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Abstract

The beneficial or detrimental role of battered piles on the dynamic response of piled foundations

has not been yet fully elucidated. In order to shed more light on this aspect, kinematic interaction

factors of deep foundations with inclined piles, are provided for single battered piles, as well as for

2 × 2 and 3 × 3 groups of piles subjected to vertically incident plane shear S waves. Piles are mod-

elled as linear-elastic Bernoulli beams while soil is assumed to be a linear, isotropic, homogeneous

viscoelastic half-space. Different pile group configurations, pile-soil stiffness ratios and rake angles

are considered. The relevance and main trends observed in the influence of the rake angle on the

kinematic interaction factors of the analysed foundations are inferred from the presented results. An

important dependence of the kinematic interaction factors on the rake angle is observed together

with the existence of an inclination angle at which cap rotation and excitation become out of phase

in the low-to-mid frequency range. The existence of a small batter angle that provides minimum cap

rotation is also shown.

1 INTRODUCTION

Inclined piles are frequently used in foundations that are expected to resist important lateral loads. Ver-

tical piles transmit these loads only through shear and bending. However, raked piles have the ability

of transmitting them primarily in axial compression and/or tension, which implies an increase of their

lateral stiffness. Thus, when subjected to lateral loading, batter piles present generally smaller defor-

mations and offer large bearing capacity than vertical piles of the same material and dimensions. Until

1990s, inclined piles were frequently used in seismic design of bridges and design of marginal wharfs

and other port and harbour structures. However, the use of inclined piles became highly discouraged

after the unsatisfactory seismic performance that deep foundations with battered piles showed during a

series of earthquakes.

Until today, it has not been clarified whether the use of inclined piles has a detrimental or beneficial

effect on the response of the superstructure or the foundation itself when submitted to seismic loads.

Related studies have been conducted in order to identify the drawbacks and advantages of battered piles.

Some authors [1, 2, 3] developed numerical analyses that point to the larger axial loads along the pile

shaft as well as to the increasing bending moment at the pile head as arguments to use vertical piles

instead of inclined piles for seismic loads. Conversely, field evidence of the beneficial role of battered
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piles has been found both for the structure they support and the piles themselves [4, 5]. These conclusions

are in line with those inferred from different numerical analysis [6, 7, 8].

Given that studies on the seismic response of battered piles have not yet fully elucidated their bene-

ficial or detrimental role when submitted to dynamic loads, further research is needed. The contribution

of this paper is related to the influence of inclined piles on the kinematic interaction factors of deep

foundations.

Several studies have been carried out in relation with kinematic interaction factors of deep founda-

tions using only vertical piles (see, for instance, [9, 10, 11, 12, 13, 14]). An equivalent knowledge must be

produced for configurations that include inclined piles, in order to provide the scientific and engineering

communities with the kinematic interaction factors needed to accomplish substructuring analyses.

Up to the authors’ knowledge, although other authors have accomplished analysis of the kinematic

response of battered piles (e.g. [15, 3]), kinematic interaction factors of inclined piles have been pre-

sented only by Giannakou [16] for groups of 2× 1 piles.

In this line, kinematic interaction factors of single inclined piles, as well as those of 2× 2 and 3× 3
groups with raked piles, embedded in a viscoelastic half-space, are presented in this paper. The relevance

and main trends observed in the influence of the rake angle on the kinematic interaction factors of the

analysed foundations are inferred from the presented results. A boundary element (BEM)- finite element

(FEM) coupling formulation [17, 18, 19] has been used to obtain numerically these results. Piles are

modelled directly using FEM as beams according to the Bernoulli hypothesis, while soil is modelled

using BEM as a linear, isotropic, homogeneous, viscoelastic medium. Welded boundary contact condi-

tions at the pile-soil interfaces are assumed and the pile heads are constrained by a rigid pile cap which

is assumed to be free of contact with the soil. This formulation implies a reduction in terms of number

of degrees of freedom in comparison with a pure multi-region boundary element method and provide

accurate results at the same time.

2 NUMERICAL MODEL

A BEM-FEM coupling model is used in this work to compute the kinematic interaction factors of pile

foundations. The dynamic response of the soil region is modelled by using a BEM formulation which

considers the tractions at pile-soil interfaces as body forces acting within the domain. The stiffness

of piles is introduced by longitudinal finite elements linking the internal nodes of the soil. The whole

approach is depicted in Figure 1. The main advantage of this approach is that, being able to produce

accurate results, it assumes that soil continuity is not altered by the presence of piles and, consequently,

it is not necessary to discretize the pile-soil interfaces by boundary elements which considerably reduces

the number of degrees of freedom in comparison with a pure multi-region boundary element approach.

Moreover, the pile discretization is independent of the soil mesh which allows to use the same boundary

mesh for all the pile-group configurations under investigation.
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Figure 1: BEM-FEM model.

The soil is modelled by the BEM as a linear, homogeneous, isotropic, viscoelastic halfspace. Thus,
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the boundary integral equation for a time-harmonic elastodynamic state defined in this region with bound-

ary Γs can be expressed in a condensed and general form as

ckuk +

∫

Γs

p∗u dΓ =

∫

Γs

u∗p dΓ +

np
∑

j=1

[

∫

Γpj

u∗qsj dΓpj +Υ
k
j fsj

]

(1)

where ck is the local free term matrix at collocation point ‘k’, u and p are the displacement and traction

fields in the three directions of space, u∗ and p∗ are the elastodynamic fundamental solution tensors rep-

resenting the response to a harmonic concentrated load with a time variation eiωt (where ω is the circular

frequency) applied at a point ‘k’. The second term of the right-hand side of Equation (1) represents the

contribution of the internal loads. Thus, np is the total number of load-lines (piles) and Γpj represents the

pile-soil interface along the load line j within the halfspace. qsj denotes the distribution of interaction

loads along the pile shaft applied on a line defined by the pile axis, while fsj represents a point load

placed at the tip of the pile. On the other hand, Υk
j represents the corresponding u∗ tensor computed at

the tip of the pile.

The boundary surface Γs is discretized into quadratic elements of triangular and quadrilateral shapes

with six and nine nodes, respectively. The displacement and traction fields u and p, over each boundary

element, is approximated in terms of their values at nodal points (ū and p̄) making use of a set of poly-

nomial interpolation functions [20]. On the other hand, the piles are modelled by FEM according to the

Euler-Bernoulli hypothesis and are discretized into three-node beam elements in which the distribution

of tractions qs
j is approximated by the corresponding interpolation functions [17, 18] in terms of its val-

ues q̄sj defined at a series of internal nodes. Now, Equation (1) can be written for all nodes in Γs as a

matrix equation of the type

Hssū − Gssp̄ −

np
∑

j=1

Gspj q̄sj −

np
∑

j=1

Υ
s
jfsj = 0 (2)

where Hss and Gss are coefficient matrices obtained by numerical integration over the boundary elements

of the fundamental solution times the corresponding shape functions; and Gspj is the coefficient matrix

obtained by numerical integration over load-line j of the fundamental solution times the interpolation

functions.

When seismic waves impinge on the site under study, reflection and refraction phenomena take place,

and the arising wave field modifies the incident wave train. In this paper, the seismic excitation is

assumed to be a harmonic plane S wave impinging the model from a far source. The wave field in

the halfspace discretization (ū) consists of two parts: the known incident field (ūI) and the unknown

scattered field (ūS). The resulting displacement can be obtained by superposition as ū = ūI + ūS . Thus,

considering a pile foundation embedded in a soil subjected to incident waves, equation (2) can be written

in terms of the scattered fields and expressed as

Hssū −

np
∑

j=1

Gspj q̄sj −

np
∑

j=1

Υ
s
jfsj = HssūI (3)

where, taking into account the problem studied in this paper, the boundary conditions over the free

surface Γs nodes (p̄ = 0) have been imposed.

Furthermore, Equation (1) can be also applied on internal nodes belonging to load-line Γpi in the

same manner as for (3), yielding to the following matrix equation

ūpi + Hpisū −

np
∑

j=1

Gpipj q̄sj −

np
∑

j=1

Υ
pi
j fsj = ū

pi
I + HpisūI (4)

where ūpi is the vector of nodal displacements along load-line i.

On the other hand, the dynamic behaviour of pile j in a finite element sense, can be described as:

(

Kj − ω2Mj

)

ū
p
j = f extj − Qjq̄

sj (5)
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Figure 2: Pile foundation geometry.

where ū
p
j is the vector of nodal translation and rotation amplitudes along the pile, f extj represents the

punctual forces acting at the top and the tip of the pile and Qj is the matrix that transforms the nodal

tractions to equivalent nodal forces. K and M are the stiffness and mass matrices of the pile, respectively.

Imposing additional equations of equilibrium and compatibility by correlating BEM load lines and

FEM piles, Equations (3), (4) and (5) can be rearranged in a system of equations representing the soil-pile

foundation problem.

3 GEOMETRICAL PARAMETERS AND PROBLEM DEFINITIONS

All the configurations under study consist of piles arranged in square regular groups which are sym-

metrical with respect to planes xz and yz (see Figure 2). Pile heads are constrained (through fixed-head

connection conditions) by a rigid pile cap which is assumed to be free of contact with the soil. Free

head single piles are also studied. All piles have identical material and geometrical properties. Figure

2 illustrates the main geometrical parameters of the system: piles length (L) and diameter (d), spacing

between centers of adjacent pile heads (s), and rake angle between the vertical and the pile axis (θ). The

foundation halfwidth is defined as b = d for single piles, b = s for 2 × 2 pile groups, and b = 3s/2
for 3 × 3 pile groups. In this paper, the following properties are considered: piles slenderness ratio

L/d = 15, soil internal hysteretic damping coefficient βs = 0.05, soil Poisson’s ratio νs = 0.4, soil-pile

density ratio ρs/ρp = 0.7, and pile soil modulus ratios Ep/Es = 103 (soft soil) and Ep/Es = 102 (stiff

soil).

Translational and rotational kinematic interaction factors Iu = ug/ugo and Iϕ = (ϕg b)/ugo , re-

spectively, represents the horizontal (ug) and rocking (ϕg) motions measured at the pile cap level and

normalized with the free-field motion at the surface ugo . Both factors are functions of the dimensionless

frequency ao = ωd/cs. In this latter expression, ω is the excitation circular frequency and cs the speed

of propagation of shear waves in the half-space.

4 COMPARISON RESULTS

The formulation described in Section 2 was impemented in a previously existent multi-region BEM

FORTRAN code [21, 22]. Its validity for obtaining kinematic interaction functions of vertical piles has

been checked by comparing the obtained results with those provided by Kaynia and Novak [24] for a

single pile, as well as for 3× 3 groups of piles under vertically incident S waves (see [18]).

This section addresses the validation of this BEM-FEM coupling formulation (as well as its imple-

mentation), for configurations including battered piles.

4.1 3D-boundary element formulation

In order to assess the accuracy of the BEM-FEM formulation, described in Section 2, applied to the

determination of kinematic interaction factors, results computed with this model are compared with

those corresponding to the multi-region boundary element code [21].
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This 3-D multi-region boundary element formulation, in which both soil and piles are modelled

as continuum isotropic homogeneous linear viscoelastic regions with their actual geometries, is more

rigorous and versatile than the simplified BEM-FEM used in this paper. However, it involves a greater

number of degrees of freedom due to the fact that the pile-soil interface must also be discretized.

The boundary integral representation of the displacements in each region (soil and each pile) can be

written as

ckuk +

∫

Γ

p∗u dΓ =

∫

Γ

u∗p dΓ (6)

where ck is the local free term matrix at collocation point ‘k’, u and p represent the displacement and

traction fields in the three directions of space, and u∗ and p∗ are the elastodynamic fundamental solution

tensors on the boundary Γ due to a time-harmonic concentrated load at point ‘k’.

All boundaries are discretized into a finite number of quadratic elements of triangular and quadrilat-

eral shapes with six and nine nodes, respectively. As in the BEM-FEM formulation, only one quarter of

the geometry needs to be discretized due to the problem symmetries (see Figure 3).

In order to illustrate the application of this methodology to the problem at hand, a particular example

will be developed in the next few lines. For the specific case of a single floating pile embedded in a

viscoelastic half-space, writing equation (6) for each node of each region, yields the following matrix

equations for pile and soil regions:

H
p
1
u
p
1S

+ H
p
2
u
p
2S

= G
p
1
p
p
1S

+ G
p
2
p
p
2S

(7)
[

H
pp
2

H
ps
2

H
sp
3

Hss
3

] [

u2S

u3S

]

=

[

G
pp
2

G
ps
2

G
sp
3

Gss
3

] [

p2S

p3S

]

(8)

where the sub-indexes 1 − 3 correspond, respectively, to the pile connection with the rigid cap where

tractions are null (Γ1), to the pile-soil interface (Γ2), and to the soil free-traction ground surface (Γ3). The

sub-index S indicates that the equations are written for the scattered field. Imposing external boundary

conditions (pp
1
= 0 and p3 = 0) together with compatibility (u

p
2
= u2) and equilibrium (p

p
2
= −p2)

along the pile-soil interfaces, the combined equations for the kinematic interaction factors problem can

be written as





H
p
1

H
p
2

G
p
2

0

0 H
pp
2

−G
pp
2

H
ps
2

0 H
sp
3

−G
sp
3

Hss
3













u1

u2

p2

u3









=





H
p
1

H
p
2

G
p
2

0

0 H
pp
2

−G
pp
2

H
ps
2

0 H
sp
3

−G
sp
3

Hss
3













u1I

u2I

p2I

u3I









(9)

4.2 Validation results

Figure 4 presents comparison results for several configurations of 2 × 2 inclined pile groups subjected

to vertically incident S waves that, at free-field ground surface, causes motions in the direction of the

Figure 3: Multi-region boundary-element model definitions and BEM mesh.

5



0.0

0.2

0.4

0.6

0.8

1.0

1.2

s/d=5 ; θ=10º

Re[Iu=ug/ugo]

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6
Im[Iu=ug/ugo]

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4
Re[Iφ=φgb/ugo]

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4
Im[Iφ=φgb/ugo]

BEM-BEM Ep/Es=10
3

Ep/Es=10
2

BEM-FEM Ep/Es=10
3

Ep/Es=10
2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

s/d=5 ; θ=10º -0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

s/d=10 ; θ=20º -0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

s/d=10 ; θ=30º -0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.1 0.2 0.3 0.4

ωd/cs

s/d=10 ; θ=30º

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.0 0.1 0.2 0.3 0.4

ωd/cs

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.0 0.1 0.2 0.3 0.4

ωd/cs

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.0 0.1 0.2 0.3 0.4 0.5

ωd/cs

Figure 4: Kinematic interaction factors,Iu and Iϕ, of 2× 2 pile groups with different spacing ratios s/d,

rake angles θ and stiffness ratios Ep/Es. Comparison between BEM-BEM and BEM-FEM.

x axis. The first and the second rows of the plots correspond to a pile spacing ratio of s/d = 5 and

piles inclined, with a rake angle of θ =10° , parallel and perpendicular to the direction of the excitation,

respectively. The third row shows the results corresponding to a pile spacing ratio of s/d = 10 and piles

inclined symmetrically along the cap diagonals with a rake angle of θ =20° . Finally, the fourth and fifth

rows, present the results for a pile spacing ratio of s/d = 10 and piles inclined, with a rake angle of

θ =30° , parallel and perpendicular to the direction of the excitation, respectively. In all cases, results are

obtained for two different pile-soil stiffness ratios.

The results corresponding to the BEM-FEM coupling formulation used in the following section are

in strong agreement with those obtained from the more rigorous multi-domain boundary element (BEM-

BEM) code. The resulting relative errors, for a dimensionless frequency value ao = 0.25, for instance,

are below 8% in terms of rotational kinematic interaction function Iϕ, and below 3% in terms of transla-
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tional kinematic interaction function Iu. Therefore, the BEM-FEM formulation is the preferred method

to carry out parametric studies, since it is more cost-effective.

5 KINEMATIC INTERACTION FACTORS OF DEEP FOUNDATIONS

WITH INCLINED PILES

This section provides kinematic interaction factors of single inclined piles, and 2 × 2 and 3 × 3 pile

groups with battered elements, according to the geometrical parameters and material properties defined

in Section 3 and subjected to vertically-incident plane shear S waves. This study includes results cor-

responding to different pile groups configurations with piles inclined perpendicular or parallel to the

direction of excitation as well as symmetrically along the cap diagonals. Four different rake angles have

been considered: θ =0° (vertical piles), 10° , 20° and 30° . Some vertical piles are included in 3× 3 pile

groups in order to maintain symmetry with respect to planes xz and yz. Results corresponding to pile-soil

stiffness ratios Ep/Es =1000 (soft soil) and 100 (stiff soil) are presented. Stability and convergence

analysis of the meshes have been performed in order to ensure the accuracy of the obtained results.

Figure 5 presents the translationtal kinematic interaction factors Iu corresponding to free-head single

inclined piles, together with the relative vertical displacements produced at the pile top by the incident

field. When the pile is inclined parallel to the direction of the excitation (central column), Iu decreases

for increasing rake angles up to ao = 0.5 for Ep/Es = 1000, and up to ao = 0.8 for Ep/Es = 100.

However, inclining the pile perpendicular to the direction of excitation (left column) has no beneficial

effects in the low-frequency range and even shows a detrimental behaviour in the intermediate-frequency

region as it leads to increasing values of the horizontal motion. For low values of ao, Iu increases for

increasing pile-soil modulus ratios. The opposite occurs for high values of the dimensionless frequency.

As expected, vertical displacements also grow for increasing rake angles, reaching displacements up to

60% of the horizontal free-field ground motion at ao = 0.3.

Figure 6 depicts the rotational kinematic interaction function Iϕ for the case defined above. For in-

creasing rake angles, rotation slightly decreases for low-to-mid frequencies, and slightly increases for

mid-to-high frequencies. Contrary to what could have been expected, the rotation is almost independent

of the direction of inclination. In order to look into this fact, the deformed shapes of single piles, in-

clined in both directions, at ao = 0.3 are represented in Figure 7. It can be seen that the direction of

inclination does influence significantly the pile behaviour as a whole, although the comparison between

the undeformed and deformed shapes shows similar rotations in both configurations.

Figures 8, 10, 12 and 14 show the influence of rake angle on the translational kinematic interaction

functions of four different configurations of pile groups. The low frequency region in which Iu increases

with frequency for single piles does not appear in the translational kinematic interaction function of pile

groups, case in which |Iu| ≤ 1 for all ao. Inclining piles perpendicular to the direction of the excitation

(left column) leads generally to higher values of Iu in comparison with those obtained with vertical piles.

Conversely, the use of piles inclined symmetrically along the cap diagonals (central column) generally

results in a reduction of this motion in the low-to-mid frequency range. A stronger filtering of the seismic

excitation can be achieved by inclining piles parallel to the direction of excitation (right column). The

kinematic response of pile groups including battered piles is less sensitive to variations of the rake angle

as the pile spacing ratio s/d and the number of piles increases. In all cases, Iu decreases for higher

pile-soil modulus ratios for low-to-mid frequencies.

Figures 9, 11, 13 and 15 present the rotational kinematic interaction factors for the pile groups under

study in order to illustrate how the use of pile groups including battered piles influences the rocking

motion at the pile cap. Higher pile spacing ratios s/d or larger number of piles result in less cap rotation,

though generally, this rotation increases with the rake angle. This effect is more pronounced when piles

are inclined parallel to the direction of excitation. The more inclined, the more the pile works axially,

that causes an axial displacement which in turn produces higher cap rotation. In fact, the maximum

value of this rotation occurs at ao ≈ 0.3, which is the dimensionless frequency corresponding to the

maximum value of the vertical displacement at the top of vertical single inclined piles (see right column

of Figure 5). However, no relevant effects can be appreciated when inclining piles perpendicular to the
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direction of excitation. The dependence on the direction of inclination does not exist for single piles (see

Figure 6), which suggests that it is the constraint imposed by the rigid pile cap which leads to changes

in the dynamic behaviour of the foundation. Note that b (used for the normalization of Iϕ) changes for

every configuration. When taking this into account, the absolute cap rotation strongly decreases with

larger pile separations or number of piles.

Contrary to what occurs for vertical piles and even for single inclined piles, cap rotation and horizon-

tal free-field ground motion become out of phase when inclining piles parallel to the direction of excita-

cion or simmetrically along the cap diagonals. This can be observed in the first row of Figures 9, 11, 13

and 15. For the purpose of illustrating this effect, Figure 16 shows the deformed shape at ao = 0.3 of

2 × 2 pile groups containing piles inclined parallel to the direction of excitation with four different rake

angles (solid color lines), together with the undeformed shapes (dashed lines), and the deformed shape

of the incident field ugo (grey solid line). The response is qualitatively independent of the pile spacing

ratio s/d. The lower the Ep/Es ratio, the better the pile compliance with the free-field motion.

The figures discussed above show a trend consisting in a monotonic increase of cap rotation at low-

to-mid frequencies for higher rake angles. However, the observed change of phase suggests that this does

not need to be the case. In order to analyse more closely the effects of rake angle on the rocking motion at

the pile cap, Figure 17 shows the real part and the modulus of the rotational kinematic interaction factor

of four different configurations with piles inclined parallel to the direction of excitation. Five different

rake angles have been considered: θ =0° (vertical piles), 1° , 3° , 5° , and 10° . It is worth to notice that

the use of configurations with piles inclined a small rake angle (e.g. θ =1° , θ =3° ) leads to a minimum

rocking motion at the pile cap. This might represent a beneficial effect on the dynamic behaviour of

slender structures, case in which the determination of an optimum rake angle for a minimum rocking

input motion could be interesting.

The influence of pile-soil Young’s modulus ratio and pile slenderness ratio L/d on the rotational

kinematic interaction factor has also been studied. Additional L/d and Ep/Es ratios have been studied

for some configurations but are not shown here for the sake of brevity. Contrary to what occurs for

vertical piles, lower stiffness ratios Ep/Es (stiffer soils) lead to larger cap rotations. On the other hand,

higher stiffness ratios (softer soils) result in an increase of the rake angle at which cap rotation and

horizontal free-field ground surface motion become out of phase at low-to-mid frequencies. For instance,

such an angle can reach values over 10° for Ep/Es = 5000 (see Figure 16). Finally, it is worth noting

that, when considering configurations with piles inclined parallel to the direction of excitation, higher

pile slenderness ratios yield increasing rocking motions at the pile cap in a low frequency range, contrary

to what occurs for vertical piles.

Besides kinematic interaction factors, the influence of rake angle on pile kinematic interaction forces

is an important issue in the study of inclined piles subjected to SH waves. This is because the possibility

of the development of large kinematic bending moments and shear forces when inclining the piles has

resulted in a negative attitude towards batter piles (see [8]). In order to look also into this aspect of

the problem, kinematic bending moments M at pile heads are presented, for some configurations and

vertically-incident S waves producing unitary horizontal free-field motion at the ground surface, in terms

of the pile maximum bending strain εp. Note that the axis around which such bending moments are

measured is depicted in the corresponding figures. The advantages of representing εp instead of M are

exposed in [25]. The relation between both parameters can be expressed as follows:

εp =
M

EpIp

d

2
(10)

being Ip the pile cross-sectional moment of inertia.

The third row of Figures 9 and 11, illustrates how the variations of the rake angle affect the maximum

bending strain of piles in configurations of 2 × 2 pile groups. When piles are inclined parallel to the

direction of excitation (right column) or symmetrically along the cap diagonals (central column), the

maximum bending strain increases with the rake angle for both low and high frequencies (in terms of

the frequency range presented in the figures) when s/d = 5, reaching an increment of up to 60% in the

low frequency range (when Ep/Es = 100) with respect to the values corresponding to vertical piles.
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Figure 5: Translational kinematic interaction factor Iu and vertical displacement uz/ugo of a single pile

for different rake angles θ.

Nevertheless, for intermediate frequencies the rake angle does not have a significant influence on the

maximum bending strain. In those cases in which Ep/Es = 1000, the maximum bending strain reaches

increments of up to 16% in the low frequency range. When s/d = 10, maximum bending strain tends

to increase with rake angle at mid-to-low frequencies but decreases at higher frequencies. On the other

hand, in those cases in which piles are inclined perpendicular to the direction of excitation (left column),

the maximum pile bending strain decreases as the rake angle increases for low-to-mid frequencies in all

configurations. In short, in the mid-to-low frequency range maximum pile bending strains at pile heads

tend to increase when piles are inclined parallel to the direction of the shaking; but tend to decrease when

the piles are inclined perpendicular to such direction.

6 CONCLUSIONS

This paper presents kinematic interaction factors of single inclined piles, and 2 × 2 and 3 × 3 pile

groups including battered elements embedded in a homogeneous viscoelastic half-space and subjected

to vertically-incident plane shear S waves. The possibility of the development of large kinematic bending

moments and shear forces when inclining the piles has resulted in a negative attitude towards batter piles

(see [8]). In order to study the effect of rake angle on kinematic bending moments, maximum pile bend-

ing strain at pile heads are also presented for some cases. A boundary element-finite element formulation

has been used to obtain numerical results for different soil properties, rake angles and configurations.

The main conclusions drawn from the analysis of the results obtained for the cases under study are

summarised below:

• The ability of a deep foundation to filter the seismic input increases significantly if all or some of

it members are inclined in the direction of shaking.

• The beneficial role of the pile inclination disappears at high frequencies.

• Both kinematic interaction factors strongly depends on the direction of inclination of piles. Deep
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Figure 6: Rotational kinematic interaction factor Iϕ of a single pile for different rake angles θ.
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different rake angles θ considering |ugo| = 1 (uI displaced 10 units to the left only for illustration

purposes). ao = 0.3. Ep/Es = 1000.

foundations including piles inclined perpendicular to the direction of excitation generally have a

detrimental role in terms of horizontal motion.

• The rotational kinematic interaction factor Iϕ of battered single piles is almost independent of the

rake angle.

• Cap rotation and horizontal free-field ground motion become out of phase when inclining piles

parallel to the direction of excitation or symmetrically along the cap diagonals. This effect depend

on the rake angle, as well as on the pile-soil Young’s modulus ratio.

• There exists an optimum rake angle (usually small) for which a minimum rotational motion at
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Figure 8: Translational kinematic interaction factor Iu of a 2 × 2 pile group with battered piles with

different rake angles θ and s/d = 5.

pile cap is obtained in the low-to-mid frequency range. This phenomenon could be used in order

to minimize the seismic input of a structure submitted to seismic loads although, in some cases,

the realization of the optimum small rake angles could not be feasible. A monotonic trend of

increasing cap rotation for increasing rake angles is observed for larger angles.

• Higher stiffness ratios (softer soils) result in an increase of the rake angle at which cap rotation

and horizontal free-field ground surface motion become out of phase at low-to-mid frequencies.

• The kinematic response of pile groups including battered piles is less sensitive to variations of the

rake angle as the pile spacing ratio s/d or the number of piles increase.

• Lower stiffness ratios Ep/Es (stiffer soils) lead to higher cap rocking motions.

• Contrary to what occurs for vertical piles, a reduction of the pile slenderness ratio L/d leads to

decreasing values of the rocking motion at the pile cap, at least in a low frequency range, when

considering configurations with piles inclined parallel to the direction of excitation.

• In the mid-to-low frequency range (usually the most important in the seismic design of deep foun-

dations), maximum pile bending strains at pile heads tend to increase when piles are inclined par-

allel to the direction of the shaking; but tend to decrease when the piles are inclined perpendicular

to such direction.
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Figure 12: Translational kinematic interaction factor Iu of a 3 × 3 pile group with battered piles with

different rake angles θ and s/d = 5.
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Figure 13: Rotational kinematic interaction factor Iϕ of a 3 × 3 pile group with battered piles with

different rake angles θ and s/d = 5.
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Figure 14: Translational kinematic interaction factor Iu of a 3 × 3 pile group with battered piles with

different rake angles θ and s/d = 10.
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Figure 15: Rotational kinematic interaction factor Iϕ of a 3 × 3 pile group with battered piles with

different rake angles θ and s/d = 10.
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Figure 17: Influence of the rake angle on the rocking motion at the pile cap.
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forces on a piled foundation. Géotechnique 2001; 51(6):501–517.

[6] Guin J. Advances in soil-pile-structure interaction and non-linear pile behavior, Ph.D. Thesis,

1997. State University of New York at Buffalo.

[7] Sadek M, Shahrour I. Three-dimensional finite element analysis of the seismic behavior of inclined

micropiles. Soil Dynamics and Earthquake Engineering 2004; 24(6):473–485.

[8] Gerolymos N, Giannakou A, Anastasopoulos I, Gazetas G. Evidence of beneficial role of inclined

piles: observations and summary of numerical analyses. Bulletin of Earthquake Engineering 2008;

6(4):705–722.

[9] Gazetas G, Fan K, Tazoh T, Shimizu K, Kavvadas M, Makris N. Seismic pile-groupstructure inter-

action. Geothec Spec Publ, ASCE 1992 34 56–93.

[10] Mamoon S M, Ahmad S. Seismic response of pile to obliquely incident SH, SV and P waves.

Journal of Geotechnical Engineering 1990; 116:186–204.

[11] Mamoon SM, Banerjee PK. Response of piles and pile groups to travelling SH-waves, Earthquake

Engineering and Structural Dynamics 1990 19 597–610.

[12] Fan K, Gazetas G, Kaynia AM, Kausel E, Ahmad S. Kinematic seismic response of single piles

and pile groups. J Geothec Eng Div, ASCE 1991 117(12) 1860–1879.

[13] Kavvadas M, Gazetas G. Kinematic seismic response and bending of free-head piles in layered soil.
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[21] Maeso O, Aznárez JJ, Garcı́a F. Dynamic impedances of piles and groups of piles in saturated soils.

Computers and Structures 2005; 83:769–782.
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