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Radiative properties play a pivotal role in astrophysical plasma flows and are needed in radiation-
hydrodynamic simulations in order to understand their behavior and also to interpret the plasma emission spectra,
which are valuable diagnostic tools. Radiative properties of astrophysical plasma mixtures have been commonly
calculated for low-density optically thin plasmas assuming coronal equilibrium and for high density assuming
local thermodynamic equilibrium. However, there are wide ranges of conditions in which these thermodynamic
regimes are not achieved and the plasma is in the nonlocal thermodynamic equilibrium regime. In the present
work, a study of the plasma radiative properties of oxygen and iron and an astrophysical plasma mixture
in nonlocal thermodynamic steady-state equilibrium is carried out. The ranges of electron temperatures and
densities considered are 1–1000 eV and 1011–1020 cm−3, respectively. In the study, departures from coronal and
local thermodynamic equilibria in terms of the density and temperature are also analyzed. Large differences in the
radiative properties that can reach two orders of magnitude when the plasma is far from these thermodynamic
regimes are obtained. These analyses are done assuming the plasma to be optically thin. A brief study of the
influence of the plasma self-absorption in the radiative properties of oxygen and iron is made. For that purpose,
the plasma is assumed with planar geometry and the study is performed in terms of the width of the plasma slab
and electron temperature and density.
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I. INTRODUCTION

In almost all astrophysical fluid flows, the radiative prop-
erties play a significant role and their accurate calculation
is needed to understand their behavior. Optically thin, hot,
low-density plasmas, such as those found in interstellar and
intergalactic media and stellar wind [1] or in coronal loops
in stars [2,3], cool efficiently and their correct hydrodynamic
simulation implies an accurate calculation of their cooling
rates. Computations of these rates have been carried out in
many works both in astrophysics [1,4–9] and in magnetic
fusion [10–14] contexts. In general, in these calculations, the
plasma was assumed to be in coronal equilibrium (CE) [15],
a plasma thermodynamic regime reached by optically thin
plasmas at very low densities. In this regime, the cooling rates
are density independent. On the other hand, the opacities are
fundamental in the transport of radiation through the plasma
as in, for example, the stellar evolution and pulsation, in the
nuclear reactions in the solar plasma, and in the neutrino
flux and solar luminosity. Furthermore, the opacities couple
radiative transfer equations to hydrodynamic or magneto-
hydrodynamic equations and for this reason they are needed
for radiation hydrodynamic simulations. Much effort has been
devoted and continues to calculating them, predominantly in
the local thermodynamic equilibrium (LTE) regime, which
is in general reached at rather high densities. Exhaustive
and accurate opacity tables in LTE have been developed, for
example, the Opacity Project (OP) [16–18], the OPAL tables
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[19,20], and those based on using codes such as LEDCOP [21],
OPAS [22], and ATOMIC [23]. Moreover, there are also many
works to calculate and analyze LTE opacities of different
single elements of interest in the range of plasma conditions
found in astrophysical scenarios [24–34].

For many density and temperature conditions, the plasmas
are in the non-LTE (NLTE) regime and the radiative properties
may be noticeably different from those obtained assuming
CE and LTE. In NLTE, their calculation is more complicated
since there is no a priori expression for the occupation
probabilities of bound states and they must be obtained by
using the so-called collisional-radiative (CR) models [35],
which implies solving large sets of rate equations that in-
volve ATOMIC processes that couple ATOMIC configurations,
free electrons, and photons. Atomic state-space completeness
is a critical aspect of a credible CR model, although its
achievement is difficult or even impossible [36]. Therefore,
the choice of the state space must be done carefully and
it depends on the plasma conditions under analysis. Thus,
for example, for plasmas under high intense radiation fields,
atomic configurations with inner shells open should be in-
cluded, whereas for plasmas at moderated densities, ruled
by collisions with thermal electrons, the number of double
and single configurations can be limited [36]. Another critical
issue in the CR models is the degree of atomic description. For
low- and intermediate-Z plasmas, detailed level accounting
(DLA) or term accounting models including large degrees
of configuration interaction are used. For high-Z elements,
those approaches become sometimes intractable. In this case,
statistic approaches involving grouping of levels into config-
urations such as the detailed configuration account (DCA)
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approach or grouping configurations into superconfigurations
(superconfiguration account approach), combined with the
unresolved transition array (UTA) [37] and supertransition
array [38] formalisms, respectively, have been shown to be
very useful. However, these statistical methods may lack
the accuracy to describe isolated levels or transitions. For
this reason, hybrids methods that mix detailed and statistical
descriptions have been developed [39,40] which present the
advantage of retaining the fine description only for the most
relevant transitions in a given transition array. However, when
the purpose of the radiative properties calculation is to obtain
databases for wide ranges of plasma conditions that cover low,
intermediate, and high electron densities and temperatures, a
balance between completeness and computational complexity
must be achieved, especially in the NLTE regime.

In this work, we present a study of the NLTE effects in the
calculation of the average ionization, the charge-state distri-
bution, the cooling coefficients, and the Planck and Rosseland
mean opacities of plasma mixtures found in astrophysical
scenarios. The chemical elements considered in the plasma
mixture are H, He, C, N, O, Ne, Na, Mg, Al, Si, S, Ar, Ca, and
Fe. Two sets of solarlike abundances [41,42] are employed in
order to compare with other simulations. The calculations and
the analysis are carried out in ranges of electron temperatures
and densities of 1–1000 eV and 1011–1020 cm−3, respectively.
These ranges of plasma conditions include several astrophys-
ical objects such as hot gas in supernova remnants, active
galactic nuclei [8], stellar winds [1], accretion shocks in young
stars [43], stellar coronal loops [2], and stellar envelopes [31],
among others. Furthermore, we also analyze the cooling rates
and mean opacities for two single elements of the mixture,
oxygen and iron. They present a relevant contribution to these
properties in the mixture for different ranges of temperatures.
In addition, their study serves to illustrate the behavior, with
the electron density and temperature, for the other chemical
elements of the mixture with similar atomic number and
provides an understanding of the results obtained for the
whole mixture.

Due to the wide range of plasma conditions simulated, we
employ a statistical atomic description based on the DCA and
UTA approaches in order to achieve a compromise between
atomic description and computational costs. Therefore, the
main aim of this work is not to present precise values for
the radiative properties but to determine the influence of the
NLTE regime in their calculation and to analyze the departures
from CE and LTE as a function of the plasma conditions,
estimating their differences with respect to CE or LTE calcu-
lations. This analysis will allow determining in which range
of plasma densities and temperatures these properties should
be calculated in NLTE, which is very relevant when databases
of radiative properties are needed in a wide range of plasma
conditions for radiation-hydrodynamic simulations. A further
step would imply improving the atomic description to sim-
ulate the radiative properties more precisely in those ranges
of plasma conditions of interest in which the NLTE effects
are determinant. In either case, the values of the radiative
properties, calculated in the LTE regime, provided by our
model generally have relative differences lower than 50%
when they are compared to LTE simulations carried out with
codes based on more detailed atomic descriptions, as shown

in Sec. III. These differences are considerably smaller than
those obtained between LTE and NLTE calculations when the
plasma is far from the LTE regime, where the disagreement
can reach two orders of magnitude. The previous analyses
were performed assuming the plasma to be optically thin. This
work ends with a brief study of the influence of the plasma
self-absorption, as a function of the plasma geometrical thick-
ness, in the calculation of the radiative properties for oxygen
and iron.

The paper is structured as follows. In Sec. II the theoret-
ical and computational models used for the simulations are
presented. Section III is devoted to the results obtained and
is divided into four parts. In Sec. III A comparisons with
other NLTE models are presented. Sections III B and III C
are devoted to the analysis of NLTE effects in the calculation
of the radiative properties of iron, oxygen, and the plasma
mixture and also to study the departures from CE and LTE
with density and temperature. In Sec. III D the analysis of
the influence of the plasma self-absorption on these plasma
properties is presented. Section IV summarizes and discusses
the results.

II. THEORETICAL AND COMPUTATIONAL MODELS

The atomic state populations of plasmas in NLTE are
usually determined using a CR model. In this case, the pop-
ulations of the atomic levels in the plasma are obtained by
solving a set of rate equations given by

dNζi (r, t )

dt
=

∑
ζ ′j

Nζ ′j (r, t )R+
ζ ′j→ζ i −

∑
ζ ′j

Nζi (r, t )R−
ζ i→ζ ′j ,

(1)

where Nζi is the population density of the atomic configu-
ration or level i (depending on the atomic approach) of the
ion with charge state ζ . The terms R+

ζ ′j→ζ i and R−
ζ ′j→ζ i take

into account all the atomic processes, both collisional and
radiative, which contribute to populate and depopulate the
atomic configuration ζ i, respectively. These atomic processes
are responsible for the atomic level population distribution in
the plasma. When the characteristic time of the most relevant
atomic process in the plasma is considerably shorter than
the characteristic time of plasma evolution, i.e., the time
associated with changes in the plasma density and tempera-
ture, then one could consider that the atomic processes occur
under constant values of plasma density and temperature or,
equivalently, that the atomic processes are fast enough to
distribute the atomic level populations in the plasma before
the density and temperature of the plasma change. When
this condition is fulfilled the plasma can be considered in
steady state. Obviously, for those plasmas in which the density
or temperature evolves rapidly over time, the steady-state
approach may not be accurate enough. On the other hand,
the steady-state approach is commonly used to calculate the
plasma atomic level populations needed to generate radiative
properties databases in wide ranges of plasma conditions for
radiation-hydrodynamics simulations and in the present work
the plasma level populations are obtained by solving the rate
equations of the CR model in steady state (CRSS). In this
situation, the time derivative in Eq. (1) vanishes and the set
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of rate equations that must be solved is given by∑
ζ ′j

Nζ ′j (r, t )R+
ζ ′j→ζ i −

∑
ζ ′j

Nζi (r, t )R−
ζ i→ζ ′j = 0. (2)

The atomic calculations in this work are carried out based
on the relativistic detailed configuration accounting (RDCA)
approach and therefore Nζi denotes a relativistic atomic con-
figuration. Two complementary equations have to be satisfied
together with Eq. (2): first, the requirement that the sum of all
the partial densities equals the total ion density nion,

Z∑
ζ=0

Mζ −1∑
i=0

Nζi = nion, (3)

and second, the charge neutrality condition in the plasma

Z∑
ζ=0

Mζ −1∑
i=0

ζNζi = ne, (4)

where Mζ is the total number of levels for the charge state ζ

and ne is the electron density. The plasma average ionization
is defined as

Z =
∑Z

ζ=0 ζNζ∑Z
ζ=0 Nζ

= ne

nion
. (5)

For a given condition of density and temperature, the resolu-
tion of the rate equations also provides the plasma charge-state
distribution (CSD), which is defined as the set of the popu-
lation densities {Nζ } of the ions present in the plasma. The
atomic processes included in the present CRSS model, when
the plasma is assumed to be optically thin, are collisional
ionization [44] and three-body recombination, spontaneous
decay [45], collisional excitation [46] and deexcitation, radia-
tive recombination [47], autoionization, and electron capture
(obtained from the collisional excitation cross section [48]).
The rates of the inverse processes are obtained through the
detailed balance principle. It is assumed that the collision
times between ions and electrons are short enough so the
ions can be considered to be at rest. The effect of the plasma
environment on the population of the atomic levels is modeled
through the depression of the ionization potential or contin-
uum lowering (CL). The application of the CL can restrict
the number of bound states available and in this work the
formulation developed by Stewart and Pyatt [49] is applied.

In the calculation of the rates of the atomic processes,
a Maxwell-Boltzmann distribution for the free electrons is
assumed. The characteristic time for the electrons to thermal-
ize is given by the average time between electron-electron
collisions [50,51]

τee = 2πε2
0

e4

m
1/2
e T

3/2
e

ne ln �
, (6)

where e, me, and Te are the electron charge, mass, and
temperature, respectively, ε0 is the vacuum permittivity, and
� is given by

� = 3

2

(
ε3

0T
3
e

πnee6

)1/2

. (7)

TABLE I. Free-electron mean free paths λee between electron-
electron collisions calculated for several plasma conditions of the
range analyzed in this work. The electron density is given in cm−3,
the electron temperature in eV, and λee in m.

Te ne = 1011 ne = 1014 ne = 1017 ne = 1020

50 2.25 × 102 2.58 × 10−1 3.03 × 10−4 3.67 × 10−7

200 3.33 × 103 3.79 × 100 4.39 × 10−3 5.21 × 10−6

350 9.92 × 103 1.12 × 101 1.29 × 10−2 1.52 × 10−5

500 2.00 × 104 2.25 × 101 2.58 × 10−2 3.03 × 10−5

650 3.32 × 104 3.74 × 101 4.29 × 10−2 5.02 × 10−5

800 4.97 × 104 5.61 × 101 6.41 × 10−2 7.49 × 10−5

1000 7.69 × 104 8.65 × 101 9.88 × 10−2 1.15 × 10−4

The electron mean free paths can be estimated using these
average times and the electron velocities obtained from the
mean energies associated with the electron temperatures of
the Maxwell-Boltzmann distributions. We have calculated
the electron mean free paths for several plasma conditions
analyzed in this work assuming nonrelativistic plasmas and
they are listed in Table I. This property provides an estimation
of the average plasma volume needed for the free electrons
to thermalize. In our NLTE simulations we assume homo-
geneous plasmas (in density and temperature). As expected,
the mean free path decreases with the electron density and
increases with the electron temperature. Since the electron
mean free paths are obtained from the mean electron energies,
for a given electron temperature listed in the table there would
be electrons that need larger mean free paths to thermalize.
For those situations in which substantial deviations from a
Maxwell-Boltzmann distribution for the free electrons are
produced, the free-electron energy distribution functions are
usually obtained from a simultaneous solution of the time-
dependent atomic rate equations and Boltzmann electron ki-
netics [52]. This kind of simulation is tractable when a specific
situation is simulated but not when the interest is focused
on the determination of a large number of mean radiative
properties in a wide range of plasma conditions. In this case,
thermal distributions for the free electrons are commonly
assumed, as in this work.

On the other hand, when the electron density is very high
the exchange effects are relevant and then the Fermi-Dirac
distribution should be used instead of the Maxwell-Boltzmann
one to describe the electron distribution. The former reduces
to the latter when the chemical potential μ → −∞ and this
implies the criterion [15]

ne

2

(
2π (h̄c)2

mec2Te

)3/2

� 1, (8)

where c is the speed of light and h̄ is Planck’s constant divided
by 2π . We apply this criterion for the range of plasma condi-
tions considered in this work and even at the most unfavorable
plasma condition (lowest electron temperature and highest
electron density) the criterion is fulfilled and therefore the
use of the Maxwell-Boltzmann distribution seems adequate
for the range of plasma conditions analyzed.

For optically thick plasmas, the rate equations would be
coupled to the radiative transfer equation. In this work, the
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nonlocal radiation transport effects are included in the rate
equations using the escape factor formalism [53]. This for-
malism avoids the need to perform a simultaneous calculation
of radiative transport and atomic physics and also uncouples
the radiative transfer and rate equations. For a given line
transition ζ i ↔ ζj , the escape factor �ji is introduced as an
alternative way of writing the net rate of line emission and
it leads to an effective reduction in the Einstein spontaneous
emission coefficient Aζj→ζ i , which is written as �jiAζj→ζ i .
To compute the escape factors for the three basic geometries,
planar, cylindrical, and spherical, the technique described in
[53] is adopted, assuming a uniform distribution for emitting
atoms and isotropic emission. The escape factor is written as

�ji =
∫ ∞

0
φij (ν)

1

τij (ν)
F [τij (ν)]dν. (9)

The optical depth is τij (ν) = κζi→ζj (ν)L, where L denotes
the characteristic plasma dimension, i.e., slab width, cylinder,
or sphere radius. Finally, F [τij ] is a functional of the opti-
cal depth whose particular form depends on the considered
geometry.

Multicomponent plasmas are considered in the present
work. As mentioned above, the chemical elements included
in the plasma mixture are H, He, C, N, O, Ne-Si, S, Ar, Ca,
and Fe, where Ne-Si denotes all the elements from Ne to Si.
For a given electron density and temperature, the CRSS model
is solved for each element. Collisional processes that connect
ions of different chemical species are not included. However,
as the different elements of the multicomponent plasma are
immersed in a common pool of free electrons, they will be
coupled through the electron density since the plasma level
population (and the average ionization) of each component
has to be consistent with the same electron density, which
ensures the electrical equilibrium keeping the overall plasma
neutrality [54,55]. The CRSS model described is implemented
in the numerical code MIXKIP [56].

The atomic structure (relativistic energy levels, wave func-
tions, and oscillator strengths) and the photoionization cross
sections were calculated using the FAC code [45], in which
a fully relativistic approach based on the Dirac equation is
used. Hence, the atomic levels of an atomic ion are obtained
by diagonalizing the relativistic Hamiltonian. In the RDCA
approach, the transition energies include the UTA shifts [37].
With respect to the set of configurations, we include those
with an energy within two times the ionization energy of the
ground configuration of the ion.

Once the plasma level populations have been computed,
the plasma radiative properties are calculated using the
RAPCAL code [57,58], which is implemented in MIXKIP. The
monochromatic emissivity and absorption are denoted in this
work by j (ν) and κ (ν), respectively (where we have omitted
the dependence on the position and time to simplify the
notation), and both of them include the bound-bound, bound-
free, and free-free contributions

j (ν) = jbb(ν) + jbf (ν) + jff (ν), (10)

κ (ν) = κbb(ν) + κbf (ν) + κff (ν), (11)

where ν is the photon frequency. The bound-bound contribu-
tion to the emissivity is given by

jbb(ν) =
∑

ζ

∑
i,j

jζj→ζ i (ν), (12)

with

jζj→ζ i (ν) = hν

4π
NζjAζj→ζ iφij (ν), (13)

where h is Planck’s constant. The radiative transitions rates
in FAC are calculated in the single multipole approximation,
and in this work they are obtained in the electric dipole
approach. The oscillator strengths include a correction to
take into account configuration interaction effects due to the
mix between relativistic configurations that belong to the
same nonrelativistic one. The bound-bound contribution to the
absorption is given by

κbb(ν) =
∑

ζ

∑
i,j

κζ i→ζj (ν), (14)

with

κζi→ζj (ν) = hν

4π
Nζi

gζj

gζ i

c2

2hν3
ij

Aζj→ζ iφij (ν)

(
1 − gζi

gζj

Nζj

Nζi

)
,

(15)

where gζi and gζj are the statistical weights of the i and j

relativistic configurations, respectively. In the previous equa-
tions, φij (ν) represents the line profile for both line emission
and absorption since in this work a complete redistribution hy-
pothesis is assumed [59]. In the evaluation of the line profile,
natural, Doppler, electron-impact [60], and UTA broadenings
are included. The line-shape function is applied with the Voigt
profile which incorporates all these broadenings.

The bound-free contribution to the emissivity is determined
by means of

jbf (ν) =
∑
ζ,i

∑
ζ,j

jζ+1j→ζ i (ν), (16)

with

jζ+1j→ζ i (ν) = h4nu3Nζ+1j nef (ε)

25/2πc2m
3/2
e ε1/2

gζi

gζ+1j

σ
pho
ζ i→ζ+1j (ν),

(17)

where ε is the energy of the free electron and me is the electron
mass. In this work, a Maxwell-Boltzmann distribution f (ε)
at temperature Te for the free electrons is assumed. The
photoionization cross section σ

pho
ζ i→ζ+1j (ν) is calculated using

the FAC code in the relativistic distorted-wave approach. For
the bound-free spectra, the DCA approximation is used as
well. The bound-free contribution to the absorption is given
by

κbf (ν) =
∑
ζ,i

∑
ζ,j

κζ i→ζ+1j (ν), (18)

with

κζi→ζ+1j (ν) = Nζiσ
pho
ζ i→ζ+1j (ν)

(
1 − Nζ+1j nef (ε)gζi

Nζigζ+1j g(ε)

)
,

(19)
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where g(ε) is the density of states with energy ε, which,
assuming an ideal gas of free electrons, is given by

g(ε) = 4π

(
2me

h2

)3/2

ε1/2. (20)

For the free-free contributions to the emissivity and the ab-
sorption, the Kramers semiclassical expression for the inverse
bremsstrahlung cross section is used [61]:

σ IB
ζ (ν) = 16π2e2h2α

3
√

3(2πme )3/2

ζ 2ne

T
1/2
e (hν)3

. (21)

Assuming a Maxwell-Boltzmann distribution for the free
electrons, we obtain

jff (ν) = 32π2e4a2
0α

3

√
3(2πme )3/2h

(
me

2πTe

)1/2

Z2nionnee
−hν/Te , (22)

κff (ν) = 16π2e2h2α

3
√

3(2πme )3/2

Z2nionne

T
1/2
e (hν)3

(1 − e−hν/Te ). (23)

In order to determine the opacity k(ν), the absorption due to
the scattering of photons is also taken into account. In RAPCAL

this one is approximated using the Thomson scattering cross
section [62]

κscatt = neσ
Thom, (24)

with σ Thom = 6.65 × 10−25 cm2. Finally, the opacity is given
by

k(ν) = 1

ρ
[κ (ν) + κscatt], (25)

with ρ the density of matter. As said before, RAPCAL also
provides the Planck kP and Rosseland kR mean opacities,
which are given by [63]

kP =
∫ ∞

0
dν B̃(ν, T )[k(ν) − κscatt/ρ], (26)

1

kR

=
∫ ∞

0
dν

∂B̃(ν, T )

∂T

1

k(ν)
, (27)

where B̃(ν, T ) is the normalized Planckian function

B̃(ν, T ) = 15

π4T

u3

eu − 1
, u = hν

T
. (28)

The radiative power loss (RPL) is evaluated as

P = 4π

∫ ∞

0
j (ν)dν (29)

and the cooling rate is obtained as the ratio between the RPL
and the electron and ion particle densities.

III. RESULTS

A. Comparison with nonlocal thermodynamic
equilibrium codes

Plasma properties of some of the chemical elements in-
volved in the plasma mixture analyzed in this work have
already been tested with other simulations in both the LTE and
NLTE regimes for plasma conditions of present interest. Thus,
in a previous work, we studied the plasma thermodynamic

TABLE II. Comparison of the average ionization and radiative
power loss (in ergs s−1 cm−3) of a neon plasma at two electron
temperatures (in eV) at an electron density of 1018 cm−3, with
calculations of codes from [68].

Average ionization Radiative power loss

Code Te = 5 Te = 40 Te = 5 Te = 40

MIXKIP 2.01 7.29 8.10 × 1014 3.26 × 1015

code 1 2.20 7.21 1.82 × 1015 4.55 × 1015

code 2 2.19 7.36 1.94 × 1014 4.31 × 1015

code 3 2.06 7.76 7.08 × 1014 1.99 × 1015

code 4 2.01 7.16 3.85 × 1014 4.05 × 1015

regimes of optically thin steady-state carbon plasmas [64] in
the range of electron temperatures and densities of 1–1000
eV and 1010–1022 cm−3, respectively, and their influence in
the determination of the radiative properties. Our simulations
for the monochromatic, multigroup, and mean opacities [65]
and the average ionization and cooling rates [13] were also
tested. For aluminum plasmas, we determined the plasma
thermodynamic regimes as a function of plasma conditions
and checked our simulations for the average ionization, CSDs,
mean opacities, and monochromatic opacities and emissivities
with other LTE and NLTE simulations [57,66]. Finally, we
performed comparisons of the average ionization, CSDs, and
RPLs of argon plasmas [56] with NLTE codes from [67], for
electron temperatures from 3 to 35 eV and at the electron
densities 1016 and 1020 cm−3. The results obtained in all
these studies were quite acceptable. In this section, we present
comparisons with other NLTE simulations for plasmas of
neon and iron, which are also relevant chemical elements in
astrophysical mixtures, to complement the testing previously
done for the other elements.

In Table II we have listed the average ionization and the
radiative power loss for neon plasmas calculated with MIXKIP

at the electron density of 1018 cm−3 and for two electron
temperatures, 5 and 40 eV. They are compared with calcula-
tions from NLTE kinetic codes from [68]. From the table we
observe that MIXKIP provides values similar to those obtained
by the other codes, with relative differences between 2.5% and
9.5% for the average ionization at an electron temperature of
5 eV and between 1.8% and 6.5% at 40 eV. With respect to
the RPL, larger discrepancies between the values provided by
the different codes are detected. Thus, at a temperature of 5
eV relative differences between 12.6% and 60% are found.
For the higher temperature, these range from 22% to 40%.
These disagreements are expected, due to different atomic de-
scriptions and configurations considered in each code. Since
the RPL is more sensitive than the average ionization to these
issues, the discrepancies obtained are larger.

In Fig. 1 we present comparisons of the RPLs and the
average ionizations calculated with the MIXKIP code for iron
plasmas with those obtained with NLTE codes from [69], at
two electron densities, 1014 and 1019 cm−3 and electron tem-
peratures from 30 to 1000 eV. The average ionizations range
from 6 to 18 and from 9 to 19 for the lowest and highest den-
sities, respectively. The figure shows that, for both properties,
the discrepancies between the codes for the lowest density
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FIG. 1. Comparison of the average ionization and radiative power loss of iron plasmas at two electron densities, with calculations of codes
from [69].

are in general slightly greater than for the highest. Thus, for
the average ionization, the relative differences are typically
between 1% and 10% for both densities but at 1019 cm−3 most
of the relative differences are lower than 5%. With respect to
the RPLs, the relative differences between codes in general
range from 50% to 100% for both densities, although for
some codes we detected relatives differences that can reach
400% for some plasma conditions. The greater discrepancies
obtained at 1014 cm−3 may be due to the autoionization and
the dielectronic recombination process contributions, which
are more relevant at low densities, and their corresponding
rates varied significantly between the codes [67]. At higher
densities the collisional processes are dominant and this could
decrease the differences.

From Figs. 1(a) and 1(c) we detect better agreement among
all the codes for electron temperatures from 200 to 300 eV,
where a plateau for an average ionization around 16 (Ne-like
ion) is obtained. Thus, for example, the relative differences
between the RPLs provided by the different codes are always

lower than 30%. The most abundant ion is Ne, which is a
closed-shell ion whose atomic structure is simpler than for
ions with partially occupied shells, which can explain the
better agreement observed. As shown in Fig. 1, the behavior
of the average ionization and the RPL with the density and
temperature obtained with the MIXKIP code are similar to most
of the other codes and also their values.

B. Departures from coronal equilibrium

Coronal equilibrium describes the steady-state conditions
(as defined above) of very-low-density and optically thin
plasmas. In this thermodynamic regime, radiative processes
and three-body recombination have very low rates, the domi-
nant processes being those which involve two particles, such
as the collisional ionization and dielectronic and radiative
recombination. The CSD is obtained by equating the rates
of those processes [15]. In CE, both the cooling rate and
the average ionization are density independent. The cooling
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FIG. 2. Contributions of several elements to the mixture cooling rate, as a function of electron temperature and for three electron densities,
calculated with MIXKIP. The set of abundances of the elements was extracted from [42]. The total cooling rate (yellow solid line) is the sum of
all the elements included in the mixture.

rates in these low-density plasmas play a fundamental role in
the radiation hydrodynamics simulations and for this reason
there are many calculations of them in CE, such as those
cited in Sec. I. Furthermore, their temperature dependence
of this quantity rules the onset of thermal instabilities in
radiative shocks [70,71], which could be responsible for the
origin of several astrophysical objects. On the other hand,
the steady-state assumption in the CE approach is no longer
valid in astrophysical objects in which the ionization or
recombination timescales are longer than the cooling time
[1], for example, the stellar coronal loops [3]. In this case,
a time-dependent model must be used to obtain the plasma
level populations since CE calculations would predict an
underionized plasma and then higher cooling rates. However,
time-dependent NLTE simulations are not easily implemented
in two- or three-dimensional hydrodynamic simulations and
CE calculations are still used.

In this section, we analyze the departures from CE of the
cooling rates as a function of the plasma conditions and we
also compare our results at low density with other simulations
carried out assuming CE. First, we analyze the contribution
of the different chemical elements to the cooling rate of the
mixture as a function of the electron temperature and density,
using the solarlike abundances provided by [42]. In Fig. 2 we
have represented the contributions of several of them for three
electron densities and the cooling rate of the whole mixture.
We observe that, for temperatures lower than 30 eV and
electron densities of 1011 and 1015 cm−3, H, He, C, and O are
the elements with a larger contribution and, in particular, for
temperatures greater than 3 eV the most relevant contributions
are due to C and O. For the density of 1017 cm−3, we detect
that the cooling rate experiences a decrease, fundamentally,
in the range of temperature less than 50 eV. The increase
in the plasma recombination with the density affects the
low-temperature regime more and this fact could explain the
decrease of the cooling rate. For electron temperatures higher
than 50 eV, the most significant contribution is due to iron and,
for an electron density of 1017 cm−3, its relevance extends to
temperatures higher than 30 eV.

As shown in Fig. 2, oxygen and iron are the main contrib-
utors to the cooling rate of the plasma mixture for different

ranges of electron temperatures. For this reason, we have also
analyzed these two elements. Figure 3 presents a comparison
of the cooling rates for plasmas of oxygen, silicon, and iron.
Comparisons with CE calculations are made at three electron
densities 1011, 1015, and 1017 cm−3. In particular, we compare
our calculations with those carried out by Schure et al. [1],
developed to simulate the circumstellar medium of a massive
star. They used the SPEX package [72] to obtain a cooling
curve including a complete description of line emission which
led to cooling rates higher than those provided by other widely
used cooling curves [1]. We also compared our calculations
with numerical fittings of the cooling rates obtained from Post
et al. [10] based on an average-atom model to obtain the
atomic properties and the rate coefficients of the relevant pro-
cesses in CE. Cooling rates extracted from Ref. [5] have also
been included in the comparison. Finally, for the iron case, a
comparison with a NLTE code, FLYCHK [73], is made for an
electron density of 1011 cm−3. FLYCHK solves rate equations
of a collisional-radiative model for the calculation of level
population distributions and employs the jj -configuration
averaged atomic states and oscillator strengths calculated
using the Dirac-Hartree-Slater model, scaled hydrogenic cross
sections, and read-in tables.

From Fig. 3(a) we detect good agreement between MIXKIP

and the Post et al. results for oxygen in the whole range of
electron temperatures. The agreement among all the models
becomes better for electron temperatures higher than 20 eV,
where the average ionization is greater than 4.5 and then
the atomic structure of the most abundant ions is simpler.
The figure also shows that the cooling coefficients provided
by MIXKIP at 1011 and 1015 cm−3 are quite similar for all
the temperatures, which means that CE would be accurate
for oxygen plasmas for electron densities up to 1015 cm−3.
According to Fig. 2, at these two densities, oxygen is the most
important contributor to the mixture for temperatures from
6 to 30 eV and therefore that result will also apply for the
whole mixture. For a density of 1017 cm−3 we observe that
the cooling rates converge to those obtained at lower densities
for temperatures higher than 100 eV since the increase of
the temperature encourages the CE regime. This result agrees
with Griem’s criterion [48], which predicts that the plasma
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FIG. 3. Cooling rates for oxygen, silicon, and iron, at three electron densities, as a function of the electron temperature. Comparisons with
CE calculations [1,5,10] and, for the iron case, with the NLTE FLYCHK code [73] are shown.

should be coronal at this density for electron temperatures
higher than around 113 eV.

With respect to silicon, conclusions similar to those for
oxygen are obtained, but in this case the disagreements be-
tween the cooling rates obtained with MIXKIP at the highest
density and at the other two lower ones decrease for tem-
peratures higher than 20 eV, as Fig. 3(b) shows. Figure 3(c)
displays the comparison for iron plasmas. In the figure, we
have represented the range of temperatures where the contri-
bution of this element to the mixture is more relevant at these
densities, according to Fig. 2. For that range of temperatures,
we detect that the cooling rates obtained at the three densities
are quite similar and therefore the CE assumption would be
accurate for these densities. This result will remain for the
cooling rate of the whole plasma mixture. On the other hand,
the agreement between the models is worse than for oxygen
and silicon at temperatures lower than 100 eV. The atomic
structure of iron is more complicated than for the other two el-
ements. For temperatures lower than 100 eV, for the iron case,
the ions involved have between 20 and 13 bound electrons [see
Fig. 1(a)] and in that range we observed in Figs. 1(a) and 1(b)
that the disagreements between the NLTE codes in the RPLs
are of the same order as those we obtain in the comparison
between MIXKIP and the CE models. The agreement improves
in the range of electron temperatures 100–300 eV, as was
the case in the comparison between the NLTE codes. As
previously mentioned, Ne-like Fe is the most relevant ion
in that range, with a closed-shell atomic structure, which is
simpler than open-shell structures. For higher temperatures
the disagreement rises again since open-shell ions are the most
abundant. We also detect noticeable differences with FLYCHK

results, although this is expected since this code is best suited
to intermediate densities out of CE [73].

In Fig. 4 we present a comparison of the cooling rates
of the plasma mixture with several calculations of CE mod-
els, in particular, with those provided by Schure et al. [1],
which included 15 elements in their simulations, H, He, C-O,
Ne-Si, Ca, Sr, Fe, and Ni. Solar abundances were assumed
using those given in Ref. [41]. We have also compared our
calculations with the data from Gnat and Sternberg [8]. The
authors considered the following elements in the mixture: H,
He, C-O, Ne, Mg, Si, S, and Fe. For the elemental abundances

of C, N, O, Mg, Si, and Fe we used those reported by Asplund
et al. [74] for the photosphere of the sun, and for Ne they
adopted the enhanced abundances recommended by Drake
and Tesla [75]. We have also compared our calculations with
the cooling rates extracted from the work of Summers and
McWhirter [5] for a mixture of H, He, C-O, Ne-S, Ar-Ca,
and V-Cu that used the coronal fractional abundances reported
by Withbroe [76]. In MIXKIP, for these comparisons, we have
employed the same abundances as in [1]. Figure 4 shows good
agreement among all the simulations for electron tempera-
tures higher than 50 eV, although the cooling rates provided
by Summers and McWhirter present more differences with
respect to the other models. For the range of temperatures
2–20 eV, we detect similarities between the cooling rates of
MIXKIP calculations at 1014 cm−3 and those from Schure et al.
as well as between the simulations of Gnat and Sternberg and
those of Summers and McWhirter. The abundances used in

FIG. 4. Comparison of the cooling rates of the plasma mixture,
at two electron densities, with calculations of CE models [1,5,8].
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FIG. 5. Contributions of several elements to the mixture Planck mean opacity, as a function of electron temperature and for three electron
densities, calculated with MIXKIP. The set of abundances of the elements was extracted from [42]. The total Planck mean (yellow solid line) is
the sum of all the elements included in the mixture.

MIXKIP and by Schure et al. are different from those used in the
other two models, but this fact cannot explain the appreciable
differences observed. In that range of temperatures, elements
such as O and Si contribute significantly to the cooling rate
of the mixture. As shown in Figs. 3(a) and 3(b), MIXKIP and
Schure et al. provided quite similar results for the cooling
rates of these two elements in this range of temperatures,
whereas the values extracted from the work of Summers and
McWhirter presented noticeable differences. Therefore, we
can conclude that the discrepancies in the cooling rates of the
mixture are mostly due to differences in the atomic structures
and processes considered in the models.

With respect to the calculations with MIXKIP at electron
densities of 1014 and 1017 cm−3, we detect similarities for the
cooling rates for temperatures higher than 100 eV, whereas
for lower temperatures the differences can reach one order
of magnitude. These discrepancies, which were expected ac-
cording to the results already obtained for oxygen and iron,
are considerably larger than those obtained among all the CE
models, indicating that CE is not reached for temperatures
lower than 100 eV at 1017 cm−3 and NLTE simulations would
be necessary.

C. Departures from local thermodynamic equilibrium

Local thermodynamic equilibrium is reached in plasmas
whose dimensions are significantly smaller than the mean free
path of the photons emitted from the plasma but are much
longer than the collision length of the electrons and the ions.
Local thermodynamic equilibrium conditions develop when
the rates of the collisional processes and their inverse are equal
and therefore LTE conditions can be attained only at high
densities. In this thermodynamic regime, the ion abundances
in MIXKIP are obtained through the Saha equation

Nζ+1ne

Nζ

= ZeZζ+1

Zζ

e−(Iζ −�Iζ )/kTe , (30)

where Ze and Zζ are the partition functions of free electrons
and ions ζ , respectively, Iζ is the ionization potential of
the ionization stage ζ , and �Iζ is the CL of the ionization
potential due to the plasma environment. The atomic plasma

level populations are then obtained assuming a Boltzmann
distribution.

In this section, we have analyze the departures from LTE
of the Planck and Rosseland mean opacities, as a function
of the plasma conditions, and we also compare our results
with other simulations carried out assuming LTE. First, we
analyze the contribution of the different chemical elements
to the Planck mean opacity of the mixture as a function
of the electron temperature and density, using the solarlike
abundances provided by [42]. In Fig. 5 we represent the
contributions of several of them for three electron densities
and the Planck mean opacity of the whole mixture. We detect
that the Planck mean opacity is mainly ruled by H and He in
the low-temperature regime (temperatures lower than 10 eV)
for the two lowest densities represented. At 1020 cm−3, the
increase of the plasma recombination leads to an extension of
their importance up to temperatures around 60 eV. Another
two relevant contributors to the mean opacity are O and Fe.
The former presents a significant contribution for tempera-
tures from 100 to 300 eV for the three densities represented
and around 20 eV for the two lowest densities. Iron contributes
most to the range of electron temperatures higher than 300
eV. Due to their importance, as in the preceding section, we
also carry out an analysis of the departures from LTE of mean
opacities of oxygen and iron and, for the latter, we compare
our simulations with LTE calculations.

In Fig. 6 we present a comparison, as a function of the
electron temperature and at four mass densities, of the aver-
age ionization and Planck and Rosseland mean opacities of
oxygen, calculated with MIXKIP, in both LTE and NLTE, and
the ATOMIC code [23] in LTE. With respect to the average
ionization, MIXKIP LTE and ATOMIC provide close results for
temperatures higher than 10 eV, with relative differences gen-
erally lower than 5%. For temperatures equal to or less than
10 eV, these differences become greater. This behavior may be
attributed to two factors. The first one is the different atomic
description used in each code: a DLA single configuration in
intermediate coupling in ATOMIC [77] and DCA in MIXKIP. It
has been shown that the discrepancies between DLA and DCA
descriptions increase as the temperature decreases. The sec-
ond factor is related to the modeling of the effect of the plasma
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FIG. 6. Comparison of (a) average ionization and (b) Planck and (c) Rosseland mean opacities with ATOMIC [23] simulations in LTE for
oxygen.

environment in the atomic kinetics calculations. For a fixed
density, the decrease of the temperature enhances the plasma
effect and therefore, in this range of lower temperature, the
calculations are more sensitive to the model used to describe
that effect. In the equation of state used in ATOMIC for the
calculation of the ion abundances, the plasma effect is taken
into account by means of hard-sphere occupation probability
terms [78]. On the other hand, as previously mentioned, the
plasma influence in MIXKIP is included through the Stewart-
Pyatt (SP) model for the CL. The SP model converges to
the ion-sphere (IS) model when the coupling parameter [79],
which represents (for plasmas obeying classical statistics) the
ratio of the average Coulomb and kinetic energies, is much
larger than unity. For the mass densities represented and elec-
tron temperatures equal to or lower than 10 eV, that parameter
ranges from 0.15 to 0.30 and therefore the SP model does not
converge to the IS one. In this range of temperatures we have
also performed calculations using an IS based model proposed
by Crowley [80] instead of the SP model, obtaining results
closer to those of ATOMIC simulations than those obtained
using the SP model, which seems to confirm our assumption.

With respect to LTE and NLTE simulations of the average
ionization, Fig. 6 shows that they are close for the whole
range of temperatures only for a mass density of 0.1 g cm−3

(electron densities range from 6 × 1021 to 3 × 1022 cm−3),
with relative differences not exceeding 5%. For the other mass
densities, only for temperatures lower than 25 eV NLTE and
LTE results are close, with relative differences around 5%
or lower. As the temperature increases, the departure from
the LTE regime becomes larger and at 100 eV noticeable
differences between the average ionizations provided by both
simulations are already detected for the three lower densities
considered. At this temperature and for all mass densities, the
NLTE model predicts an average ionization around 6 (He-like
ion). The average ionizations obtained in the LTE regime are
more sensitive to the density and they are overestimated with
regard to the NLTE calculations, predicting for the lowest
density, for example, that the fully stripped ion is the most
probable at 100 eV. At this temperature and density (around
an electron density of 1019 cm−3), the contribution of oxygen
to the mean opacities of the mixture is large, as shown in

Fig. 5(c), and can lead to appreciable changes. Furthermore,
the NLTE simulations show a plateau in the average ionization
associated with the He-like ion for electron temperatures rang-
ing from 20 to 100 eV, which is not observed in LTE. We also
detect that both the LTE and NLTE simulations predict the
fully stripped ion as the most abundant for electron temper-
atures greater than 300 eV. However, despite this agreement,
the plasma is in NLTE and there are noticeable differences in
the mean opacities, as we will show.

Figures 6(b) and 6(c) show general agreement between
MIXKIP LTE and ATOMIC for the Planck and Rosseland mean
opacities within 20% and 30%, respectively, these discrepan-
cies being associated with the different atomic descriptions
used in the calculation of the atomic spectra. In ATOMIC, a
DLA approach is employed, although for the bound-bound
opacity of elements beyond Si a combination of DLA and
mixed-UTA approaches is used [23]. In MIXKIP a DCA-UTA
approach is used. The agreement is worse for the Rosseland
mean opacity. This property is more sensitive to the line
shape than the Planck opacity and in the UTA formalism the
detailed line spectra of the DLA descriptions are replaced by
Gaussian distributions. Figure 6(c) shows that for the case of
lowest density and temperature, where the Doppler and colli-
sional broadenings are small and then the lines are narrower,
the disagreement between MIXKIP and ATOMIC Rosseland
mean opacities increases considerably, which corroborates our
statement.

The differences between LTE and NLTE opacities present
a similar behavior with density and temperature to the average
ionizations. However, the differences for the former properties
are larger than for the latter, which indicates that the mean
opacities are more sensitive to the thermodynamic regime than
the average ionizations. With respect to the Rosseland mean
opacities, for the greatest density (10−1 g cm−3) at low tem-
peratures the discrepancies are less than 5%. As expected, the
disagreement increases with the temperature and, for example,
at a temperature of 500 eV (ne = 3 × 1022 cm−3), where
oxygen still has a non-negligible contribution to the mixture,
it reaches 155%, which is considerably larger than the one
between both LTE simulations, which is around 30%. The
disagreement with respect to LTE simulations also becomes
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FIG. 7. Comparison of monochromatic opacities of oxygen plasmas obtained assuming LTE and NLTE regimes for a fixed electron
temperature and two mass densities.

greater as the density decreases and, at that temperature, the
relative differences are around 1700% for a mass density of
10−4 g cm−3 (ne = 3 × 1019 cm−3) and 1400% for a mass
density of 10−3 g cm−3 (ne = 3 × 1020 cm−3). These differ-
ences are considerable larger than those obtained from the
comparisons between both LTE models, which are around
22% and 8%, respectively. At a temperature of 500 eV, NLTE
Rosseland mean opacities are almost density independent, as
shown in Fig. 6(c). We have represented in Figs. 7(c) and 7(d)
the monochromatic opacities for these temperatures and for
the lowest and highest mass densities. The weighting function
for the Rosseland mean peaks at 3.8Te (eV), i.e., at a photon
energy of 1900 eV for this temperature. Therefore, the largest
contribution is due to the photoionization of the 1s H-like
ion and since the abundances of this ion are quite similar at
both densities (0.53 × 10−1 and 0.66 × 10−1 at mass densities
10−4 and 10−1 g cm−3, respectively), the values of the NLTE
mean opacities are close. On the other hand, the LTE simu-

lation is more sensitive to the changes in density, as shown
in Figs. 7(a) and 7(b), since the abundances of the H-like ion
disagree by two orders of magnitude at these two densities.
Figures 7(c) and 7(d) represent the monochromatic opacities
for these two mass densities at an electron temperature of 100
eV. In this case, the weighting function peaks at a photon
energy of 380 eV and the depths of the transmission windows
in this region of photon energies are quite similar in the LTE
and NLTE calculations, which explains the similarities found
between the Rosseland mean opacities at this temperature.

Larger differences are detected for the LTE and NLTE
Planck mean opacities, as shown in Fig. 6(b). The discrep-
ancies are already noticeable for the two lower densities for
electron temperatures greater than 100 eV. The weighting
function in this case peaks at 2.8Te (eV), i.e., at a photon
energy of 280 eV for an electron temperature of 100 eV.
The Planck opacity is mainly determined by the strength of
the absorption peaks. This mean opacity is mainly ruled by
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the absorption structure located around the photon energy
range from 400 to 800 eV [see Figs. 7(a) and 7(b)], which
is mainly due to the line transitions of He- and H-like ions.
The similarity between the strengths of the mean peaks in
the structure for the two mass densities in NLTE simulations
explains why their Planck mean opacities are very close. On
the other hand, the lesser abundances predict by the LTE sim-
ulation for the He- and H-like ions at 10−1 g cm−3 explain the
large discrepancies obtained for both the monochromatic and
Planck mean opacities. As expected, the agreement becomes
better as the mass density increases, as shown in Fig. 7(b). The
disagreement between LTE and NLTE Planck mean opacities
increases with temperature and, at electron temperatures of
500 and 1000 eV and the greatest mass density, the relative
differences are around 350%. These differences becomes even
larger as the mass density decreases and they can reach three
orders of magnitude at a density of 10−4 g cm−3. For example,
at 500 eV, the weighting function of the mean opacity reaches
its maximum at a photon energy of 1400 eV. The great
differences observed in the line transitions and in the pho-
toionization of the 1s level H-like ion in the monochromatic
opacities represented in Figs. 7(c) and 7(d) help to explain
these results.

We have made comparisons in LTE with OP opacities
[17] and a DLA model with state mixing within one electron
configuration presented in [28] for iron, which is also an
element with a large contribution to the opacity of the mixture.
In particular, we have made an isothermal and isodensity
study of the Rosseland and Planck mean opacities. Good
agreement is observed in general between the OP and the
DLA model at a temperature of 19.3 eV for mass densities
up to around 10−3 and 10−4 g cm−3 for Planck and Rosseland
mean opacities, respectively [see Fig. 8(a)]. The discrepancies
between the models increase with the mass density. According
to [28], these differences may be attributed to the model
of the equation of state used in each code to calculate the
populations in LTE. At this relatively low temperature and
high densities (near electron densities of 1022 cm−3) the effect
of cutting levels in the partition function can be significant. In
the calculation made in [28], the model used is based on the
model of Stewart and Pyatt. On the other hand, the OP uses an
occupation probability formalism for the truncation of internal
partition functions [78]. With respect to the small differences
between both models at low densities, they may be associated
with the different atomic description employed and to the set
of atomic levels included. The MIXKIP LTE provides results
that in general show good agreement with those obtained
with the DLA model, with maximum relative differences
around 15% and 25% for the Planck and Rosseland mean
opacities, respectively. These differences are mainly due to the
different atomic description used in each calculation. For this
reason, the relative differences in the mean opacities between
both models decrease as the density increases. As mentioned
above, the model used in MIXKIP to include the effect of
plasma environment is based on the Stewart-Pyatt model and,
for this reason, the mean opacities at high densities are more
similar to those obtained with the DLA model than those
provided by the OP.

Figure 8(a) shows that NLTE and LTE Planck mean
opacities are noticeably different for mass densities up to

FIG. 8. Comparison of MIXKIP LTE and NLTE mean opacities:
(a) isothermal analysis at 19.3 eV, showing a comparison with the
OP [17] and a DLA simulation [28], and (b) isodensity analysis at
10−4 g cm−3, showing a comparison with a DLA simulation [28].

10−6 g cm−3 (ne ∼ 1017 cm−3) with relative differences al-
ways larger than 100%, reaching relative differences as much
as 350% for the lower densities. These differences are sig-
nificantly larger than those obtained between the LTE mod-
els (around 15%). For mass densities higher than 3.3 ×
10−5 g cm−3 (ne ∼ 3.1 × 1018 cm−3), the relative differences
are less than 10%, falling below 1% for mass densities higher
than 5 × 10−3 g cm−3 (ne ∼ 3.2 × 1020 cm−3). With respect
to the Rosseland mean opacities, for the two lower mass
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densities, the relative differences reach the 1000% and 500%,
respectively, which are considerably higher than those ob-
tained between the LTE models (around 20%). The disagree-
ment diminishes as the density increases, dropping below
the 20% and 1% for mass densities greater than 10−5 (ne =
1018 cm−3) and 4 × 10−4 (ne = 3.3 × 1019 cm−3) g cm−3,
respectively. Therefore, at this temperature, the plasma could
be assumed to be in the LTE regime for mass densities greater
than 5 × 10−3 g cm−3.

The analysis of the mean opacities as a function of the tem-
perature (10–1000 eV) for a fixed mass density (10−4 g cm−3)
is presented in Fig. 8(b). For this range of temperature, the
electron density is between 8.1 × 1018 and 2.8 × 1019 cm−3.
We detect general agreement between the MIXKIP LTE and
the DLA model of [28]. The differences may be attributed,
as in the case of the isothermal analysis, to differences in the
atomic description and the atomic configurations selected in
each model. We observe in the figure that the relevance of
the differences begins to drop for electron temperatures higher
than 300 eV, which is the range of temperatures in which iron
contributes most to the mixture. For a fixed mass density, the
electron density increases with the temperature. At high tem-
peratures, Doppler and collisional broadenings become more
relevant and then the overlapping of the line transitions. As a
consequence, the differences between DCA-UTA and DLA
models decrease [77]. With respect to NLTE calculations,
the differences become noticeable for temperatures higher
than 50 eV, reaching almost two orders of magnitude. They
increase with the temperature, achieving three and four orders
of magnitude for the Planck and Rosseland mean opacities,
respectively, at 1000 eV. Since iron is the most relevant
contributor to the opacities of the mixture in that range of high
temperatures, as shown in Fig. 5, this will produce noticeable
changes in these properties. The origin of these wide discrep-
ancies at high temperatures is the different average ionizations
predicted by LTE and NLTE simulations which result in
quite different monochromatic opacities, as Figs. 9(a) and
9(b) adequately illustrate. At 100 eV, the average ionizations
obtained from LTE and NLTE calculations are 14.9 and 17.6,
respectively, the most relevant ions being Fe14+-Fe16+ and
Fe17+-Fe18+, respectively. Therefore, monochromatic opaci-
ties differ in the strength of the peaks and the depth of the
valleys and particularly where the weighting functions of the
Planck and Rosseland mean opacities reach their maximum,
at photon energies of 280 and 380 eV, respectively [see
Fig. 9(a)]. Figure 9(b) shows that the difference is more drastic
at 500 eV, where the LTE and NLTE average ionizations are
24.1 and 17.5, respectively, and the most abundant ions are
Fe23+-Fe26+ and Fe16+-Fe19+, respectively. In this case, the
LTE spectrum is considerably shifted to higher energies. As
a consequence, its contribution at photon energies 1400 and
1900 eV (where the weighting functions peak for Planck and
Rosseland means, respectively), is considerably smaller than
the NLTE absorption spectrum.

Finally, in Figs. 10(a) and 10(b) we present a comparison
of the Rosseland and Planck mean opacities for the plasma
mixture calculated in LTE and NLTE with those obtained
using ATOMIC in LTE. For the calculation, in both the MIXKIP

and ATOMIC codes we use the same chemical elements al-
ready mentioned in Sec. II for the plasma mixture and for

FIG. 9. Comparison of monochromatic opacities of iron plasmas
obtained assuming LTE and NLTE regimes for a fixed mass density
and two electron temperatures.

their abundances those presented in Ref. [42]. The MIXKIP

LTE and ATOMIC mean opacities present similar behavior for
density and temperature. The differences detected may be
attributed to two factors, the different atomic descriptions
considered in both models and the set of configurations in-
cluded, since the latter is more complete in ATOMIC, for the
elements of the mixture, than the one used in the present
work.

These two factors cause relative differences for the Rosse-
land mean opacity at low temperatures and for the lowest
density represented around 80%, which are reduced to around
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FIG. 10. Comparison of Rosseland and Planck mean opacities
calculated with MIXKIP in LTE and NLTE regimes with those ob-
tained using the ATOMIC code [23] in LTE.

30% and 20% for the intermediate and the highest densi-
ties shown, respectively. As the temperature increases the
relative differences decrease, to around 35% for the lowest
density and less than 20% for the other two densities. As
the temperature increases, we detect that the Rosseland mean
opacities tend to have a constant value, which is due to the
scattering contribution to the opacity. For the lowest density
represented, this behavior is reached at temperatures around
40–50 eV. At these temperatures, the elements with a greater
contribution to the opacity (carbon and oxygen, mainly) are
fully ionized for this electron density in LTE simulations.

The increase of the recombination with the density causes
the temperature in which the constant behavior begins to
shift to higher values, around 300 and 600 eV, respectively,
for the other two densities represented. At these electron
temperatures and densities the LTE model predicts that all
the elements in the mixture are fully striped. In MIXKIP, the
Thomson formula is used to model the scattering, whereas in
ATOMIC, a more elaborate method is employed [23], which is
the reason for the disagreement in the constant value of the
Rosseland opacities between both models [see Fig. 10(a)].
This behavior is not obtained in NLTE since the average
ionization predicted for these densities and temperatures is
lower than in LTE simulations and then the scattering con-
tribution to the opacity is not relevant. For the highest density,
the relative differences between LTE and NLTE simulations
are lower than 50% for electron temperatures up to 50 eV.
Then the discrepancies increase with temperature, reaching
the 800% at an electron temperature of 500 eV (where the
disagreement between both LTE calculations is around 50%)
and decreasing to 200% at a temperature of 1000 eV. As
expected, the disagreement increases as the density decreases
and for the lowest density represented the discrepancies reach
5000% at a temperature of 100 eV, whereas the relative
difference between the MIXKIP LTE and ATOMIC is around
50%.

With respect to the Planck mean opacities, the relative dif-
ferences between the MIXKIP LTE and ATOMIC are, in general,
lower than 60% and 45% for the lowest and the highest den-
sities represented, respectively. As the density increases, the
differences between detailed and statistical atomic descrip-
tions are reduced. Figure 10(b) shows the great discrepancies
obtained between the LTE and NLTE simulations for electron
temperatures higher than 20 eV. As mentioned before, the
Planck mean opacities mainly depend on the strength of the
peaks in the absorption spectra and they are related to the
plasma charge-state distribution, which is noticeably different
for the plasma conditions represented. This fact explains these
great discrepancies that can reach several orders of magnitude.
Both NLTE Rosseland and Planck mean opacities are less
sensitive than LTE ones to changes in density in the range of
plasma conditions represented.

TABLE III. Comparison of the average ionizations of oxygen
from LTE and NLTE optically thin and thick models at two electron
temperatures, three mass densities, and three plasma slab widths.

ne (cm−3)

Te (eV) Model 1017 1018 1019

10 NLTE 3.97 4.04 3.81
10 NLTE d1 4.93 4.59 3.87
10 NLTE d2 5.16 4.59 3.87
10 NLTE d3 5.16 4.59 3.87
10 LTE 5.28 4.59 3.87
100 NLTE 6.04 6.05 6.06
100 NLTE d1 6.13 6.72 6.92
100 NLTE d2 6.80 6.96 6.97
100 NLTE d3 6.97 6.97 6.97
100 LTE 8.00 8.00 8.00
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FIG. 11. Comparison of Planck and Rosseland mean opacities of oxygen plasmas obtained from LTE and NLTE optically thin and thick
models at three temperatures and for three plasma slab widths.

D. Influence of the plasma self-absorption

The analysis carried out in the preceding section was
done by assuming the plasma to be optically thin. However,
due to the dimensions of the plasma, it could be the case
that the plasma self-absorption becomes relevant and this
could modify the results obtained in the optically thin NLTE
simulations. In this section, we present a brief analysis of
the influence of the opacity effects on the calculation of the
plasma radiative properties. As previously mentioned, these
effects are included in MIXKIP through the escape factor
formalism. For the study, we consider plasmas of oxygen
and iron with planar geometry at three electron densities and
temperatures, 1017, 1018, and 1019 cm−3 and 10, 100, and
1000 eV, respectively. For the plasma slab width, three values
have been simulated, d1 = 102 m, d2 = 107 m, and d3 = 1012

m. For fixed plasma conditions, as the optical depth increases
with the plasma geometrical dimension, the probability that
the photon will be thermalized before it escapes approaches
unity [81]. When this happens for any photon frequency the
source function eventually thermalize and tends to the Planck

function. Therefore, the increase of the plasma width in the
optically thick simulations leads to values closer to those of
LTE calculations than those obtained in the NLTE optically
thin approach.

In Table III we present a comparison for oxygen of the
average ionizations obtained in LTE and NLTE optically thin
and thick approaches, for those plasma widths and electron
densities, and at temperatures of 10 and 100 eV. The plasma
self-absorption increases the population in the atomic excited
configurations. These may undergo a subsequent ionization
due to other atomic processes in the plasma and, as a conse-
quence, the average ionization rises. At 10 eV we detect that
for the two highest densities, the average ionizations obtained
in the optically thick situation are equal to those provided by
the LTE model, even for the smallest plasma width and this
could be due to a preponderance of the collisional processes.
This result also holds true for the Rosseland and Planck mean
opacities, as shown in Figs. 11(c) and 11(d). The opacities
decrease with the plasma self-absorption due to the decrease
of the population in the ground configurations of the ions.

033213-15



RODRÍGUEZ, ESPINOSA, AND GIL PHYSICAL REVIEW E 98, 033213 (2018)

On the other hand, for the same electron temperature and at
a plasma density of 1017 cm−3, we observe that the average
ionization is the same for the two largest plasma widths and
they do not reach the LTE one, although they are close.
Figures 11(a) and 11(b) show that the mean opacities tend to
the LTE values. We also observe in Table III that the changes
in the average ionization, when the plasma self-absorption is
included, are greater as the density decreases, which could
lead to a relative increase of the relevance of the radiative
processes with respect to the collisional ones. For the electron
temperature of 100 eV, the changes in the average ionization
are lower than at 10 eV and this could be because a closed-
shell He-like ion is the most abundant. At this temperature,
and for the three densities and plasma widths, the average
ionizations converge to the same value, which is between
the optically thin and LTE results. With respect to the mean
opacities, we detect some slight differences, as shown in
Figs. 11(a)–11(d). The ions involved are almost the same in
optically thin and thick calculations and the discrepancies
fundamentally come from the differences in their abundances.
Unlike at electron temperature of 10 eV, in this case the
changes in the average ionization are most relevant at higher
densities. The relative importance of the collisional processes
is lower at 100 eV than at 10 eV and therefore self-absorption
effects have an increased effect. We have not listed the average
ionizations at 1000 eV because all the models predict the same
average ionization since at this temperature the full stripped
ion is the most abundant. Figures 11(a) and 11(c) show a
decrease of the mean opacities with the plasma length but
they are still quite close to the optically thin calculations.
In either case, with respect to a solarlike abundance plasma
mixture, the contribution of oxygen to the radiative properties
of the mixture, for the densities analyzed, is most relevant for
electron temperatures from 10 to 300 eV.

In Table IV we present a comparison of the average ioniza-
tions for iron calculated with the same models as for oxygen
but, in this case, at electron temperatures of 100 and 1000 eV
since in this range of temperatures the contribution of iron
to the radiative properties of the plasma mixture with solar
abundances is more relevant. The behavior of the average
ionization for density and the plasma slab width is similar

TABLE IV. Comparison of the average ionizations of iron from
LTE and NLTE optically thin and thick models at two electron
temperatures, three mass densities, and three plasma slab widths.

ne (cm−3)

Te (eV) Model 1017 1018 1019

100 NLTE 11.91 13.39 15.98
100 NLTE d1 13.85 15.79 15.98
100 NLTE d2 15.69 15.99 16.45
100 NLTE d3 16.00 16.48 16.63
100 LTE 21.01 19.45 17.97
1000 NLTE 17.94 18.22 19.12
1000 NLTE d1 18.49 19.79 22.04
1000 NLTE d2 20.88 23.14 23.94
1000 NLTE d3 23.59 23.94 23.95
1000 LTE 26.00 26.00 26.00

to the oxygen case. However, since the differences between
LTE and NLTE values are larger than for oxygen, the average
ionizations obtained with optically thick models for iron are
not so close to the LTE results.

In Figs. 12(a)–12(d) we present a comparison of the Rosse-
land and Planck mean opacities at electron densities of 1017

and 1019 cm−3. As expected, for fixed plasma length and
temperature, the effect of the plasma self-absorption increases
with the electron density since the optical depth increases as
well. The opposite behavior is obtained with the temperature
because the plasma absorption decreases. For example, at an
electron temperature and density of 100 eV and 1019 cm−3,
respectively, the Planck and Rosseland mean opacities in the
optically thick simulations decrease considerably with respect
to the optically thin case and they are very close to the LTE
result. On the other hand, there are still noticeable differences
between LTE and optically thick situations even for the largest
plasma length considered at a temperature of 1000 eV. At
an electron density of 1017 cm−3, the effect of the plasma
self-absorption is not too relevant at both temperatures.

IV. CONCLUSION

Radiation-hydrodynamics simulations usually need radia-
tive properties in wide ranges of plasma conditions. Many
of the databases of these properties have been obtained in
either CE or LTE approaches due to the complexity of the
implementation of NLTE models in the hydrodynamics codes.
However, radiative properties are sensitive to the plasma
thermodynamic regime and when the plasma is far from the
CE or LTE regimes, the disagreement with respect to NLTE
simulations can be significant. In the present work, we have
carried out NLTE calculations of the radiative properties of an
astrophysical plasma mixture for electron temperatures and
densities ranging from 1 to 1000 eV and 1011 to 1020 cm−3,
respectively. These simulations have enabled an analysis of
departures of from CE and LTE results when the plasma
is in NLTE. This study has also been made for iron and
oxygen, due to their relevance in these properties of the
mixture. The plasma level populations were obtained solving
a collisional-radiative model assuming homogeneous plasmas
to be in steady state and optically thin. For the free electrons,
a Maxwell-Boltzmann energy distribution was assumed. Due
to the wide range of plasma conditions analyzed, a statistical
atomic description based on the DCA-UTA approach was
used in order to achieve a compromise between the accuracy
in the atomic description and computational costs. The main
objective of this work was not to provide precise values of
the radiative properties of the plasma mixture but to illustrate
and quantify the effect of NLTE in their simulations. In either
case, we have compared our model with other codes, in NLTE,
CE, and LTE regimes, and we have obtained that our results
reproduce the behaviors predicted by those codes and that
the relative differences are generally lower than 50%. These
discrepancies are considerably lower than the differences
obtained between NLTE, CE, and LTE simulations when the
plasma fulfills the criteria of these thermodynamic regimes.
We determined the electron densities and temperatures where
the departures of the cooling rates and mean opacities from
CE and LTE results, respectively, were noticeable. For some
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FIG. 12. Comparison of Planck and Rosseland mean opacities of iron plasmas obtained from LTE and NLTE optically thin and thick
models at three temperatures and for three plasma lengths.

plasma conditions those differences can reach three or four
orders of magnitude.

We have also performed a brief analysis of the influence
of plasma self-absorption in the calculation of the radiative
properties when the plasma width is considered, assuming
planar geometry. Oxygen and iron cases were studied at three
electron densities and temperatures and for three plasma slab
widths. As expected, we obtained that, at low temperatures,
the optically thick results are quite close to those obtained
in LTE, especially when the density increases. This is rele-
vant for oxygen since its contribution to the plasma mixture
is relevant in that range of electron temperatures. As the

temperature increases the agreement between optically thick
and LTE results worsens, and at 1000 eV the differences are
noticeable. This result is important for iron simulations, since
its contribution to the radiative properties of the mixture is
more significant for temperatures higher than 100 eV.
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