zCNF
0 0.73 0.25 0.29 0.36 1.35 0.60 0.33 0.30

zCHL
0 0.13 0.00 0.36 0.57 0.70 0.71 0.19 0.01

zEDF
0 1.52 0.77 0.71 2.70 2.82 0.70 3.06 0.71

zFDC
0 0.67 1.25 1.24 1.24 0.23 1.15 0.53 1.24

zFDP
0 2.08 2.57 2.49 0.90 0.69 2.62 0.63 2.61

zHMA
0 0.03 0.10 0.05 0.07 0.11 0.09 0.11 0.12

zHSM
0 0.00 0.01 0.02 0.03 0.01 0.01 0.01 0.02
zLAA

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
zLFC

0 0.05 0.03 0.03 0.35 0.17 0.13 0.38 0.03
zLFN

0 0.07 0.06 0.07 0.44 0.07 0.24 0.10 0.92
zLOC

0 0.05 0.04 0.06 0.08 0.05 0.05 0.04 0.04
zLV I

0 0.13 0.32 0.30 0.33 0.30 0.29 0.30 0.34
zMT R

0 0.08 0.96 0.01 0.02 0.02 0.01 0.95 0.80
zOCT

0 0.92 0.91 0.18 0.52 0.47 0.67 0.16 0.12
zPDA

0 0.04 0.04 0.04 0.04 0.04 0.05 0.02 0.03
zPST

0 0.12 0.07 0.13 0.14 0.13 0.13 0.00 0.14
zRMB

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
zSDN

0 0.02 0.02 0.00 0.02 0.03 0.00 0.02 0.03
zSNE

0 0.03 0.02 0.02 0.02 0.02 0.03 0.03 0.03
zVAP

0 0.39 0.05 0.09 0.48 0.49 0.43 0.02 0.01
zZAU

0 1.22 0.05 0.84 0.95 0.20 0.04 0.05 0.93
zZEV

0 0.14 0.12 0.12 0.15 0.04 0.14 0.16 0.15
zZQM

0 0.20 0.74 0.58 0.35 0.47 0.49 0.38 0.76
dACM 4.80 82.2 77.3 55.9 38.4 75.6 80.8 84.1
dARR 0.52 0.79 0.72 0.07 0.66 0.64 0.57 0.51
dCLC 0.16 0.13 0.37 0.17 0.07 0.35 0.31 0.17
dCNF 19.7 13.3 6.27 17.5 8.59 10.4 20.4 13.3
dCHL 2.20 0.23 0.48 2.01 2.97 0.55 2.95 1.06
dEDF 10.1 19.1 19.6 10.9 17.4 19.3 7.02 12.8
dFDC 21.4 7.43 10.5 19.4 16.9 6.25 19.8 3.23
dFDP 27.8 3.93 10.7 30.7 18.7 8.10 29.3 4.26
dHMA 0.14 0.54 0.38 0.15 0.76 0.20 0.56 0.42
dHSM 0.06 0.09 0.03 0.10 0.16 0.06 0.04 0.06
dLFC 1.77 0.68 0.32 3.82 2.34 1.25 3.82 0.30
dLFN 1.29 0.50 0.33 1.39 0.60 2.31 2.40 1.58
dLOC 0.34 0.27 0.37 0.23 0.41 0.20 0.34 0.38
dLV I 1.03 0.79 0.76 0.88 0.81 0.75 0.90 1.04
dMT R 2.53 1.07 5.08 6.01 7.06 6.95 6.89 6.84
dOCT 13.9 13.1 6.07 10.3 11.9 13.9 13.4 11.6
dPDA 0.20 0.15 0.12 0.20 0.31 0.19 0.03 0.15
dPST 0.55 0.49 0.13 0.47 0.56 0.40 0.30 0.37
dRMB 0.01 0.02 0.01 0.00 0.02 0.01 0.02 0.00
dSDN 0.09 0.04 0.13 0.06 0.20 0.15 0.04 0.07
dSNE 0.09 0.02 0.09 0.07 0.09 0.05 0.03 0.12
dVAP 2.50 0.32 2.07 2.36 2.47 2.31 0.65 2.08
dZAU 9.30 5.23 5.81 13.8 13.7 8.64 10.5 10.7
dZEV 0.17 0.69 0.37 0.70 0.25 0.20 0.73 0.60
dZQM 3.61 5.40 3.04 3.68 2.10 4.47 2.50 3.14
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we can analyze all the wind condition types (speed, direction, stability) occurring in
Gran Canaria.

4.4 Conclusions

This chapter presents Wind3D, a mass-consistent diagnostic model with an updated
vertical wind profile and atmospheric parameterization which uses an initial wind
field with a logarithmic wind profile that consider the effect of both stable boundary
layer (SBL) and the convective boundary layer (CBL).

The strategy adopted to deal with the sensitivity of the models to the value of
some of its parameters is to estimate their values using a memetic algorithm.

A numerical experiment over Gran Canaria island shows that this model is an
suitable tool to study wind fields over complex terrains.
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