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Abstract. This paper examines the question of optimal
harvesting time in a size-heterogeneous farmed aquatic popu-
lation, using a model reflecting the effect of population density
on both overall mortality rate and individual growth. This
analysis enables an optimal harvesting rule to be deduced.
The results obtained are applied to shrimp culture in recir-
culation systems in Mexico. Numerical solutions are derived
for different production scenarios. Assuming identical culture
conditions, results are also obtained under the hypothesis of
homogeneous population growth, the view traditionally taken
in the relevant economic literature. The optimal harvesting
times calculated tend to decrease with higher densities, al-
though this rule fails under the size-heterogeneous population
model. In general, optimal harvesting times are overestimated
when size-homogeneity in the culture is assumed. Our analy-
sis reveals that management predictions are significantly mis-
taken if the size-heterogeneity phenomenon is not taken into
account.
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1. Introduction. Size heterogeneity is a common phenomenon in
wild and farmed populations belonging to the same cohort. Differences
in individual size have been extensively reported in both ecological
(Pfister and Peacor [2003], Peacor and Pfister [2006], Peacor et al.
[2007a]) and aquaculture research (Volpato and Fernandes [1994],
Howell [1998], Kestemont et al. [2003], Moran [2007]). The origin of this
variability is associated with a series of factors, such as genetic con-
ditions, food limitation or social interactions in crowded environments
(Brett [1979], Reed and Clarke [1990], Peacor et al. [2007b], Huss et al.
[2007]). The high-density or intensive culture system currently devel-
oped in most industrialized countries reinforces size-variability among
individuals. To give an example, several studies of shrimp culture have
reported that high stocking densities increase the commanding posi-
tion of large organisms over smaller ones for feeding, refuge and sexual
partners, leading to higher levels of size heterogeneity (Harán et al.
[2004], Arnold et al. [2006]).

The aim of this paper is to analyze the influence of size heterogeneity
on the management of farmed aquatic populations, focusing in par-
ticular on the optimal harvesting time of the culture. Although this
question has been extensively analyzed, most recommendations on har-
vesting time are made under the (nonrealistic) assumption of a homoge-
neous population. In this paper, a nonlinear continuous size-structured
model was assumed, in order to represent size-variability in the popula-
tion, where individual growth is assumed to be density-dependent. By
including the size-heterogeneity phenomenon and density-dependent
growth in the economic analysis, the management recommendations
derived are more appropriate to real-world situations.

The use of size-structured models in aquaculture may also help in
designing the marketing strategies to be recommended. In general, the
market assigns different values to a given species depending on its size
or presentation, and thus there co-exist several groups or classes. The
farmer may decide the production pattern to be addressed for each class
in order to focus on specific market segments. Size-structured models
enable a better estimation to be made of the amount of each class to
be produced in the culture cycle. Thus, managers can anticipate the
quantity of individuals belonging to each class and therefore decide on
the best strategy to use to allocate the product in the market. This
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approach is not possible with the traditional models that assume size
homogeneity.

The rest of the paper is organized as follows. Section 2 reviews
the literature on optimal harvesting rules in fish culture. Section 3
presents two models of fish growth, assuming size-homogeneous and
size-heterogeneous populations, respectively. The theoretical calcula-
tions of the optimal harvesting time for both cases are detailed in Sec-
tion 4. An empirical application of the analytical results to intensive
shrimp culture in Mexico is presented in Section 5, where the economic
returns predicted by both models are compared. Finally, Section 6 dis-
cusses the results obtained and the relevant conclusions are drawn.

2. Optimal harvesting in fish culture.1 Many studies have re-
ported analytical results regarding the question of optimal harvest-
ing in fish culture. A significant proportion of these studies have fo-
cused on determining the most profitable harvesting time of a culture
cycle, taking into account the influence of discount rates, feed pur-
chases and other costs (Bjorndal [1988], Hean [1994]) or the scale of
prices (Mistiaen and Strand [1999]). These results are complemented
by analyses of the optimal feed schedule during the culture (Arnason
[1992], Hernández et al. [2007]), gradual culling (Heaps [1995]) and the
influence of certain exogenous factors such as environmental protec-
tion measures (León-Santana and Hernández [2008]) or climate change
(Lorenzen [2008]).

The above contributions are based on fish growth models which as-
sume a homogeneous size for all individuals in the population. One
reason for avoiding size-heterogeneity in optimal management studies
is the obvious increase in complexity in formulating the model. How-
ever, some exceptions can be found in the literature, such as Yu and
Leung [2005], who analyzed the optimal harvesting schedule in a mul-
tipond and multicycle discrete model during a fixed operation period.
Size variability was exogenously introduced by these authors, using
a size distribution function applied at the end of every cycle. Previ-
ously, Summerfelt et al. [1993] presented an aquaculture management
model that included increasing size-variability among individuals with
respect to fish weight. These authors simulated the harvested biomass
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obtained under certain management and economic scenarios. Subse-
quently, Forsberg [1996, 1999] used a discrete size-structured model
including stochastic factors to find the most profitable harvest and
stocking plan during a predetermined culture time. In both contri-
butions, the problem is stated in the context of a multiperiod linear
programming model in which linear growth dynamics is assumed. How-
ever, logistic-type growth is the most common pattern followed by fish
or crustaceans in aquaculture farms. As observed by Forsberg [1999],
linear fish growth is clearly unrealistic, even when necessary to numer-
ically solve the problem.

As noted above, the size-structured models built to represent the
variability of sizes in aquaculture farms usually assume discrete time.
By doing so, the optimization problem can be solved using traditional
numerical methods, such as linear programming. Nevertheless, the al-
ternative continuous size-structured models present also some advan-
tages. In particular, they allow us to obtain analytical results for the
optimization problem, thus extending the classical formulas obtained
with the simplistic size-homogeneous case (Bjorndal [1988]). Contin-
uous size-structured models were first proposed by Sinko and Streifer
[1967] and include a Partial Differential Equation (PDE) for the total
number of individuals of every size at any time, where instantaneous in-
dividual growth depends on the interactions among all the individuals.
Several extensions to this model have also been proposed, for example,
Ackleh et al. [2004] and Kato et al. [2007]. Moreover, the numerical so-
lution has been further developed by Angulo and López-Marcos [1999,
2004] and Kostova [2002].

In order to obtain analytical results for the optimal harvesting time
problem, this paper presents a continuous size-structured model for
population growth in aquaculture farms. To better represent the con-
ditions in intensive cultures, individual growth is assumed to be nonlin-
ear and density-dependent. The optimal harvesting time for one culture
cycle is obtained theoretically and an application to intensive shrimp
culture in Yucatan, Mexico, is then presented. The results obtained
are compared with those derived when homogeneous fish growth is
assumed. Similar comparisons have been carried out regarding the op-
timal management of fisheries (Moxnes [2005], Tahvonen [2008, 2009]).
In these papers, the most profitable dynamic harvesting strategy was
analyzed assuming an age-structured population, which was compared
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with the recommendations obtained using a homogeneous or “biomass”
model. The results showed that the steady state of the biomass is
lower if the biomass model is utilized in the predictions, while the
optimal harvesting solutions derived using the age-structured model
may present nonmonotonous paths, such as limit cycles or pulse fish-
ing, which are not usually presented with size-homogeneous models. In
the context of aquaculture farms, analytical results for optimal harvest-
ing time with a simple linear size-heterogeneous model was calculated
by Gasca-Leyva et al. [2008], whose results indicated that the farmer
should keep the fish longer in culture if size-heterogeneity is taken into
account. This paper extends the above findings to the more realistic
case of a nonlinear model, in which both growth and mortality rates
are dependent on the total number of individuals.

3. The biological models. This paper includes two models to
represent the growth of biological actives (e.g., forest, fish, or livestock),
although for notational convenience, the text refers solely to fish cul-
ture. The first model assumes that all organisms present an identical
weight and growth pattern throughout the culture span. This condi-
tion ignores the existence of size (weight) variability in the same cage
or pond. Hence, the population can be represented by a single individ-
ual, from the initial stocking to the harvesting time. This, indeed, has
been the most common way of modeling fish growth in aquaculture.2

Given the size of the representative at time t , x(t), growth is defined
in the following differential equation:

ẋ = g(x, N̄), x(t0) = x0 ,(1)

where N̄(t)indicates the total number of individuals at time t , t0 and
x 0 are the initial time and stocking size, respectively. Thus, fish growth
depends not only on the fish size, but also on the density in the pond
or cage. Function g is assumed to be continuously differentiable on
[0, ω] × [0,+∞) with g(ω, N̄) = 0, ∀N̄ > 0, where ω is the maximum
size a fish can reach (ω<∞). The dependence on size is normally
quadratic-shaped, that is, it describes a concave function with a unique
maximum in the interval (0,ω). In general, a negative relationship be-
tween density and growth is expected in absolute and size-relative
terms gN̄ < 0, (g/x)N̄ < 0). Some previous theoretical and empirical
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models have included this factor in fish growth (Hean [1994], Heaps
[1995], Lorenzen [1996]).

The mortality rate of individuals, μ(N̄), is assumed to be nonnega-
tive, bounded, continuously differentiable and positively dependent on
the population density μN̄ > 0. Thus, the total number of individuals
evolves in accordance with the expression

Ṅ = −μ(N)N, N(t0) = N̄0 ,(2)

where N̄0 is the number of individuals at time t = t0 . The system (h) =
(1)∪(2) defines the dynamics of fish size and the number of individuals
jointly, and is termed a size-homogeneous model or system (h).

The second model relaxes the hypothesis of identical growth and
weight of individuals. Accordingly, at any time different sizes are
present in the culture and it is not possible to single out a represen-
tative fish. It is assumed that the total number of individuals at the
initial time t = t0 follows a (probabilistic) density function in the in-
terval of possible sizes, ν0(x), x ∈ [0, ω]. Following the size-structured
model presented by Sinko and Streifer [1967], the number of individu-
als at time t with size x, N(t,x), obeys the nonlinear partial differential
equation

Nt(t, x) +
(
g(x, N̄)N(t, x)

)
x

= −μ(N̄)N(t, x), 0 < x < ω, t > t0 ,

N(t0 , x) = N̄0ν0(x),
N(t, 0) = 0.

(3)

The latter equation in (3) indicates that there is no reproduction or
replacement of individuals in the lifetime of the culture. The mortality
rate is identical to the size-homogeneous model and every individual
follows the same growth pattern described in equation (1). The total
number of individuals is

N̄(t) =
∫ ω

0
N(t, x)dx.

The system (H) = (1)∪(3) is an extension of system (h), in which an
initial distribution size N(t0 ,x) is assumed. Equation (2) is obtained by
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integrating equation (3) with respect to size x (the proof for this is given
in the Appendix). This second model is called the size-heterogeneous
model or system (H). A formal definition of the solution of system (H),
together with existence and uniqueness results, has been stated by
Calsina and Saldaña [1995]. Recently, Veliov [2008] has extended these
results to a broader context of dynamic optimization. The Appendix
section presents the analytical conditions for the functions to ensure
the existence and uniqueness of solutions to system (H).

System (H) assumes that only the initial distribution ν0(x), the mor-
tality rate and the total number of individuals determine the future
distribution of sizes over time. The weight of some individuals does
not influence mortality or the growth of other sizes. However, this is
not the case for real populations. Size variability is dependent on the
size distribution not only at the beginning of the culture, but also at
certain periods afterward. Specifically, larger fish normally grow faster
in the initial stages of the lifecycle. This phenomenon is called growth
depensation and is related to dominance effects and the hierarchy rang-
ing from the bigger individuals to the smaller ones in high-density en-
vironments (Kjartansson et al. [1988], Gadagkar [1997], Haran et al.
[2004], Arnold et al. [2006], Gurney et al. [2007]). However, competi-
tion and negative social interaction can decrease after some time and
a stage of growth stabilization can then follow. This is due to the ap-
pearance of new dominant organisms and the stabilization of social hi-
erarchies, which leads to individuals’ growth showing similar patterns,
independent of their size (Barbosa et al. [2006], Peacor et al. [2007b]).
Figure 1 illustrates the two stages of fish growth in accordance with
these empirical findings. Growth depensation spans from the beginning
of the culture to time t = t0 . Following this time, size-heterogeneity
is stabilized and system (H) can validly explain the population
dynamics.

To test the growth pattern described in Figure 1 in a real culture,
the relationship between the Coefficient of Variation (CV(t)) of fish
sizes and the growth rate was examined. Given x̄(t) the mean size
of individuals at time t obtained from real data, CV(t) is defined by
the quotient between the standard deviation of sizes at time t , σx̄(t),
and the mean size, that is, CV (t) = σx̄(t)/x̄(t). Thus, this coefficient
indicates the size dispersion in percentage terms for every fish size.
If the growth pattern of individuals in the cage or pond follows the
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FIGURE 1. Growth depensation (t < t0 ) and stabilization period (t > t0 ) in
high-density populations.

linear version of equation (3), that is, g(x, N̄) = g(x) and μ(N̄) = μ >
0, the “relative size variation will change in proportion to the relative
change in the per unit size growth rate” (Peacor et al. [2007a]). In
mathematical terms, this assertion means

CV (t)
CV (t0)

∼= g(x̄)/x̄

g(x̄0)/ x0
.(4)

Equation (4) was proven by Peacor et al. [2007a], with the assumption
that the mortality rate is zero. This equation holds if a nonlinear mor-
tality rate μ(N̄) is assumed, but the relationship is not assured if the
growth function is density-dependent. Nevertheless, equation (4) will
be used to obtain an indication of the fitness of the empirical data to
the size-structured model. Both sides of the equation can be estimated
from the data and, if statistically similar values in the culture period at
a given time t0 are adopted, the size-structured model (3) with linear
g can be accepted. The nonlinear version is tested by validation.
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4. Analytical results. In this section, theoretical results for the
optimal harvesting time, assuming models (h) and (H), are derived. The
results obtained are extensions of those presented in Bjorndal [1988].

Optimal management is dependent on the structure of revenues and
costs in the farm. In these models, a positive relationship between fish
price and size is assumed, that is, larger sizes are more highly valued
by the market. Function p(x) represents the price per gram of a fish
with size x (p′(x) > 0). Additionally, farms incur an operation cost per
individual during the culture span. This cost, C(x, N̄), includes feeding
and energy costs, which are dependent on fish size and density in the
cage. It is assumed that the cost per individual decreases with density,
that is, CN̄ < 0.

For simplicity, a single culture cycle is considered. The evaluation of
the economic conditions also depends on the specific model. For the
size-homogeneous model , the accumulated costs are given by

Ch(t) =
∫ t

t0

e−rτ C(x(τ), N̄(τ))N̄(τ)dτ,

where parameter r represents the discount rate in the economy. There-
fore, the farmer’s problem is to determine the harvesting time th at
which the present value of the net revenue obtained by harvesting all
the biomass is maximal, that is,

Max
t>t0

, π = p(x(t))x(t)N̄(t)e−rt −
∫ t

t0

e−rτ C(x(τ), N̄(τ))N̄(τ)dτ.

The first-order condition for the solution of this problem is obtained
by differentiating with respect to time the expression on the right-hand
side and equating to zero. After some calculation and simplifications,
it can be deduced that the optimal harvesting time necessarily satisfies
the equation

p′(x(th))g(x(th), N̄(th))x(th) + p(x(th))g(x(th), N̄(th))

= (r + μ(N̄(th)))p(x(th))x(th) + C(x(th), N̄(th)).
(5)
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Dividing the two terms by the individual market value, (p(x)x), it
follows that

p′(x(th))
p(x(th))

g(x(th), N̄(th)) +
g(x(th), N̄(th))

x(th)
= (r + μ(N̄(th)))

+
C(x(th), N̄(th)),

p(x(th))x(th)
,

(6)

which is a simple extension of the results presented in Bjorndal [1988].
The left-hand side of the expression represents the marginal revenue ob-
tained by leaving the fish growing in the cage for one day more than th ,
while the right-hand side represents the marginal cost incurred thereby.
From this equation alone, the effect of increasing culture densities on
the optimal harvesting time is unclear due to diverse and contrary ef-
fects. On the one hand, an increase in the culture density would produce
a decrease in the marginal revenue, since fish growth in both relative
and absolute terms would be inhibited (gN̄ < 0, (g/x)N̄ < 0). On the
other hand, the direction of change in the marginal cost is not appar-
ent, since the mortality rate would increase and individual operation
costs would decrease when culture density is increased. Therefore, the
net effect on the optimal harvesting time will depend on the particular
functions empirically estimated.

The same argument made by Gasca-Leyva et al. [2008] reveals the
existence of a maximum among the possible solutions of (6). Let us de-
note the difference between the left and the right-hand sides of equation
(6) in time t by ξ(t). At the beginning of the culture, growth rates are
usually low and costs high, due to the presence of fixed costs, and so
ξ(t0 )<0 . For t>>t0 , the fish weight reaches values close to ω, and
so ξ(t)<0 again, since g(ω, N̄) = 0. It is assumed that the concavity
of function g(., N̄) determines the shape of function ξ(t) (and this is
so in the empirical application), which thereby increases from nega-
tive to positive values for small t and decreases to negative ones when
x(t) approaches ω. Therefore, function π achieves a local minimum for
low values of t (and x ), and then a local maximum at a certain time
th . This local maximum is global if π(th)> π(t0 ). In other case, the
commercial activity is unprofitable.



OPTIMAL HARVESTING TIME FARMED AQUATIC POP. 487

For the size-heterogeneous model , the accumulated operational cost
at time t is given by the formula

CH (t) =
∫ t

t0

e−rτ

∫ ω

0
C(x, N̄(τ))N(τ, x)dxdτ.

The revenue at time t is given by

RH (t) = e−rt

∫ ω

0
p(x)xN(t, x)dx,

which is only evaluated at the harvesting time. The farmer’s problem
is again to determine the harvesting time tH at which the net revenue
Π = RH (t) − CH (t) is maximal. By applying the first-order condition
to Π and using equation (3), the following equation is obtained,

∫ ω

0
p(x)xNt(tH , x)dx −

∫ ω

0

(
rp(x)x + C(x, N̄(tH ))

)
N(tH , x)dx = 0

(7)

Using equation (3), the first term in the previous equation is trans-
formed into∫ ω

0
p(x)xNt(tH , x)dx = −

∫ ω

0
μ(N̄(tH ))p(x)xN(tH , x)dx

−
∫ ω

0
p(x)x(g(x, N̄(tH ))N(tH , x))xdx.

After integrating the last term above by parts and observing that
g(ω, N̄(t)) = 0, it follows that

∫ ω

0
p(x)xNt(tH , x)dx = −

∫ ω

0
μ(N̄(tH ))p(x)xN(tH , x)dx +

∫ ω

0
(p′(x)x

+ p(x))g(x, N̄(tH ))N(tH , x)dx.
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Therefore, equation (7) can be written as,
∫ ω

0
[(p′(x)x + p(x))g(x, N̄(tH )) − (r + μ(N̄(tH )))p(x)x

−C(x, N̄(tH ))]N(tH , x)dx = 0.

(8)

This condition is an extension of equation (5), assuming heteroge-
neous sizes in the culture. In order to find tH , it is first necessary
to integrate equation (3). A more direct condition can be obtained by
simplifying equation (8). Let us name x(t;t0 ,x0 ) or characteristic curve
in (t0 ,x0 ) the solution of the growth equation (1).3 By performing the
change of variable x = x(t;t0 ,x0 ), dx = ∂x(t;t0 ,x0 )/∂x0 dx0 in equation
(8) and applying the general solution of (3) and Lemma 1 presented in
the Appendix, it follows that∫ ω

0
[
(
p′(x(tH; t0 , x0))x(tH; t0x0) + p(x(tH; t0 , x0))

)
× g

(
x

(
tH; t0 , x0

)
, N̄

(
tH

))
− (

r + μ
(
N̄

(
tH

)))
p

(
x

(
tH; t0 , x0

))
x

(
tH; t0 , x0

)
− C

(
x

(
tH; t0 , x0

)
, N̄

(
tH

))
]ν0(x0)dx0 = 0.

(9)

The optimal harvesting time tH can therefore be calculated from the
characteristic curves and the total number of individuals, that is, from
the solution to system (h) = (1)∪(2) and the initial distribution of
the individuals, ν0(x). The expression in brackets in equation (9) is
similar to that one in equation (5). The existence of local maximum
tH of the revenue function Π among the solutions of (9) is guaran-
teed by following the same reasoning given for the size-homogeneous
model. Again, this local maximum is global if Π(tH )≥Π(t0), that
is, when it is profitable to culture fish after the growth depensation
period.

5. Empirical application.

5.1. Shrimp culture in fresh water in Mexico. To obtain an
empirical estimation of the above models, information was used from
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two experiments involving different stocking densities of shrimp cul-
ture in fresh water. Both experiments were carried out at the Experi-
mental Unit of the University Marista de Mérida, Mexico. In the first
one, densities of 90, 130 and 180 shrimps/m2 were stocked, with an
average shrimp size of 0.48 ± 0.03 g. The initial densities for the sec-
ond experiment were 230, 280, and 330 shrimps/m2 with an average
size of 0.41 ± 0.04 g. Juvenile shrimps were randomly distributed in
nine tanks, with three samples for each treatment. Organisms were fed
with balanced feed supplied by Purina (Camaronina, Agribrands, Mex-
ico), with a protein content of 35%. Water temperature and the con-
centration of dissolved oxygen were measured three times daily, while
nitrites, pH and nonionized ammonia were measured weekly. Weight
and mortality were also estimated weekly. More details of the experi-
mental conditions can be found in Araneda et al. [2008] and Araneda
[2010].

5.2. Model estimation. The growth function (1) was estimated
from the data. Various standard expressions were tested, such as those
of von Bertalannfy and by Gompertz, slightly modified to include
the density effect. The best statistical results were obtained with the
function

g(x, N̄) = 0.056e−0.030(Ln (N̄ ))2
x0.60 − 0.003xLn(x),(10)

where A is the total culture area (A = 40,132 m2). The mor-
tality rate was assumed to be exclusively dependent on the to-
tal number of individuals. The estimated function is μ(N̄) =
1/A(−099 + Ln(N̄/A)−0.008). The statistical results showed that all
the parameters are significant and with the expected sign, that is, pos-
itive with a probability higher than 0.95. To validate the model, a
comparison analysis of the estimated growth and mortality with the
empirical data was performed and satisfactory results were obtained
(see the Appendix).

To confirm the reliability of system (H), the existence of a growth
depensation period for the empirical data was tested. Samples of sizes
for the different treatments were stratified into three groups (small,
medium, and large) and equation (4) was tested by changing time
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TABLE 1. Estimated growth depensation period (t0 ), mean size (x̄0 ), regression
coefficient γ (equation (11)), range of sizes at time t0 ([x0

0 , x1
0 ]) and size

distribution at time t0 (equation (12)) for six different initial culture densities.

Growth depensation

period Size distribution at time t0

Initial density x̄0 to [x0
0 , x

1
0 ]

(individuals/m2 ) (g) (days) γa (g) αb β

90 2.21 35 1.071 [1.54,4.02] 1.814 1.835
130 2.14 42 1.111 [1.78,4.07] 2.988 3.164
180 2.50 70 1.162 [1.09,5.31] 4.018 2.794
230 2.55 77 0.946 [2.40,4.95] 2.360 2.895
280 2.43 84 1.079 [1.52,5.46] 2.648 3.691
330 2.38 84 1.054 [1.43,4.61] 2.400 2.401

a Estimated regression coefficient (equation (11)) for time t0 indicated in the pre-
vious column. The p-values are lower than 0.0001 for the six initial densities an-
alyzed, showing that parameter γ is not different to one at a 99.9% level of sig-
nificance. The coefficient of determination R2 ranges between 0.833 and 0.913.
b Estimated values for the parameters of the beta function (equation (12)). The
Kolmogorov-Smirnov test for goodness of fit was performed, accepting the null hypothe-
ses of agreement of data distribution with the beta distribution function at 0.05% level
of significance.

t0 from the stocking time onwards. A simple linear regression model
relating both sides of equation (4) was then tested,

CV (t)
CV (t0)

= γ

[
�
g (x̄)/x̄

�
g (x̄0)/x̄0

]
+ ε,(11)

where γ is the regression coefficient and ε is the residual. The results for
the different treatments are presented in the first four columns of Table
1, showing the time t0 when the estimated regression coefficient was
closest to one. As can be observed, this initial time varies with the treat-
ments, but the corresponding initial mean size falls by 2.14 to 2.55 g.
The coefficient of determination R2 was higher than 80% and pa-
rameter γ was not different to one, at a 99.9% level of significance.
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These results suggest that a cohort growth depensation period is
present until the mean size reaches values slightly over 2 g.

To check the fitness of the growth equation (10) to the stratified
data, a validation test was carried out. The results show that better
validation results are obtained by assuming heterogeneous growth from
time t = t0 than by assuming homogeneous growth from the beginning
of the culture (see the Appendix).

As shown in Table 1, the estimated time t0 is positively dependent on
the initial culture density. The higher the initial number of individuals
in the cage or pond, the longer the growth depensation period. The
size distribution at this time represents the initial distribution ν0(x) in
system (H). A beta function was chosen to describe ν0(x) for all the
treatments, since this function is positive in a bounded interval and
can adopt multiple graphical forms. Therefore, the initial distribution
follows the expression

ν0(x) =
1

x1
0 − x0

0

Γ(α + β)
Γ(α)Γ(β)

(
x − x0

0

x1
0 − x0

0

)α−1 (
1 − x − x0

0

x1
0 − x0

0

)β−1

,

x0
0 < x < x1

0 ,

(12)

and is zero in the remaining values of x . Γ(·) is the gamma function, α
and β are the beta function parameters and x0

0 and x1
0 are the minimum

and maximum sizes at the initial time t0 . The last three columns of
Table 1 show the parameter estimations of the beta distribution for
each treatment.

Before analyzing the economic implications of the size heterogene-
ity, a simulation of systems (h) and (H) is presented. The numerical
solution of the nonlinear size-structured model (3) was obtained by
implementing the algorithm proposed by Angulo and López-Marcos
[2004] in MATLAB. The time and size step were set at 1 day and
0.01 g, respectively. Figure 2 shows the number of individuals after
400 days of culture for three different initial densities. The concave
curves represent the size distribution at time t∗ = 400 obtained by
applying the size-heterogeneous model (H), while the thick vertical
lines indicate the average size at the same time obtained with the
size homogeneous model (h). Thus, for example, assuming a stocking
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FIGURE 2. The number of individuals N (t∗, x) after t
∗ = 400 days of culture

for three different initial densities (D0 ). The concave colored curves represent
the size distribution obtained with system (H) and the thick vertical lines
indicate the final size obtained with system (h). Notation ind./m2 means in-
dividuals/m2 .

density of 90 individuals/m2, the average size reached at time t∗ = 400
by using system (h) is xh = 19.58 g, which decreases to xh = 14.74 g
when the stocking density is 280 individuals/m2. Therefore, higher cul-
ture densities give rise to lower sizes for the same culture span. How-
ever, size variability obtained with system (H) increases with the stock-
ing density, as indicated by calculating at time t∗ = 400 the coefficient
of variation, which shows figures of 0.0105 and 0.0202 for the stocking
density of 90 and 280 individuals/m2, respectively.

Figure 3 shows the evolution of the number of individuals during the
same culture cycle for the initial density of 180 individuals/m2, so the
growth depensation period is t0 = 70 days (see Table 1). The particular
S-shaped growth function with respect to size is the origin of the two
clearly apparent stages in the distribution of sizes within the culture
span. As shown in the three dimensional surface, the initial distribution
of sizes flattens in the middle of the culture cycle (at around 150–200
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FIGURE 3. The number of individuals for the stocking density of 180 indi-
viduals/m2 , starting from t0 = 70 until t

∗ = 400 days.

days) and is increasingly pointed at the end of the period. As shown
in Figure 2, the shape of the density distribution influences on the
size variability of the culture. This phenomenon is not captured by
homogeneous-growth models such as system (h) and can influence the
optimal time to harvest all the individuals.

5.3. Determining the economic parameters. In this study, a
recirculation system for the intensive culture of shrimp in fresh water
is assumed. Two main sources of costs are considered: (a) Global har-
vesting cost, cG , which is the sum of the harvesting cost (ch), commer-
cialization (cc), and miscellanea (cmi) per individual; (b) Operational
costs C(x, N̄), which are divided into fixed, maintenance, feeding, and
energy cost per individual. The global harvesting cost is constant
and subtracted from the price, while the operational cost follows the
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expression,

C(x, N̄) = cF N̄ + cm x + cf f(x, N̄) + ce

(
Ep(x, N̄) + Ea(x, N̄)

)
,

where cF represents the individual’s fixed cost, cm is the cost per gram
of maintaining a x -size organism in the closed system of production
(cost related to feeding management, replacements and registers of wa-
ter quality, biometrics and equipment control), cf is the feeding cost
per gram and ce is the unit cost of energy. Function f(x, N̄) repre-
sents the amount of food supplied to an organism of size x , which also
depends on culture density. Functions Ep(x, N̄) and Ea(x, N̄) are the
necessary pumping and aeration energy per individual of size x , respec-
tively. The cost parameter estimations are shown in Table 2, together
with the other economic parameters.

The quantity of food supplied to each organism depends on the con-
version rate, that is, the amount of food necessary to achieve a 1 gram
size increase, which is represented by ξ(x, N̄). This parameter depends
on size and density. The function for the conversion rate, which was
estimated from the experimental information, is

ξ(x, N̄) = 0.221Ln(N̄
/
A)x0.288 .

Hence, the total amount of food per individual is described by

f(x, N̄) = ξ(x, N̄)g(x, N̄).

The water pumping rate was estimated using the recycling principle
proposed by Huguenin and Colt [2002]. The daily ammonia production
(PTAN ) corresponds to the total amount of food supplied, PT AN =
δ · f(x, N̄), where δ = 0.03 is the ammonia production rate (van Wyk
et al. [1999]). Making use of the percentage of recirculated water (χ)
and the degree of biofilter efficiency (EfB ), an estimation of ammonia
transport (Mb) is obtained, which follows the expression

Mb(x, N̄) =
δ f(x, N̄)

1 − χ
(
1 − EfB

) .
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TABLE 2. Economic parameter assumptions for the shrimp market in Yucatan,
Mexico.

Parameter Description Magnitude Value Source

cf Feeding cost US$/g 0.00073 Local Marketa

ce Energy cost US$/kw-hr 0.05 Local Market
cm Maintenance cost US$/g 0.0000010 Calibrationb

cF Fixed cost US$/individual 0.0000565 Calibration
ch Harvesting cost US$/g 0.0002 Local Market
cc Commercialization

cost
US$/g 0.00015 Local Market

cmi Miscellanea cost US$/g 0.00010 Local Market
r Annual discount

rate
0.08 Assumption

d1 Maximum price US$/g 0.00897 Estimationc

d2 Price parameter 0.27338 Estimation
d3 Price parameter 3.02968 Estimation

a Cost and pricing information obtained from a local seafood distributor, operating in
the Yucatan Peninsula.
b Fixed and maintenance costs are calculated according to their percentage in the total
cost for a typical farm of 40,132 m2 and culture density of 90 shrimp·m−2 in Yucatan
State. In these farms, fixed costs represent 32.05% of the total, while maintenance costs
account for 12.32%.
c The price function parameters (equation (13)) were estimated by fitting the logistic
function to market data using the Levenberg-Marquardt iterative method to solve the
nonlinear least squares problem.

The denominator of this expression is positive in conditions of recir-
culation and non-null efficiency of the water biofiltration processes (χ >
0%, EfB > 0%). The maximum amount of ammonia tolerated (Cmax),
which is dependent on the specific species, was used to calculate the
necessary water circulation in the system, Qtotal = Mb(x, N̄)/Cmax .
The daily energy requirement was derived from this variable, the
manometer height of the system (Hm), the constant power unit (κ)
and the pumping efficiency (η). Thus,

Ep(x, N̄) =
ag · Hm · Qtotal(x, N̄)

κ · η ,



496 M. E. ARANEDA, J. M. HERNÁNDEZ, AND E. GASCA-LEYVA

where ag = 9.81 is the acceleration of gravity. The aeration energy
requirement was calculated from the estimated oxygen demand (Mo)
and the efficiency of oxygen transfer (E ). The following equation was
used for the oxygen demand,

Mo(x, N̄) = α · OF R · f(x, N̄),

where α is the oxygen demand factor (Huguenin and Colt [2002]), which
is multiplied by the oxygen requirement (OFR) for each gram of food
supplied. The efficiency of oxygen transfer was estimated by assuming
submerged aerators (Colt and Tchobanoglous [1981]) and is indepen-
dent of size and density. Hence, the aeration energy is

Ea(x, N̄) =
Mo(x, N̄)

E
.

The value, description and source of the technical parameters are
presented in Table 3.

To find the optimal harvesting time of a single culture, the price
structure must also be known. Price information for different sizes of
fresh whole shrimp in August to September 2008 was obtained from
a Yucatan seafood distributor, revealing that shrimp price depends on
the size of the individual. From the real data, a direct relationship
between price per gram and size was estimated by means of a logistic
function. Thus,

p(x) =
d1

1 + d2e−d3 x
,(13)

where d1 represents the maximum price, and d2 and d3 are function
parameters. The values for the price parameters are shown in Table
2. The Appendix includes the details of the price data and estimation
procedure.

5.4. Calculation of optimal harvesting times. The optimal
harvesting time for a single shrimp culture cycle in intensive recircu-
lation systems with fresh water was calculated. The two models de-
scribed above (size-homogeneous and size-heterogeneous) were used
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TABLE 4. Optimal harvesting time (th and tH ) and size (mean x h and interval
[xH

m in , xH
m a x ]) for six different initial densities of shrimp culture in Mexico using the

size-homogeneous model (h) and size-heterogeneous model (H), respectively.
Size-dependent price p(x) = 0.00897/(1 + 3.02968e−0 . 2 7 3 3 8 x ).

Size-homogeneous

model (h)

Size-heterogeneous

model (H)

Initial density th xh tH [xH
m in , xH

m ax ]
(individuals/m2 ) (days) (g) (days) (g) %Utilitya

90 348 18.05 331 [17.13,18.50] 3.68
130 328 15.75 308 [14.75,16.13] 5.49
180 316 13.95 304 [11.80,14.73] 5.05
230 309 12.72 298 [11.80,13.38] 5.79
280 305 11.82 308 [10.60,13.13] −1.56
330 301 11.07 303 [9.81,12.05] −1.61

a This column represents the difference in percentage terms between the maximum profit
obtained with the size-heterogeneous model and the maximum profit obtained with the
size-homogeneous model.

independently, but assuming identical technical and economic condi-
tions. The algorithms to solve equations (5) and (9) were implemented
in MATLAB and the time and size step were set to be 1 day and 0.01
g, respectively.

The results for the six densities tested in the experiment are pre-
sented in Table 4. As can be seen, the optimal harvesting time de-
creases for higher densities when identical growth among individuals
is assumed. The reduced rates of growth with higher densities make
it more profitable to harvest the culture earlier. However, this rule
varies in the case of the size-heterogeneous model. In this case, the
harvesting time is density-decreasing for the lowest culture densities
analyzed (90–230 individuals/m2 at the beginning of the culture), but
this behavior changes abruptly for higher densities (280–330 individu-
als/m2). The high variability of the initial distribution of sizes for these
stocking strategies (see Table 1) and the nonlinear size-dependent price
influence this numerical outcome. In the specific price function used in
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the estimations of Table 4, the price per gram increases steeply, to
stabilize at sizes above 12 g. Since greater culture density is associ-
ated with reduced growth rates, it may be more profitable to allow
the individuals a few more days to grow in order to take advantage
of the higher prices obtained with larger sizes. Such is the case with
the highest initial culture densities considered in Table 4 (280 and 330
individuals/m2), which reach optimal sizes between 9.81 and 13.13 g.
On the contrary, the optimal harvesting sizes for the other culture
densities are all above 11.80 g. This phenomenon is not reflected by
system (h), since marginal revenues obtained with different sizes at
the same time are not taken into account with the size-homogeneous
hypothesis.

The relationship between the optimal harvesting times obtained by
each model is also ambiguous. For the lowest densities considered in
the numerical analysis, the optimal harvesting times under the hy-
pothesis of size-homogeneity are larger than those given by the size-
heterogeneity model (tH< th). The largest difference between these
estimations is found for an initial culture density of 130 individu-
als/m2, amounting to 20 days, which corresponds to an error of 6.49%
in the harvesting time recommendations if the size-heterogeneity phe-
nomenon is not taken into account. This error is reduced for higher
densities and the relation tH<th is reversed for the largest stocking
densities (280 and 330 individuals/m2).

The size-dependent price assumed in the baseline case may also in-
fluence the difference and the ordinal relation between the optimal
harvesting times derived from the two models. To show this, Table 5
presents the estimations obtained when constant or size-independent
prices are assumed. Two scenarios of low and high constant prices were
considered, corresponding to two prices for the continuous function p(x)
in Table 4, one in the increasing phase and the other slightly over the
asymptotic value of p(x), respectively. As can be observed in Table 5
panel a and b, the optimal harvesting times are nonincreasing with
respect to density in both models and present a wider range of values
than those obtained with the size-dependent price. For example, the
optimal harvesting times range from 165 to 289 days with the size-
homogeneous model and from 166 to 270 with the size-heterogeneous
model, assuming p = US$0.007 . These figures increase if a price of
p = US$0.009 is assumed, and then range from 206 to 324 and
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TABLE 5. Optimal harvesting time (th and tH ) and size (mean x h and interval
[xH

m in , xH
m a x ]) for six different initial densities of shrimp culture in Mexico using the

size-homogeneous model (h) and size-heterogeneous model (H), respectively: (a)
Constant price p = US$0.007 per g; (b) Constant price p = US$0.009 per g.

Size-homogeneous

model (h)

Size-heterogeneous

model (H)

Initial density th xh tH [xH
m in , xH

m ax ]
(individuals/m2 ) (days) (g) (days) (g) %Utilitya

(a)
90 289 15.83 270 [14.56,16.43] 5.47
130 252 12.70 230 [11.31,13.27] 8.63
180 221 10.11 206 [7.06,11.27] 8.33
230 199 8.37 184 [6.96,9.34] 9.59
280 181 7.07 183 [5.27,9.12] −1.73
330 165 6.04 166 [4.23,7.5] −1.43
(b)
90 324 17.21 306 [16.51,17.71] 3.80
130 287 14.20 266 [12.99,14.68] 5.82
180 258 11.72 243 [8.93,12.68] 5.40
230 237 9.97 222 [8.65,10.79] 6.07
280 220 8.65 222 [6.98,10.46] −1.12
330 206 7.62 207 [5.90,8.98] −0.95

a This column represents the difference in percentage terms between the maximum profit
obtained with the size-heterogeneous model and the maximum profit obtained with the
size-homogeneous model.

from 207 and 306, respectively. However, the optimal harvesting times
are later, between 301 and 348 days, when a size-dependent price
is assumed. This observation illustrates the influence of the size-
dependent price structure on the recommended harvesting time for
farmers.

As expected, harvesting time and size are positively influenced by
price (Table 5 panel a and b). The results in this respect show a
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similar pattern to the case of size-dependent price in terms of the com-
parison between the estimated optimal harvesting times when size-
homogeneity and heterogeneity, respectively, are assumed. The max-
imum difference between the harvesting times calculated from both
models again corresponds to an initial culture density of 130 individ-
uals/m2 (p = US$0.007 ) with 22 days, which represents a percentage
error of 8.73%. Similarly, the ordinal relation between the calculated
optimal harvesting times for the two models reveals that tH<th for the
low initial densities considered, and is reversed for the highest densities.
These results indicate that assuming constant or size-dependent prices
in the study case does not greatly influence the relationship of the
optimal harvesting time under the size-homogeneous or heterogeneous
hypotheses. Other numerical simulations indicate that the change in
the ordinal relation between th and tH is associated with low growth
rates for large culture densities.

The last column in Tables 4 and 5 shows the percentage difference
between the discounted utility estimated by assuming size-homogeneity
or heterogeneity, respectively, in the culture. To calculate the net rev-
enue for the size-heterogeneous case, system (h) was considered during
the growth depensation period, that is, from t = 0 to t = t0 , where
t0 is the initial time indicated in Table 1; after that time, system (H)
was used. The values shown in Table 4 and 5 indicate that, for initial
culture densities of 90–230 individuals/m2, the net revenue is underes-
timated if the homogeneous growth hypothesis is adopted. This error
increases for low values of the price and high culture densities in this
range. Again, the results are reversed for the largest densities analyzed
(280 and 330 individuals/m2). In these cases, the optimal harvesting
times are slightly overestimated when the size-homogeneous model is
used. Numerical simulations show that the high dispersion of the ini-
tial distribution of sizes and the low growth rates associated with large
culture densities can explain this outcome. Due to these factors, the
percentage variability of sizes at the harvesting time is high and conse-
quently the estimated revenues are lower than those derived under the
size-homogeneous hypothesis.

6. Discussion and conclusions. This paper presents an estima-
tion of the optimal harvesting time in aquaculture management, when
the size-heterogeneity phenomenon is included in the calculations. A
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nonlinear size-structured model was assumed to represent the popula-
tion dynamics, in which both the growth and the mortality rate depend
on the size and the total number of individuals. A necessary condition
for the optimal harvesting time was analytically obtained; this is an ex-
tension of previous results, based on more simplistic size-homogeneity
assumptions or on linear size-structured models.

A traditional (assuming size-homogeneity) and a size-structured
model were adjusted to experimental data for shrimp culture in re-
circulation systems in Mexico, for six levels of culture density. The
estimations show that the size-structured model fits the data from a
certain time after the beginning of the culture, approximately when the
mean size of the culture surpasses a given threshold. Above this mean
size, the nonlinear size-structured model is a good approximation of
the data.

The calculated optimal harvesting times in the case study, for the
size-homogeneous model, show decreasing values with respect to den-
sity. Although the theoretical effect of the culture density on the op-
timal harvesting time is ambiguous, as revealed in equation (5), the
results from the case study suggest the shrimp should be harvested ear-
lier if the culture density is increased. However, this rule does not hold
if size-heterogeneity is assumed in the model formulation. In this case,
the optimal harvesting time increases slightly for very large culture
densities, when a size-dependent price is assumed. Numerical simula-
tions indicate that the slow growth rates derived from large densities,
combined with the high variability of initial sizes after the growth de-
pensation period observed in these stocking strategies, are the major
factors delaying the optimal harvesting time.

In general, the discounted net revenue is underestimated if size-
homogeneity in the culture is assumed. Moreover, the calculated har-
vesting time shortens the predictions based on the homogeneous growth
hypothesis. The latter observation does not match the findings obtained
by Gasca-Leyva et al. [2008], who analytically proved, under certain
price and cost conditions, that the optimal harvesting time when ho-
mogenous population growth is assumed must be lower than that de-
rived from a linear size-structured population. The density-dependence
growth included in this paper produces a reversal of the relationship
between the calculated optimal harvesting times in the case study.
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Although the relationships between the most profitable harvesting
times obtained with the two approaches would not necessary hold for
other species, cultures or financial conditions, the empirical example
presented in this paper illustrates that management decisions in inten-
sive aquaculture farms could be significantly mistaken if a nonrealistic
size-homogeneous growth hypothesis is assumed.

The model formulation and the conclusions reached can be applied to
other husbanded biological populations, such as forestry or other cul-
tured animals. Moreover, the research can be extended to areas such
as the rotation problem (the consideration of subsequent culture cy-
cles for a predetermined time horizon), which has yet to be studied
in the context of continuous size-structured populations. In addition,
the question of selective harvesting (e.g., larger sizes of a same cohort)
during a single culture span has not been subjected to any in-depth
analysis with these models. Recent results for the theory of optimal
control with continuous size-structured models could be used to solve
the problem in the same framework as that presented in this paper.

ENDNOTES

1. Most studies on optimal harvesting time in aquaculture production refer to
fish culture. However, the results presented in this paper can be directly extended
to the context of other cultured species, such as crustaceans.

2. In the context of the optimal management of renewable resources, this kind
of model is called a lumped-parameter or biomass model (Clark [1990], Tahvonen
[2009]).

3. Strictly speaking, the characteristic curve also depends on N̄0 . For simplicity,
this argument is omitted.

4. For simplicity, N̄ ′ in the argument of the solution is omitted.
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APPENDIX

General solution for the nonlinear size-structured model.
Without loss of generality, t0 = 0 and x0 = 0 in equations (1) and (3)
are assumed. Thus, the number of individuals of size x at time t , N(t,x),
follows

Nt(t, x) +
(
g(x, N̄)N(t, x)

)
x

= −μ(N̄)N(t, x), 0 < x < ω, t > 0,

N(0, x) = N̄0ν0(x),

N(t, 0) = 0.

(A1)

where g : [0, ω] × [0,+∞) → 	+ is a bounded and continuously differ-
entiable function on [0, ω] × [0,+∞) and strictly positive on [0, ω] ×
[0,+∞), μ : [0,+∞) → 	+ is a bounded non-negative continuously dif-
ferentiable function and ν0 : [0,+∞) → 	+ is non-negative and inte-
grable.

Model (A1) is an extension of model (2). By integrating the left-hand
side of equation (A1) with respect to size, it follows that

∫ ω

0
(Nt(t, x) + (g(x, N̄)N(t, x))x)dx

=
∫ ω

0

dN

dt
(t, x)dx + g(x, N̄)N(t, x)]ω0

=
d

dt

∫ ω

0
N(t, x)dx =

dN̄(t)
dt

,

since g(w, N̄) = 0 and N(t, 0) = 0. Equation (2) follows directly by
integrating the right-hand side of equation (A1) with respect to size x .
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The solution to equation (1)∪(3) follows, by definition (see Calsina
and Saldaña [1995]), the characteristic equation

⎧⎪⎪⎨
⎪⎪⎩

ẋ = g(x, N̄),

˙̄N = −μ(N̄)N̄

x(t′) = x′; N̄(t′) = N̄ ′

(A2)

Let us name x(t; t′, x′), with t ∈ [0,+∞), t′, x′ ∈ 	+
0 , the solution of

(A2)4 and Ñ(t; t′, x′) ≡ N(t, x(t; t′, x′)). Differentiating with respect to
t , gives

dÑ

dt
= Ñt + Ñx ẋ = Ñt + Ñxg = −gxÑ − μÑ,

and integrating this equation from t = t̂, the following equation is
obtained:

Ñ(t; t, x) = Ñ(t̂; t, x) exp
{
−

∫ t

t̂

(
gx(x(s; t, x), N̄(s)) + μ(N̄(s))

)
ds

}
.

Since t̂ should be non-negative, its value depends on the relative po-
sition of variables t and x in the above equation. We define z(t) =
x(t; 0, 0) as the solution to the characteristic equation crossing the
origin (Figure A1). Thus, if x ≥ z(t) ⇒ x(0; t, x) ≥ 0, t̂ = 0 is taken.
Alternatively, if x < z(t) ⇒ x(0; t, x) < 0, t̂ is now the time needed to
reach size x = 0 , and this is denoted as t̂ = τ(0; t, x) > 0.

Hence, the solution of (A1) through the characteristic equation is

N (t, x) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N (τ (0; t, x), 0) exp

{
−

∫ t

τ ( 0 ; t , x )

(
gx (x(s; t, x), N̄ (s)) + μ(N̄ (s))

)
ds

}
if x < z(t),

N (0, x(0; t, x)) exp

{
−

∫ t

0

(
gx (x(s; t, x), N̄ (s)) + μ(N̄ (s))

)
ds

}
if x ≥ z(t).
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FIGURE A1. Representation of characteristic curves.

In general, species do not reproduce in aquaculture farms during a
culture cycle. Therefore, there is no replacement (size x = 0 ) for t>0
and so N(τ(0; t, x), 0) ≡ 0, and the above equation simplifies to

N(t, x) = N(0, x(0; t, x))

× exp
{
−

∫ t

0

(
gx(x(s; t, x), N̄(s)) + μ(N̄(s))

)
ds

}(A3)

if x ≥ z(t), and to zero in the remaining values.

Given the general regularity conditions of the above functions, the ex-
istence and uniqueness of solution (A3) is assured (Calsina and Saldaña
[1995]).

Lemma 1. Let t0 , t1 ∈ 	+
0 ∪ {+∞}, t, x ∈ 	+ , x(· ; t′, x′) : (t0 , t1) →

	+ be the solution to equation (A2). Then, ∀t ∈ (t0 , t1),

∂x(t; t′, x′)
∂x′ = exp

{∫ t

t′
gx(x(s; t′, x′), N̄(s))ds

}
.
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Proof : Differentiating the left-hand side of the equation and applying
the Schwarz Theorem,

d

dt

[
∂x(t; t′, x′)

∂x′

]
=

∂

∂x′

[
d

dt
x(t; t′, x′)

]
=

∂

∂x′ g(x(t; t′, x′), N̄(t))

= gx(x(t; t′, x′), N̄(t))
∂x(t; t′, x′)

∂x′ .

This is a simple linear differential equation ẏ = gx(x(t; t′, x′), N̄(t)) ·
y, with y ≡ ∂x(t;t′,x′)

∂x′ . Integrating with respect to time in [t′, t], it fol-
lows that

∂x(t; t′, x′)
∂x′ = exp

{∫ t

t′
gx(x(s; t′, x′), N̄(s))ds

}
∂x(t′; t′, x′)

∂x′

= exp
{∫ t

t′
gx(x(s; t′, x′), N̄(s))ds

}
.

Validation of the models. For system (h), the initial condition
of model (1) was equal to the mean initial size in each tank. The
weight trajectories for both the real data and equation (10) were com-
pared, using recommended indicators such as the Coefficient of Deter-
mination R2 , the Root Mean Square Error (RMSE), the Percentage
Root Mean Square Error (PRMSE), Theil’s inequality coefficient (U),
and the decomposition of the Mean Square Error (MSE) in the bias
(UM), variance (US) and covariance components (UC) (Pindyck and
Rubinfeld [1981]). The mean values of these statistics for the six initial
stocking densities analyzed are presented in the first column of Table
A1. As can be observed, the PRMSE is lower than 13%, while Theil’s in-
equality coefficient also presents good results (values close to zero mean
a good fit between the simulated and real data). From these results,
equation (10) can be considered a representative model of the empirical
data.

Table A1 also presents the validation results for equation (10) with
the stratified data (small, medium and large) and the initial time at
t = t0 (Table 1). The PRMSE is lower than 9%, while Theil’s inequality
coefficient remains below 0.04. The validation indicators reveal that the
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TABLE A1. Validation results for the growth model (10) estimated for the
size-homogeneous model (h) and size-heterogeneous model (H), respectively, and
mortality function: RMSE = Root Mean Square Error; PRMSE = Percentage

Root Mean Square Error; U = Theil’s inequality coefficient; UM = bias
proportion; US = variance proportion; UC = covariance proportion.

Growth model, system (H)b

Growth model, Mortality

Statistica system (h) S M L function

RMSE 0.4330 0.4327 0.3700 0.477 34.27
PRMSE 12.34% 8.45% 6.66% 6.27% 12.35%
R2 0.9887 0.9263 0.9536 0.9374 0.883
Theil (U) 0.0402 0.0391 0.0294 0.0338 0.048
UM 0.3634 0.3294 0.3268 0.3287 0.3604
US 0.1612 0.2110 0.1414 0.3167 0.3009
UC 0.5139 0.4930 0.5651 0.3879 0.3455

a Mean values of the statistics calculated for the six stocking densities considered in the
empirical application.
b Estimations from the growth depensation period t = t0 and stratified data: S = small;
M = medium; L = large.

estimated size-structured model better fits the empirical data than does
the size-homogeneous model. The last column in Table A1 presents the
validation results for the mortality function.

The growth and mortality empirical expressions satisfy the general
analytical conditions regarding functions in system (H) for (x, N̄) ∈
[x0 , ω] × [K,+∞), in which K is a sufficiently small real value such that
K/A > 1. The numbers prevailing in commercial culture are restricted
to well within this domain.

The price function. Pricing information of fresh whole shrimp
(August and September 2008) was supplied by a local seafood distrib-
utor, operating in the Yucatan Peninsula. The individuals harvested
are commercialized by size and their price depends on the number of
individuals which can be packed per unit of weight. By a simple arith-
metical calculation, a size-price relation can be obtained. Table A2
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TABLE A2. Shrimp price in $US in Yucatan (ω represents the maximum
shrimp size)

Rank of size Pricea

(g) ($US/g)

(0,6.6) 0.0061
[6.6,7.7) 0.0063
[7.7,9.2) 0.0066
[9.2,11.5) 0.0077
[11.5,13.1) 0.0082
[13.1,15.3) 0.0085
[15.3,18.3) 0.0087
[18.3,22.7) 0.0088
[22.7,32.1) 0.0089
[32.1,ω) 0.009

a Prices from a local distributor of seafood, operating in Yucatan Peninsula.

includes the different ranks of size and price in $US for the commer-
cialized product in Yucatan.

As can be observed in Table A2, the price-size relation follows a non-
decreasing piecewise function. In order to use a differentiable function
in the model, a logistic price function was fitted to the mean value in
every size interval in Table A2. The resulting nonlinear least squares
estimation problem was implemented in Software InfoStat/Professional
1.1 and solved by using the Levenberg-Marquardt iterative method. Ta-
ble 2 shows the parameters estimated, which were statistically positive
with a probability higher than 0.99.

It is feasible to use the piecewise function shown in Table A2 directly
to estimate the optimal harvesting time. To do so, the optimization
method described in Section 4 can be extended by considering the ex-
treme of each size interval as a possible local maximum of the problem.
The optimal harvesting times were calculated using the piecewise func-
tion, and the results obtained indicate that the general conclusions are
not substantially affected when this price function is considered. Due
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to the large number of steps in the price-size relation in Table A2, the
continuous logistic function can be considered a good approximation of
the data. In order to simplify the analytical treatment of the problem,
the results with the piecewise price function are omitted.
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