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Abstract

This paper describes a face detection system which goes beyond traditional face
detection approaches normally designed for still images. The system described in this
paper has been designed taking into account the temporal coherence contained in a
video stream in order to build a robust detector. Multiple and real-time detection is
achieved by means of cue combination. The resulting system builds a feature based
model for each detected face, and searches them using the various model information
in the next frame. The experiments have been focused on video streams, where
our system can actually exploit the benefits of the temporal coherence integration.
The results achieved for video stream processing outperform Rowley-Kanade’s and
Viola-Jones’ solutions providing eye and face data in real-time with a notable correct
detection rate, aprox. 99.9% faces and 87.5% eye pairs on 26338 images.
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1 Introduction

Computer vision based people detection should be a basic ability to include in
any Vision Based Interface [1]. Several approaches have been developed in the
past for people detection attending to different elements of the human body:
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the face [2,3], the head [4,5], the entire body [6] or just the legs [7], as well as
the human skin [8].

Among those body parts, the face plays a critical role in human communica-
tion [9]. Indeed, there are different static and dynamic features that we use
to successfully interact with other people and to identify them. In this sense,
if Human Computer Interaction (HCI) could be more similar to human to
human communication, HCI would be non-intrusive, more natural and com-
fortable for humans [10]. As mentioned above, in this context the face is a main
information channel, and therefore our effort in this work has been focused on
its detection, in order to build a data provider for face analyzers.

Face detection is a revisited topic in the literature with recent successful results
[11–13]. However, these detectors focus on the problem using approaches which
are valid for restricted face dimensions and, with the exception of the first
reference, to a reduced head pose range.

In this paper, we describe a real-time vision system which goes beyond tradi-
tional still image face detectors, adding to a state of the art object centered
face detector [13] elements in order to get a better, more robust, more flexible
and real-time multiresolution face detector. The additions are related to: 1)
the integration of knowledge about features, particularly eye location is also
provided, present in faces, 2) the integration of the temporal coherence, 3)
and the advantages evidenced by the local context in head detection for low
resolution and difficult head poses [14]. These abilities extend the application
of standard face detection systems, building a system which is able to manage
robustly not only typical desktop interactions but also surveillance situations
and the transition between both contexts, i.e. face and head detection.

2 Face Detection

The standard face detection problem, given an arbitrary image, can be defined
as: to determine any face -if any- in the image returning the location and extent
of each [2,3]. Ideally, the whole procedure must perform in a robust manner for
illumination, scale and orientation changes in the subject. Thus, robustness is
a main aspect that must be taken into account by any face detector developer.

Face detection methods can be classified according to different criteria. In this
paper, we have considered the information used to model faces to classify the
different face detection techniques into two main families:

• Implicit or Pattern based: These approaches work searching exhaustively a
previously learned pattern at every position and different scales of the input
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image, see Figure 1.
• Explicit or Knowledge based: These approaches increase processing speed

by taking into account face knowledge explicitly and combining cues such
as color, motion and facial geometry and appearance.

Fig. 1. The implicit based approaches shift the matching window on the image at
different resolutions.

Among the different approaches described in the literature, those belonging
to the first family tackle the general problem of face detection in still images
achieving great performance (and fast in recent developments) for the datasets
available [2,3]. On the other hand, the techniques included in the second family
provide faster performance, but only in restricted scenarios [2,3].

However, the problem of real-time face detection in the context of video
streaming has not been properly focused. The direct application of typical
face detectors to video streams neglects the integration of information which
is implicit in the temporal behavior of the real sequence. As an example, this
direct application will analyze the frame as if it were a still image, forgetting
information provided by previous detections such as the position, size and
appearance of the face detected.

Therefore, the approach described in this paper makes use of elements of both
families trying to get their advantages, i.e., high performance given by the first
family, and speed provided by the second family. Our approach integrates the
temporal coherence in the system, as it is designed to exploit it during video
processing. The integration of other cues help to improve the final system
performance and robustness.

For comparison purposes we have chosen two well-known approaches from the
first family, Rowley-Kanade’s [15] and Viola-Jones’ [13] detectors which are
described briefly below. Both approaches are available for comparison pur-
poses, and they also provide high detection performance, but particularly the
second approach is able to perform almost at frame rate.

The reason to avoid any explicit based approach for comparison purposes is
due to the fact that implicit based detectors provide better performance. In-
deed our first face detector, called ENCARA, was a detector based on skin
color model [16], it could perform twice faster than Viola-Jones’ detector, but
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the reliability was reduced to specific lighting conditions. That was not a new
result, indeed skin color based approaches have the lack of robustness for dif-
ferent conditions. A well known problem is the absence of a general skin color
representation for any kind of light source and camera [17]. However, if a skin
color approach is combined with an implicit based approach, this restriction
can be avoided. This combinational paradigm is taken into consideration in
our detector.

2.1 Rowley-Kanade’s Detector

Rowley-Kanade’s detector [15] uses a multilayer neural network trained with
multiple face and non-face prototypes at different scales, considering faces in
almost upright position. The use of non-face appearance allowed to describe
better the boundaries of the facial class.

Comparative results seem to improve those achieved previously by [18]. The
system assumes a range of working sizes (starting at 20x20) as it performs
a multiscale search on the image. The system allows the configuration of its
tolerance for lateral views.

The process is computationally expensive and some optimization would be
desirable to reduce the processing time. According to the authors [15], a fast
version of the system can process a 320 × 240 pixel image in two to four
seconds on a 200 MHz R4400 SGI Indigo 2. They also pointed out that color
information, if available, may be used to optimize the algorithm by means of
restricting the search area, therefore improving performance.

Fig. 2. Typical training procedure for a Viola-Jones’ based classifier. Each stage
classifier is obtained using positive and negative samples accepted by the previous
stage.
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2.2 Viola-Jones’s Detector

Recent implicit face detectors [12,13] have reduced dramatically the processing
latency at high levels of accuracy. Particularly the general object detector
framework described in [13], designed for rapid object detection, is based on
the idea of a boosted cascade of weak classifiers. For each stage in the cascade,
see Figure 2, a separate subclassifier is trained to detect almost all target
objects while rejecting a certain fraction of the non-object patterns (which
were accepted by previous stages).

Fig. 3. a) The Integral Image stores integrals over subregions of the image, b)
Features prototypes considered in [19] implementation.

The resulting detection rate, D, and the false positive rate, F, of the cascade
is given by the combination of each single stage classifier rates:

D =
K∏
i=1

di F =
K∏
i=1

fi (1)

Each stage classifier is selected considering a combination of features which are
computed on the integral image, see Figure 3a. These features are reminiscent
of Haar wavelets and early features of the human visual pathway such as
center-surround and directional responses, see Figure 3b. The implementation
[19] integrated in the OpenCV (Open Computer Vision Library) [20] extends
the original feature set [13]. As an example, the features achieved for the
first stage of respectively a frontal face detector, and a head and shoulders
detector are presented in Figure 4. Both detectors are integrated in recent
OpenCV releases [20].

Under this approach, given a 20 stage detector designed for refusing at each
stage 50% of the non-object patterns (target false positive rate) while falsely
eliminating only 0.1% of the object patterns (target detection rate), its ex-
pected overall detection rate is 0.99920 ≈ 0.98 with a false positive rate of
0.520 ≈ 0.9 ∗ 10−6. This schema allows a high image processing rate, due to
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Fig. 4. Automatically extracted features of the first stage for frontal face (object
centered) and head and shoulders (local context) detection respectively (extracted
from [14].

the fact that background regions of the image are quickly discarded while
spending more time on promising object-like regions. Thus, the detector de-
signer chooses the desired number of stages, the target false positive rate and
the target detection rate per stage, achieving a trade-off between accuracy and
speed for the resulting classifier.

Fig. 5. ENCARA2 main modules.

3 Our Face Detection Approach: ENCARA2

As mentioned above, our approach is related to both categories described in
the previous section, as it makes use of both implicit and explicit knowledge
to get the best of each one in an opportunistic fashion. The explicit knowledge
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is based on the face geometry and the descriptors extracted from a detection:
color and appearance. On the other side, the implicit knowledge is integrated
using the general object detection framework [13] which combines increasingly
more complex classifiers in a cascade. The focus is extended for real-time
modelling each detected face. Therefore this information is used based on
temporal coherence to speed up the next frame processing.

3.1 The face detection loop procedure

The process used to face detection, see Figure 5 for a schematic description,
has two different working modes depending on recent face detection events
reported:

After no detection: This working mode, see Figure 6 for an overview, takes
place at the beginning of an interaction session, when all the individuals
are gone from the field of view, or if nobody is detected for a while. The
approach basically makes use of two window shift detectors based on the
general object detection framework described in [13]. These two brute force
detectors are the frontal face detector described in [13], and the local context
based face detector described in [14]. The last one achieves better recognition
rates for low resolution images if the head and shoulders are visible. In order
not to waste processing time, see Figure 1 to understand their processing
cost, the detectors are executed alternatively, i. e. one is applied to odd and
the other to even frames.

Faces or head and shoulders smaller than the minimum pattern size, re-
spectively 24 × 24 and 20 × 20 pixels, will not be located by the detector.
Whenever a face or head is detected, the system models its color from the
face/head container. Then it uses that modelled color trying to detect the fa-
cial features assuming that it is a frontal face, and therefore they would ver-
ify some geometric restrictions. The current implementation searches only
the eyes using different alternatives for eye detection as described in detail
in Section 3.2.

Finally, for each detected face, the system stores not only its position and
size, but also its average color using red-green normalized color space [21]
(considering just the center of the estimated face container provided by any
of Viola-Jones based detectors), and the patterns of the eyes (if detected)
and the whole face. Thus, a face is characterized by f = 〈pos, size, red, green,
leyepos, leyepattern, reyepos, reyepattern, facepattern〉.

After recent detection(s): In this working mode, see see Figure 7 for a
graphical overview, each face detected has been modelled using different
features. These features direct different cues which are applied opportunis-
tically in the new image in an order based on their computational cost and
reliability. These techniques are used to redetect a face, thus they are fo-
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Fig. 6. No recent detection working mode.

cused in a subwindow of the image as expressed in Figure 8. It must also
be observed that these techniques are applied until one of them finds a new
face coherent with the previous detection, therefore, their execution is not
necessary for every frame. These considerations will speed up the whole
process.
• Eye tracking: If eye patterns are available in the face model, a fast track-

ing algorithm [22] searches the minimum difference in the search area as
follows:

D(u, v) =
∑
Area

|I(u + i, v + j)− P (i, j)| (2)

A dynamically updated threshold is used to decide if the eyes have been
lost or not [22].
• Frontal face detector: A Viola-Jones’ based face detector [13] will be used

applied in the search window only if the tracker does not track the eyes.
• Local context face detector: If previous techniques fail, the local context

based face detector [14] is applied in the search area.
• Skin color: If previous cues fail, the modelled skin color is used to locate
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Fig. 7. After recent detection working mode.

the face in the search area. If a proper blob is located, eyes will be searched,
see details in Section 3.2.
• Face tracking: If everything else fails, the prerecorded face pattern is

tracked [22] in the search area. However, the tracking is not allowed to be
the only valid cue for more than some consecutive frames in order to avoid
tracking problems. Instead, the other cues should confirm, from time to
time, the human presence or the person will be considered lost.

Fig. 8. The search area used for each detected face in the next frame is defined as
an expansion of the previous face detection container.

Whenever a face is detected, and its eyes were not tracked, the skin color
is used for facial features detection as detailed in Section 3.2.

Additionally, every fifth frame one of Viola-Jones’ based detectors is ap-
plied to the whole image in order to detect new faces. Those new faces are
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compared with those already detected by temporal coherence, removing the
redundant ones. If no faces are detected for a while, the detector switches
to the default After no detection working mode.

3.2 Eye detection

The process employed to detect the eyes assumes that the face detected is a
frontal face. Therefore, it could happen that ENCARA2 will not provide eye
locations for every detected face. This situation happens whenever the system
fails detecting them or if both eyes are not visible. The eye pair detection
process, graphically summarized in Figure 9, is as follows:

Fig. 9. Eye detection process.

(1) Skin blob detection: The skin color modelled is used to detect the face
blob boundaries. The system heuristically removes elements that are not
part of the face, e.g. neck, and fits an ellipse to the blob in order to rotate
it to a vertical position [23].

(2) Eyes location: Different alternatives are used to locate the eyes:
(a) Dark areas: Eyes are particularly darker than their surroundings [24].
(b) Viola-Jones based eye detector: As the eye position can be roughly

estimated and therefore restricted, a Viola-Jones’ based eye detector
provides fast performance. The detector searches eyes with a mini-
mum size of 16× 12 pixels. For small faces, they are scaled up before
performing the search.

(c) Viola-Jones based eye pair detector: If other cues fail, the eye pair
detection can provide another estimation for eye positions in order
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to apply again steps a) and b). The minimum pattern size searched
is 22× 5.

(3) Normalization: Eye positions, if detected, provide a measure to normalize
the frontal face candidate to a standard size.

(4) Pattern Matching Confirmation: Once the likely face has been normal-
ized, its appearance is checked in two steps making use of Principal Com-
ponent Analysis (PCA) [25]. Two PCA spaces were built using a face
dataset of 4000 facial images extracted from internet and annotated by
hand.
(a) Eye appearance test: A certain area (11×11) around both eyes in the

normalized image is projected to a PCA space and reconstructed. The
reconstruction error [26] provides a measure of its eye appearance,
and can be used to identify incorrect eye detections.

(b) Face appearance test: A final appearance test applied to the whole
normalized image. The image is first projected to a PCA space, and
later its appearance is tested using a Support Vector Machine (SVM)
classifier [27].

3.3 Multiple face detection: Detection threads

The approach considers the possibility of multiple face detection, as no re-
striction is imposed in that sense. As mentioned above, each face detected is
described using some features, which serve for video streams to relate the de-
tection information achieved in consecutive frames, especially when multiple
individuals are present. During the video stream processing, the face detector
gathers a set of detection threads, IS = {dt1, dt2, ..., dtn}. A detection thread
contains a set of continuous detections, i.e. detections which take place in dif-
ferent frames but are related by the system in terms of coherence of position,
size and pattern matching. Thus, for each detection thread, the face detec-
tor system provides a number of facial samples, dtp = {x1, ..., xmp}, which
correspond to those detections for which also the eyes were located.

Viola-Jones’ based detectors have some level of false detections. For that rea-
son a new detection thread is created only after the eyes have been also de-
tected. The use of color and tracking cues after a recent detection is reserved
to detections which are already considered part of a detection thread. In this
way, spurious detections do not launch cues which are not robust enough, in
the sense that they are not able to recover from a false face detection.
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Fig. 10. Detection examples for some CMU database samples [12] and images ex-
tracted from Internet.

4 Experiments

4.1 Static images

ENCARA2 has not been designed to improve still images detection with the
exception of providing additional eye locations. Indeed due to the fact that
no temporal coherence can be used, its performance in that context combines
the results achieved for the standard Viola-Jones’ face detector [13] and the
local context based face detector [14]. We forward the reader to those works
to get precise information for static images results. In any case, we would like
to present some results in Figure 10, to clarify the different detection levels
that ENCARA2 provides. Three different kinds of detections are possible: a)
Pure Viola-Jones’ based frontal face detections (white containers), b) frontal
faces whose eyes were also detected by means of additional color processing
(gray containers), and c) Viola-Jones’ based head and shoulders detection (two
concentric containers).

Fig. 11. Sample sequences.
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Table 1
Results for face and eye detection processing using a PIV 2.2Ghz.

Rowley Viola Our detector

TD FD TD FD TD FD

Faces 89.27% 2.16% 97.69% 8.25% 99.92% 8.07%

Left Eye 77.51% 0.8% 0.0% - 91.83% 4.04%

Right Eye 78.18% 1% 0.0% - 92.48% 3.33%

Proc. time 422.4 msecs. 117.5 msecs. 45.6 msecs.

4.2 Video streams: Desktop scenarios

The strength of our approach is mainly exploited in video stream processing
thanks to cue integration. 74 sequences corresponding to different individuals,
cameras and environments with a resolution of 320 × 240 were recorded and
processed. The results described in Table 1 describe the performance achieved
processing sequences which present a single individual sat and speaking in
front of the computer or moderating a TV news program, see Figure 11 for
some samples. Therefore, the face pose is mainly frontal, but it is not con-
trolled, i.e. lateral views and occlusions due to arm movements are possible.
Therefore the eyes are not always visible. The total set contains 26338 images,
presenting all of them a single face easily detected by a human.

In order to check the detectors performance, the sequences have been manually
annotated, therefore the face containers are available for the whole set of
images. However eye locations are available only for a subset of 4059 images.
The eyes location allows us to compute the actual distance between them,
which will be referred below as EyeDist. This value will be used to estimate
the goodness of eye detection.

Two different criteria have been defined to establish whether a detection is
correct:

Correct face criterium: A face is considered correctly detected, if the
detected face overlaps at least 80% of the annotated area, and the area
difference is not doubled.

Correct face criterium: The eyes of a face detected are considered correctly
detected if for both eyes the distance to manually marked eyes is lower than
a threshold that depends on the actual distance between the eyes, EyeDist.
The threshold considered was EyeDist/4 similarly to [28]. The same authors
confirm in [29], that their threshold is reasonable for further face analysis.

Table 1 presents the results obtained after processing the whole set of se-
quences with the different detectors, i.e. 26338 images. The correct detection
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ratios (TD) are given considering the whole sequence, and the false detection
ratios (FD) are related to the total number of detections. Rowley’s detector
is notably slower than the others, but it provides eye detection for the 78% of
detected faces, feature which is not considered by Viola-Jones’ detector. As for
our detector, it is observed that it performs more than twice faster than Viola-
Jones’ detector, and almost ten times faster than Rowley’s. This performance
is accompanied by a number of correct detections for faces and eyes which is
always greater, in absolute value, than any of the other two approaches. It
is observed that eye detection reflects a larger improvement in comparison to
Rowley’s detector. False detections are in many cases associated to detections
which have not been properly sized.

In at least 10 of the sequences there were detections which correspond to non
face patterns (provided by Viola-Jones’ detectors). However these detections
were correctly not assigned to any detection thread as the eyes were not found
and their position, color and size were not coherent with any active detection
thread.

Only for 3 sequences with a single individual, the detection thread was not
unique. This means that the system could not consider as continuous the
presence of the individual in the video stream. In these sequences this was
due to the fact that at a certain point a detection thread was incorrectly fused
with an erroneous detection in the current frame. However, in all the cases
the detection thread was shortly considered lost, and therefore some frames
later the still present face was newly detected, and a new detection thread
created. This is a really interesting result considering the large changes in
pose experimented in many of the sequences.

4.3 Cue integration benefits

The integration of different cues is exemplified in Figure 12. In that Figure,
detections depicted were not provided by Viola-Jones’ based detectors: a) Grey
squared faces have been detected using eye tracking, b) dark ones by means
of head tracking (the last possibility), and c) white faces by means of color
detection. Indeed after an initial detection, the other cues were able to manage
the pose changes without losing the face/head. It must be observed that eyes
are located only for frontal poses in the current implementation.

Cue combination helps the system to fit the real-time restriction. Both Row-
ley’s and Viola-Jones’ detectors perform an exhaustive search in the image
at different scales, see Figure 1. Each approach employs a different technique
for matching but in any case they depend on the image resolution and the
number of scales considered (typically the image is repeatedly downsampled
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Fig. 12. Pose changes can be managed by means of cue combination.

1.1 times until a minimal size is reached, see Figure 1. Thus, the processing
cost per frame:

V iola Cost = o(Single V iola matching cost

×width× height× nscales) (3)

Table 1 evidences that the cost of a single matching operation is greater using
Rowley’s approach. For that reason we have chosen Viola-Jones’ approach as
the implicit basement for our development. ENCARA2 in the worst case, if
no faces have been detected, will behave similarly to a standard Viola-Jones’
detector. But whenever there is a detection the cost per frame will be modified:

ENCARA2 Cost = O(nfacesdetected× Eyes tracking cost +

V iolaA Cost in window + V iolaB Cost in window +

Color based cost + Head tracking Cost) (4)

Observe that this cost is again the worst case, which happens when no cue is
able to redetect a face. In the desktop context considered in the experiments
that worst case is typically not present. Indeed the value reflected in 4 is in
general lower if the other cues integrated: Tracking, Color and Subwindow
detection, are able to detect. Therefore, every frame does not require all the
processing just till the face is again detected.

Eyes tracking cost = O(2× Eye matching cost×
subwindow width× subwindow height) (5)

V iola Cost in window = O(Single V iola matching cost×
window width× window height× nscales) (6)

Color based cost = O(window width× window height

+Eye detection cost) (7)
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Head tracking cost = O(Head matching cost× window width

×window height) (8)

The results described in Table 1, show that cue integration reduces for typ-
ical desktop scenarios sequences, the time consumption in 1/3, adding the
possibility of eye detection in many frontal views.

For multiple individuals sequences, the system needs more time as more faces
are tracked simultaneously, in our experiments around 20 msecs. per individual
added to the image. This effect can be reduced by decreasing the number of
times per second that new faces are searched in the whole image.

Fig. 13. Detection results in a test sequence with multiple individuals.

A multiple face detection example is presented in Figure 13. From left to right:
1) Both faces are detected and their eyes, 2) the Viola based detectors failed
detecting the right face, it is detected by tracking the face pattern, 3) the
left face is detected using skin color and the right one by means of the local
context face detector, 4) the same for the left face, the right one is found
by tracking, 5) face pattern tracking is not allowed to be the only valid cue
for many consecutive frames, so the right face detection thread is considered
missed, and 6) the right face recovers its vertical position and is fused with
the latent detection thread.

4.4 Video streams: Unrestricted scenarios

Preliminary experiments have been performed also for sequences which are
not restricted to a desktop context. Some results achieved for detection at
different resolutions can be observed in Figures 14 and 15.

The face location for the sequence corresponding to Figure 14 has been manu-
ally annotated. Table 2 presents the detection rates summary. For Viola-Jones’
detector the detection rate hardly reaches 30%. This is due to the fact that the
face is in many frames not frontal, and/or its resolution is reduced, situation
which easily fools state of the art face detectors. Rowley’s face detector would
present the same problem. On the other hand the local context detector is
able to get a better detection rate. Our system, which integrates both detec-
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Fig. 14. Sample detections corresponding to an indoor sequence (320× 240 pixels).

Detector Detection False

rate detection rate

Object Centered [13] 30.5% 0.0%

Local Context [14] 66% 1.4%

Our detector 81.8% 0.3%

Table 2
Results for the indoor sequence, see Figure 14.

tors added to the temporal coherence, outperforms clearly both approaches
applied to a context closer to reality.

Fig. 15. Sample detections corresponding to an outdoor sequence (720×576 pixels).

5 Conclusions and Future Work

We have presented an approach for face detection in video streams which
makes use of a cascade combination in an opportunistic fashion of different
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classical face detection approaches for video stream, but integrating some el-
ements of temporal coherence. Therefore we pursue to integrate the benefits
of both families of face detection approaches: the robustness of implicit ap-
proaches and the speed of explicit approaches. The final system provides faster
and better detection rates outperforming well known face detection systems.
Detection rates achieved, 99.9% faces and 97% eye pairs detected on 26338
images, reported an error rate of 8% and 4% according to different error de-
tection criteria extracted from the literature.

Additionally the system is able to detect multiple faces and their eyes provid-
ing for the experiments an average processing rate of 45.6 msecs. per frame
which makes the system suitable for further processing in the field of percep-
tual user interfaces. A demo application and a library for comparison purposes
are provided under request to the authors.

Future work will focus on the improvement of the color module, and the detec-
tion of additional facial and context features in order to provide more elements
to manage an unrestricted individual performance. For example, the inclusion
of the individual identity and/or his clothes color model will help in situations
where different individuals present extreme poses and overlap.
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