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Abstract. Most face recognition systems are based on some form of
batch learning. Online face recognition is not only more practical, it is
also much more biologically plausible. Typical batch learners aim at min-
imizing both training error and (a measure of) hypothesis complexity.
We show that the same minimization can be done incrementally as long
as some form of ”scaffolding” is applied throughout the learning process.
Scaffolding means: make the system learn from samples that are neither
too easy nor too difficult at each step. We note that such learning be-
havior is also biologically plausible. Experiments using large sequences
of facial images support the theoretical claims. The proposed method
compares well with other, numerical calculus-based online learners.

1 Introduction

Face recognition is becoming one of the most researched problems in Computer
Vision. The available literature is increasing at a significant rate, and even the
number of conferences and special issues entirely devoted to face recognition is
growing. Access to inexpensive cameras and computational resources has allowed
researchers to explore the problem from many different perspectives, see the
survey [5].

Humans are very competent when it comes to recognize faces. A number of
face recognition systems have been based, at least partially, on psychophysical
or neurophysiological findings related to face recognition in humans. The use
of biologically-inspired features for discrimination is a prominent example, with
Gabor features topping the list.

Other work has tackled online face recognition. The interest, however, seems to
have been mainly practical, rather than based on biological plausibility
considerations. In particular, attempts have been made at alleviating the high
computational cost of the most common feature selection model used in face
recognition, namely Principal Component Analysis (PCA). Incremental PCA
[6] aims at updating the PCA basis incrementally and is computationally effi-
cient for large scale problems. Incremental algorithms have been also proposed
for classification. Incremental SVM [4], for example, is a computationally effi-
cient version of the successful SVM (Support Vector Machines) classifier, which
typically requires solving a quadratic programming (QP) problem in a number
of coefficients equal to the number of training samples.
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The ideal situation would be to find a technique that is both sound from a
theoretical viewpoint and plausible from a biological viewpoint. This work pro-
poses a novel incremental learning algorithm that is heavily inspired by biological
plausibility aspects. The paper is organized as follows. Section 2 describes the
notion of complexity minimization, and proposes an incremental learning frame-
work for face recognition. Experiments are shown in Section 3. Finally the main
conclusions and ideas for future work are outlined.

2 Incremental Learning

As mentioned above, batch supervised learning is behind the vast majority of
face recognition systems. A principled way to avoid overfitting in supervised
learning is the use of complexity penalization. A well-known complexity penal-
ization technique is Structural Risk Minimization (SRM) [2]. SRM is a procedure
that considers hypotheses ranging from simple to complex. For each hypothesis
the error in the training set is measured. Basically, the best hypothesis is that
which minimizes the sum of its error in the training set and (a measure of) its
complexity: argminH etraining(H) + Complexity(H).

Hypothesis complexity can be assimilated (although not strictly) to its number
of parameters. The more parameters the more the discriminating power, but
also the larger its complexity. Hypothesis complexity is commonly measured as
a norm in the hypothesis parameter space. This form of complexity penalization
has been used in face recognition for some time. In particular, Support Vector
Machines [11], which is based on SRM, has been shown to give better results
than other techniques for many tasks.

In a complexity penalization framework a search is made for the minimum
hypothesis variation with respect to the ”zero” hypothesis. The zero hypoth-
esis corresponds to the origin of the functional space, the hypothesis of zero
complexity or capacity (i.e. that with no discriminating power). This complex-
ity penalization approach can be made incremental if a search is made for the
minimum variation with respect to the current hypothesis, while achieving con-
sistency with a set of new training samples, see Figure 1.

In complexity penalization techniques a search is made for the simplest hy-
pothesis that is consistent with the training samples (xy , yi), yi = {±1}, i =
1, .., n. Hypotheses are generally represented in a functional Reproducing Kernel
Hilbert Space (RKHS), a convenient tool from functional analysis [1]. In RKHSs,
functions are represented by coefficients or coordinates. The function itself is re-
produced as a sum of the coefficients multiplied by symmetric kernel functions
centered at the training samples. For classification, the decision function is given
by:

sig

(
f(x) =

n∑
i=1

ciyiK(x, xi)

)
(1)

The functional to minimize is, [8]:

Jn = en + λ||f ||2 (2)
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Fig. 1. One-step (batch) complexity minimization (left), incremental complexity min-
imization (right)

where en = 1
n

∑n
i=1 Err(yi, f(xi)) is the error on the n training samples and

||f ||2 is the norm of the hypothesis considered. This last term, sometimes called
regularizer, penalizes the complexity of the hypothesis. For a given kernel and
set of training samples, learning algorithms search for a set of non-negative c
coefficients that minimize Eq. 2.

Let us divide the learning process in two stages. Let us suppose that we form
a hypothesis f ′ = f + ·f , where f is the hypothesis obtained from the first n−m
samples and ·f the hypothesis obtained for the m samples. Let ef

n−m represent
the training error in the first n − m samples with hypothesis f , and ef

n the
training error with hypothesis f using all the n samples. Then:

Jn = ef ′
n + λ||f ′||2 = ef ′

n + λ||f + ·f ||2 =
= ef ′

n + λ||f ||2 + λ|| · f ||2 + 2λ < f, ·f >=

= ef ′
n + ef

n−m − ef
n−m + e·fm − e·fm + λ||f ||2 + λ|| · f ||2 + 2λ < f, ·f >=

= Jn−m + Jm + ef ′
n − (ef

n−m + e·fm) + 2λ < f, ·f > (3)

Note that both f and ·f are vectors in a function space. < ·, · > is the dot
product of that space. Summarizing Equation 3, we have:

Jn = Jn−m + Jm + α + 2λβ (4)

where:

α = ef ′
n − (ef

n−m + e·fm) (5)
β = < f, ·f > (6)

(7)

Our objective is to minimize Jn by minimizing the right hand side of Eq. 4, in
an incremental fashion. That is, we want to minimize Jn in steps, first minimizing
Jn−m and then Jm. The terms α and β would then have to be minimized too.
Having minimized Jn−m in a previous step, suppose that we minimize Jm. If
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m is sufficiently small, e·fm can be made arbitrarily close to zero. On the other
hand, if m is kept fixed, the difference ef ′

n − ef
n−m decreases as n grows. Thus, if

m is kept fixed α decreases as n grows. Note that m << n does not hold at the
beginning of learning, and so it may be necessary to start with a batch learning
run in which more than m samples are used in the first step (this, however, was
not necessary in the experiments reported below).

Finally, let us turn our attention to the term β. Recall that we are interested
in minimizing Jn through the minimization of the right hand side of Eq. 4.
Therefore, we have to enforce:

|β| = | < f, ·f > | ≈ 0 , (8)

Note also that:

f(·) =
n−m∑
i=1

ciyiK(·, xi) (9)

and

· f(·) =
m∑

j=1

djyj+n−mK(·, xj+n−m) , (10)

ci and dj being the coefficients obtained in the minimization of Jn−m and Jm,
respectively. Samples (x1, y1), ... (xn−m , yn−m) are used for minimizing Jn−m,
while (xn−m+1, yn−m+1), ... (xn, yn) are used for minimizing Jm. Then (see [7]):

< f, ·f >=
n−m∑
i=1

m∑
j=1

ciyidjyj+n−mK(xi, xj+n−m) (11)

Now let us suppose for simplicity that m = 1, then:

· f(·) = djyj+n−1K(·, xj+n−1) , (12)

and

< f, ·f > =
n−1∑
i=1

ciyidjyj+n−1K(xi, xj+n−1) =

= djyj+n−1

n−1∑
i=1

ciyiK(xi, xj+n−1) (13)

When sample xj+n−1 arrives, it would be classified by the (at that moment)
current hypothesis using the sign of:

f(xj+n−1) =
n−1∑
i=1

ciyiK(xj+n−1, xi) =

=
n−1∑
i=1

ciyiK(xi, xj+n−1) (14)



Learning to Recognize Faces Incrementally 369

Then, from Eqs. 13 and 14 we see that:

< f, ·f >= djyj+n−1f(xj+n−1) (15)

Our original requirement of Eq. 8 is therefore equivalent to:

|djyj+n−1f(xj+n−1)| ≈ 0 (16)

Note that when the incoming sample is correctly classified by the current
hypothesis the product yj+n−1f(xj+n−1) of Eq. 16 is larger than zero (in that
case the signs are equal). On the contrary, when the incoming sample is incor-
rectly classified by the current hypothesis the product is negative 1. This means
that Eq. 8 only holds for samples that are neither too ”easy” (i.e. a sample cor-
rectly classified, with yj+n−1f(xj+n−1) >> 0), nor too ”difficult” (i.e. a sample
incorrectly classified, with yj+n−1f(xj+n−1) << 0).

Above, m = 1 was used out of simplicity, although in practice m should be
at least 2. It can be shown that for m = 2 the dot product is made up of
two summands, each similar to the right hand side of 15. The interpretation is
the same: the dot product will be low when the (two) new samples are neither
too easy nor too difficult for the current hypothesis. Note that this theoretical
requirement is in line with what occurs in human learning, where learning only
progresses if there is scaffolding, see [12]. Consequently, this framework would
work if we make the learner process samples that are neither too easy nor too
difficult at each step. Such approach would be closely related to what is known
as active learning.

Another form of achieving scaffolding will be used here. First, note that the
left hand side of (16) could be kept low if the coefficient dj of each new sample is
adjusted: the larger the dot product the smaller the adjusted dj to use. This way,
the larger the dot product (which is a measure of similarity of the new sample
to the previous ones) the less weight of the of the new sample in the hypothesis.

There is another possibility. Similarities depend on the kernel function K(x, y)
(see Eq. 1). In kernel learning this function is commonly considered a similarity
measure ([9,10]), which has to be defined a priori. The larger its value, the larger
the similarity between samples x and y. A typical kernel function is the RBF
kernel:

K(x, y) = exp
(

−||x − y||2
p2

)
(17)

The larger p the larger the similarity values given by the RBF kernel. Now in
this context, what are too-easy and too-difficult samples? The former are samples
that are very similar to other (previously seen) samples of its same class, while
the latter are samples that are very similar to other (previously seen) samples
of the opposite class. Therefore, the value of p is important here: a large p will
give large similarity values and thus too-easy and too-difficult samples.

1 The dj are always non-negative, it is a requirement imposed in the minimization
process, see [2].
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Scaffolding can be achieved by making the p values dependent on the absolute
dot products. That is, the larger the absolute dot product of a new sample the
smaller the p to use in the kernel associated to that sample. Such approach
requires the dot product of Eq. 15 to be calculated for each new sample. The
coefficients dj and yj+n−1 are obtained after the minimization of ·f , which can be
done in constant time (assuming m is kept fixed). The term f(xj+n−1) requires
evaluating f for each new sample, which has a cost O(

∑n
i=1 i) = O(n(n+1)

2 ) =
O(n2+n

2 ), n being the number of samples processed.
Once the dot product is calculated, the new sample will contribute to the

hypothesis of Eq. 1 with a kernel p value dependent on the absolute dot product.
The larger the absolute dot product the smaller the p used. The exact function
used to achieve this will be shown below.

3 Experiments

The incremental learner introduced above was tested in a face recognition prob-
lem. The experiments required a large number of images per individual. The EN-
CARA2 system was used to collect a number of face image sequences. ENCARA2
is a face detection and normalization system that can detect and track people in
real-time, see [3]. ENCARA2 tries to confirm that images actually contain a face
and, if so, normalize them so as to be recognized. The final result is a set of frontal
face images, normalized and ready to be recognized, see Figure 2.

Fig. 2. Four (partial) face image sequences obtained with the ENCARA2 system

Twenty-five sequences were used, one for each individual. Each sequence had
300 normalized images of 39x43 pixels. Thus, a total of 7500 images were used
in the experiments. PCA was initially applied (over the whole set of 40 training
images per class, retaining 10 coefficients. Note that, in practice, PCA would
be applied to an initial large set of labeled samples. The obtained basis images
would then be used from that moment on to transform any incoming image to
the new space, exactly as it would have to be done in a batch mode system. It
is important to note that this paper is introducing an incremental classifier, not
an incremental input space transform.
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Fig. 3. Error obtained using the batch and incremental learning modes using p = 800
(i.e. the p which gave the minimum batch error). The horizontal axis is the number of
training samples per class. In order to speed up the experiments, only four n values
were calculated for the batch learner. Median of 10 runs.

An SVM classifier with Radial Basis Function (RBF) kernel (Eq. 17) was used.
SVM is a binary classifier. (N(N − 1))/2 binary classifiers were used for N -class
classification. In a first experiment the test error rate of the batch learner was
obtained for the values of p = {100, 200, 400, 800, 1600, 3200, 6400, 12800}, using
40 training samples. Error rates for p = 100 and p = 12800 were 59.4% and
6.4%, respectively. The best batch error (1.13%) was obtained for p = 800.

In the figures below, ’Incremental*’ is the performance of the incremental
learner using the strategy mentioned above. The strategy consists of making the
p value associated to the new sample dependent on the corresponding absolute
dot product: the larger the absolute dot product, the smaller the assigned p.
When the current hypothesis is f(x) and a new sample xi is received, the p′i
value to use will be given by p′i = pinitial · K−|dotproduct|, where pinitial is the
base p value (i.e. the one used in batch mode) and K > 1 is a constant. Note
how the dot product is the same as that of Eq. 15. With this equation, the
larger the absolute dot product, the smaller the assigned p. The value of K for
p′i equation was obtained using 130 samples -not used for training- per individual
as a validation set. Figure 3 shows the results for p = 800. Note that in this case
pinitial = 800. ’Incremental’ is the performance of the incremental learner using
always that pinitial value.

More importantly, the ’Incremental*’ approach gives lower error than ’incre-
mental’. This difference is statistically significant. A t-test was made with the
null hypothesis ”means of Incremental and Incremental* errors are equal” vs.
”mean of Incremental* is smaller”. For n = 40 the t-test p-value was 1.2∗10−11,
a negligible support for the null hypothesis. This confirms the idea that the scaf-
folding strategy of penalizing too-easy and too-difficult samples has a positive
effect. Therefore, the experimental results allow to infer that this incremental



372 O. Deniz et al.

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

18

20

training samples

t
e
s
t
 
e
r
r
o
r
 
(
%
)

batch
incremental*
ISVM

Fig. 4. Learning curves of the three compared learners
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Fig. 5. Computational cost of the compared learners. Measures taken for 2-individual
recognition. Left: p = 800, right: p = 100.

learning framework can work as long as the learner somehow processes samples
that are not too-easy or too-difficult.

How well does the proposed learner compare with other incremental learners?
In order to answer this we studied the learner proposed by Cauwenberghs and
Poggio [4]. This state-of-the-art incremental SVM learner (ISVM in what follows)
is based on retaining the Karush-Kuhn-Tucker conditions on all previously seen
data, while adding a new sample to the hypothesis. According to their authors,
ISVM is an exact online method. That is, it theoretically gives the same results
as the equivalent batch learner. ISVM is an example of a number of incremental
learners based on practicality considerations. These learners are generally based
on properties of advanced numerical calculus. Figure 4 shows the learning curves
of the three compared learners. The ISVM error at n = 40 is slightly closer to
the batch error (batch=1.29%, incremental*=1.51%, ISVM=1.45%).

Figure 5 compares the computational cost of the three learners. The left figure
shows that, for the best batch p value of 800, ISVM is much faster than the other
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learners. However, the theoretical computational cost of ISVM is O(s2), s being
the number of support vectors. For p = 800 the number of support vectors is
low (they appear as numbers in the figure). For p = 100 (the figure on the right)
the number of support vectors is larger, and ISVM rates even worse than the
batch learner. Incremental* has a computational cost of O(n2+n

2 ). n2+n
2 < n2,

which suggests that Incremental* may outperform ISVM for particularly com-
plex problems where a large number of support vectors are needed. Incremental*
has a storage cost of O(n) (i.e. just the hypothesis itself).

In batch learning, the learner has all of the training samples available from
the beginning and thus it can select those that define a good discrimination
boundary (i.e. the so-called support vectors). In incremental learning, this is not
possible, for only some of the training samples have been given to the learner
at a given moment. The natural approach in this case is to gradually span the
input space with similarity functions centered in the received training samples.
The last processed samples have smaller similarity radii than the first ones. This
is what the proposed learner does. The similarity functions are the kernels. The
p parameter acts as a radius. The assigned p values decrease with n because the
dot products (which represent similarity to the previous samples) increase.

The proposed learner has at least three aspects of a strong biological plausi-
bility. First, it is an online learner. Second, it requires scaffolding to learn. Third,
it always classifies each incoming sample with the current hypothesis, being the
result of that classification what can make the learner update the hypothesis.

4 Conclusions

A number of existing batch learners used in face recognition, including those
based on Support Vector Machines, aim at minimizing both training error and
(a measure of) hypothesis complexity. Inspired by biological plausibility consid-
erations, especially those related to the learning process itself, in this work it has
been shown that the same complexity minimization can be done incrementally as
long as the learning process is aided by some form of ”scaffolding”, where sam-
ples processed by the learner are neither too easy nor too difficult. Within this
framework, the feasibility of online learning, both in terms of error difference
with respect to batch learning and computational cost at each step, crucially
depends on scaffolding. Although there are other ways to achieve scaffolding, a
gradually decreasing kernel parameter has been used here. The proposed method
has been analyzed in experiments and compared with one state-of-the-art incre-
mental learner. The results show that it compares favorably in terms of biological
plausibility and computational and storage cost.

The proposed method seems to be a departure from mainstream approaches
in face recognition. We note that this may be only a particular instantiation of a
general class of learners that have features generally not found in previous face
recognition research, notably a marked biological plausibility of the learning
process. Further algorithms may be possible that, like this one, rely on such
considerations.



374 O. Deniz et al.

Acknowledgements

This work was funded by research projects UNI2005/18 and TIN2004-07087.

References

1. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68(3), 337–
404 (1950)

2. Burges, C.J.C.: A Tutorial on Support Vector Machines for Pattern Recognition.
Data Mining and Knowledge Discovery 2(2), 121–167 (1998)

3. Castrillon, M., Deniz, O., Guerra, C., Hernandez, M.: ENCARA2: Real-time de-
tection of multiple faces at different resolutions in video streams. Journal of Visual
Communication and Image Representation (2007) (in press)

4. Cauwenberghs, G., Poggio, T.: Incremental and decremental support vector ma-
chine learning. In: NIPS, pp. 409–415 (2000)

5. Chellappa, R., Zhao, W. (eds.): Face Processing: Advanced Modeling and Methods.
Elsevier, Amsterdam (2005)

6. Hall, P., Marshall, D., Martin, R.: Incremental Eigenanalysis for classification. In:
Proceedings of the British Machine Vision Conference, vol. 1, pp. 286–295 (1998)

7. Hofmann, T., Scholkopf, B., Smola, A.J.: A tutorial review of RKHS methods in
machine learning (2006), Available at
http://sml.nicta.com.au/∼smola/papers/unpubHofSchSmo05.pdf

8. Poggio, T., Smale, S.: The mathematics of learning: Dealing with data. Amer.
Math. Soc. Notice 50(5), 537–544 (2003)

9. Scholkopf, B., Smola, A.: Learning with kernels. MIT Press, Cambridge, MA (2002)
10. Vanschoenwinkel, B., Manderick, B.: Appropriate kernel functions for support vec-

tor machine learning with sequences of symbolic data. In: Deterministic and sta-
tistical methods in machine learning (First international workshop), Sheffield, UK,
September 2004, pp. 256–280 (2004)

11. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)
12. Vygotsky, L.: Mind and society: The development of higher mental processes. Har-

vard University Press (1978)




