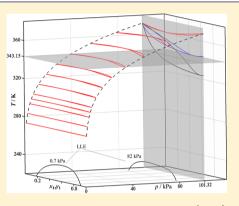



# Multiproperty Correlation of Experimental Data of the Binaries Propyl Ethanoate + Alkanes (Pentane to Decane). New Experimental Information for Vapor-Liquid Equilibrium and Mixing Properties


Luís Fernández,<sup>†</sup> Juan Ortega,<sup>\*,†</sup> Estefanía Pérez,<sup>†</sup> Francisco Toledo,<sup>†</sup> and José Canosa<sup>‡</sup>

<sup>†</sup>Laboratorio de Termodinámica y Fisicoquímica de Fluidos, 35071-Parque Científico-Tecnológico,

Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain

<sup>‡</sup>Departamento de Ingeniería Química, Universidad de Vigo, Spain

**ABSTRACT:** A thermodynamic study is carried out on binary systems composed of propyl ethanoate with six alkanes, from pentane to decane. Vapor pressures of the ester and the isobaric vapor—liquid equilibria of these six mixtures were measured at 101.32 kPa in a small-capacity ebulliometer and also the mixing properties  $y^{\rm E} = v^{\rm E}, h^{\rm E}$  over a range of temperatures and at atmospheric pressure. Adequate correlations are drawn for the surfaces  $y^{\rm E} = y^{\rm E}(x,T)$  with an interpretation on the behavior of the mixtures and also using  $c_{\rm p}^{\rm E}$  data from literature. The mixing processes are all endothermic with a change in the slope direction of the function  $h^{\rm E} = h^{\rm E}(T)$  for the binary systems, which all present expansive effects, with  $v^{\rm E} > 0$ and also  $(\partial v^{\rm E}/\partial T)_p > 0$ . The results of the different properties are analyzed within a general context of the behavior of ester + alkane systems. A parametric model is used that enables the simultaneous correlation of the experimental values of different thermodynamic properties for each of the systems considered, slightly improving on



the representation obtained with the nonrandom two-liquid (NRTL) model. The representation of vapor-liquid equilibrium (VLE) and  $h^{\rm E}$  properties with the universal functional activity coefficient (UNIFAC) group contribution model is acceptable, although it does not reflect the change in enthalpies with varying temperature, resulting in an unacceptable estimation of  $c_p^{\rm E}$ .

## INTRODUCTION

This work follows on from previous studies<sup>1–5</sup> carried out by our research group that form part of a line of investigation aimed at studying the behavior in solution of systems of alkyl esters with alkanes. It is important to contribute new experimental data which, in addition to the above, enable knowledge of the capacity of the model to represent several of the systems' properties. In this line, studies on methyl<sup>1</sup> and ethyl<sup>2,3</sup> ethanoates have been published, and in this work the properties of mixtures of propyl ethanoate with six alkanes, from pentane to decane, are presented. Specifically, excess properties have been measured at different temperatures, of  $v^{E}$  at (291.15, 298.15, 318.15, and 328.15) K,  $h^{E}$  at (291.15, 298.15, and 318.15) K, and isobaric vapor-liquid equilibria (VLE) at 101.32 kPa. In previous works, measurements of  $v^{E}$  and  $h^{E}$  were made with odd alkanes<sup>4,5</sup> at two of the indicated temperatures, 298 K and 318 K; isobaric VLE data of propyl ethanoate +  $(C_7, C_9)$  have also been published previously.<sup>6</sup> All of these data will help to verify the behavior and gain a greater understanding of these solutions.

Other investigators have also worked with these systems, and there are considerable  $v^{\text{E}}$  data published at 298.15 K,<sup>7–11</sup> but only one study<sup>7</sup> exists concerning the effect of temperature on this property.  $h^{\text{E}}$  values for mixtures with n = 6, 7, and 8 in the set represented by H<sub>3</sub>CCOOC<sub>3</sub>H<sub>7</sub> (1) + C<sub>n</sub>H<sub>2n+2</sub> (2) have also been published.<sup>11–13</sup> However, the bibliographic information on VLE is very limited, since only data for isothermic VLE<sup>13</sup> have been found for the binary system with n = 7 measured at 11 temperatures in the interval 273 K to 363 K. Values of  $g^{E}$  by chromatography have even been published at 298.15 K,<sup>14</sup> for the binaries of the same ester with saturated hydrocarbons of n = 6 and 7. Finally, values of  $c_p^{E9}$  are presented for systems with n = 7 and 10. All of those data are used for comparison with the experimental results obtained here, when pertinent, incorporating in the database constructed for the purpose of performing a multiproperty correlation process that uses all of the experimental data available. A model and a procedure designed by our team, used in previous works,<sup>15,16</sup> is used. The same procedure is employed with the NRTL model.<sup>17</sup>

The experimental information obtained is used here to confirm the efficacy of the UNIFAC group contribution method<sup>18</sup> and to check the representation capacity of that model when the specific interaction parameters COOC/CH<sub>2</sub> are used for ethanoates.

## EXPERIMENTAL SECTION

**Materials.** The propyl ethanoate and hydrocarbons were of the highest commercial purity (> 0.99 w/w) and supplied by Aldrich. However, before use they were degasified with ultrasound for several hours and stored in the dark over a molecular sieve (Fluka 0.3 nm) to eliminate traces of water, and the final purity of the products was verified by gas chromatography (GC).

Received: November 8, 2012 Accepted: January 16, 2013 Published: February 7, 2013

|                  |                          | $T_{1}$ | °/K                 |         | ho/k   | cg⋅m <sup>-3</sup>                  | n <sub>D</sub> |                       |  |
|------------------|--------------------------|---------|---------------------|---------|--------|-------------------------------------|----------------|-----------------------|--|
| compound         | supplier/purity (% mass) | exp.    | lit.                | T/K     | exp.   | lit.                                | exp.           | lit.                  |  |
| propyl ethanoate | Aldrich/99 %             | 374.34  | 374.55 <sup>c</sup> | 291.15→ | 889.58 |                                     |                |                       |  |
|                  |                          |         | 374.69 <sup>g</sup> | 298.15→ | 882.55 | 882.55 <sup>b,c</sup>               | 1.3818         | 1.3816 <sup>b,c</sup> |  |
|                  |                          |         |                     |         |        | 883.03 <sup>g</sup>                 |                |                       |  |
|                  |                          |         |                     | 318.15→ | 859.78 | 859.78 <sup>d</sup>                 | 1.3720         | 1.3721 <sup>d</sup>   |  |
|                  |                          |         |                     | 328.15→ | 848.30 |                                     |                |                       |  |
| pentane          | Aldrich/> 99 %           | 309.30  | 309.30 <sup>e</sup> | 291.15→ | 628.19 |                                     |                |                       |  |
|                  |                          |         | 309.22 <sup>g</sup> | 298.15→ | 621.35 | 621.35 <sup>e</sup>                 | 1.3545         | 1.3545 <sup>e</sup>   |  |
|                  |                          |         |                     |         |        | 621.39 <sup>g</sup>                 |                | 1.35472 <sup>g</sup>  |  |
| hexane           | AlfaAesar/99 %           | 341.88  | 341.88 <sup>e</sup> | 291.15→ | 661.11 |                                     |                |                       |  |
|                  |                          |         | 341.89 <sup>g</sup> | 298.15→ | 654.84 | 654.84 <sup>e</sup>                 | 1.3723         | $1.3722^{e}$          |  |
|                  |                          |         |                     |         |        | 654.81 <sup>g</sup>                 |                | 1.37226 <sup>g</sup>  |  |
|                  |                          |         |                     | 318.15→ | 636.60 | 636.67 <sup>f</sup>                 | 1.3615         | 1.3615 <sup>f</sup>   |  |
|                  |                          |         |                     | 328.15→ | 627.21 |                                     |                |                       |  |
| heptane          | Aldrich/> 99 %           | 371.56  | 371.49 <sup>c</sup> | 291.15→ | 685.28 |                                     |                |                       |  |
|                  |                          |         | 371.58 <sup>g</sup> | 298.15→ | 679.48 | 679.27 <sup>c</sup>                 | 1.3852         | 1.3851 <sup>c</sup>   |  |
|                  |                          |         |                     |         |        | 679.51 <sup>g</sup>                 |                | 1.38511 <sup>g</sup>  |  |
|                  |                          |         |                     | 318.15→ | 662.06 | 662.04 <sup>d</sup>                 | 1.3748         | 1.3748 <sup>d</sup>   |  |
|                  |                          |         |                     |         |        | $662.32^{f}$                        |                | 1.3750 <sup>f</sup>   |  |
|                  |                          |         |                     | 328.15→ | 653.72 |                                     |                |                       |  |
| octane           | Aldrich/> 99 %           | 398.83  | 398.83 <sup>e</sup> | 291.15→ | 704.13 |                                     |                |                       |  |
|                  |                          |         | 398.82 <sup>g</sup> | 298.15→ | 698.60 | 698.60 <sup>e</sup>                 | 1.3952         | $1.3952^{e}$          |  |
|                  |                          |         |                     |         |        | 698.49 <sup>g</sup>                 |                | 1.39505 <sup>g</sup>  |  |
|                  |                          |         |                     | 318.15→ | 682.17 | 682.09 <sup>f</sup>                 | 1.3855         | 1.3855 <sup>f</sup>   |  |
|                  |                          |         |                     | 328.15→ | 674.14 |                                     |                |                       |  |
| nonane           | Aldrich/> 99 %           | 423.94  | 423.53 <sup>c</sup> | 291.15→ | 719.20 |                                     |                |                       |  |
|                  |                          |         | 423.95 <sup>g</sup> | 298.15→ | 713.85 | 713.85 <sup>c</sup>                 | 1.4031         | 1.4030 <sup>c</sup>   |  |
|                  |                          |         |                     |         |        | 713.81 <sup>g</sup>                 |                | 1.40311 <sup>g</sup>  |  |
|                  |                          |         |                     | 318.15→ | 698.06 | 698.06 <sup><i>d</i>,<i>f</i></sup> | 1.3938         | 1.3939 <sup>c,f</sup> |  |
|                  |                          |         |                     | 328.15→ | 690.17 |                                     |                |                       |  |
| decane           | Aldrich/> 99 %           | 447.30  | 447.30 <sup>e</sup> | 291.15→ | 731.22 |                                     |                |                       |  |
|                  |                          |         | 447.27 <sup>g</sup> | 298.15→ | 726.20 | 726.20 <sup>e</sup>                 | 1.4096         | 1.4096 <sup>e</sup>   |  |
|                  |                          |         |                     |         |        | 726.25 <sup>g</sup>                 |                | 1.40967 <sup>g</sup>  |  |
|                  |                          |         |                     | 318.15→ | 710.90 | 711.43 <sup>f</sup>                 | 1.4008         | 1.4008 <sup>f</sup>   |  |
|                  |                          |         |                     | 328.15→ | 703.34 |                                     |                |                       |  |

## Table 1. Properties of Pure Compounds<sup>a</sup>. Densities and Refractive Indices Were Measured at Atmospheric Pressure

<sup>*a*</sup>Uncertainties *u* are:  $u(T) = \pm 0.02$  K,  $u(n) = \pm 0.0002$ , and  $u(\rho) = \pm 0.02$  kg·m<sup>-3</sup>. <sup>*b*</sup>Reference 4. <sup>*c*</sup>Reference 6. <sup>*d*</sup>Reference 5. <sup>*e*</sup>Reference 3. <sup>*f*</sup>Reference 19. <sup>*g*</sup>Reference 20.

The quality of the pure compounds was then confirmed by measuring a series of physical properties such as the density  $\rho$  and the refractive index  $n_D$ , at different temperatures, and the normal boiling temperature  $T_{\rm b,i}^{\rm o}$ . Table 1 indicates the manufacturer of each compound and the values measured for different properties. In general, the comparison between our values and those found in the literature can be considered acceptable.

**Apparatus and Procedures.** An Anton Paar DMA-60/602 digital densimeter, with a reading error of  $\pm 0.02$  kg·m<sup>-3</sup> was used to measure the densities of pure compounds  $\rho_i$  and of the mixtures  $\rho$ . Mixtures ( $x \pm 0.0002$ ) were prepared synthetically by mass on a AND balance, model ER182A, with an accuracy of  $\pm 1 \cdot 10^{-5}$  g to obtain the curves of  $\rho = \rho(x)$  at different temperatures in the interval 291.15 K to 328.15 K. In the densimeter the temperature was controlled by circulating water using a CB7 Hetobirkeroad thermostatic bath, with a control of ( $T \pm 0.01$ ) K. Pairs of values ( $x_i\rho$ ), obtained at a temperature of 298.15 K for the binaries: { $x_1H_3CCO_2C_3H_7(1) + x_2C_nH_{2n+2}(2)$  (n = 5 to 10)} were used to define the following equation

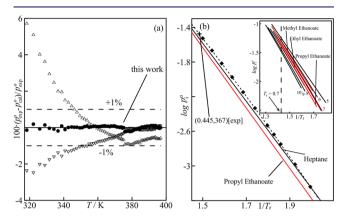

This expression was used to obtain the compositions  $x_i$  and  $y_i$  of the phase equilibria after measuring, respectively, the densities of the samples of liquid and vapor phases. The  $a_i$  parameters are obtained by a least-squares procedure with an excellent goodness of fit ( $r^2 \gg 0.999$ ) and are collected in Table 2. Values of  $x_1$ ,  $\rho$ ,  $\rho_1$ ,

Table 2. Parameters  $a_i$  Obtained for eq 1 Correlating the Density– Composition Values Measured at 298.15 K and Atmospheric Pressure, and Standard Deviations  $s(\rho)$ , for Each of the Mixtures

| propyl ethanoate + | $a_1$   | <i>a</i> <sub>2</sub> | <i>a</i> <sub>3</sub> | $s( ho)/{ m kg}\cdot{ m m}^{-3}$ |
|--------------------|---------|-----------------------|-----------------------|----------------------------------|
| pentane            | -15.526 | 29.648                | -15.466               | 0.08                             |
| hexane             | -45.413 | 0.679                 | -1.554                | 0.05                             |
| heptane            | -61.727 | -7.089                | -10.146               | 0.06                             |
| octane             | -73.975 | -7.411                | -22.361               | 0.06                             |
| nonane             | -80.556 | -8.831                | -36.504               | 0.07                             |
| decane             | -85.824 | -4.782                | -56.468               | 0.05                             |
|                    |         |                       | 000000                |                                  |

and  $\rho_2$ , are, respectively, the ester composition, the density of the mixture, and the densities of the pure components and are also used to calculate the excess volumes  $v^{\rm E}$ , for which the uncertainty was estimated to be  $\pm 2 \cdot 10^{-9} \, {\rm m}^3 \cdot {\rm mol}^{-1}$ .

Vapor pressures of the pure compounds and the vaporliquid equilibria were determined experimentally with a



**Figure 1.** (a) Percentage between experimental vapor pressures obtained in this work ( $\bullet$ ) for propyl ethanoate and those from ref 27 ( $\triangle$ ) and ref 30 ( $\nabla$ ). (b) +, experimental azeotropic point ( $x_{ax}$ ,  $T_{ax}$ ); and vapor pressures lines in reduced coordinates for propyl ethanoate (this work) and heptane, ref 3, azeotropic points ( $\bullet$ ) from ref 13, for binary {xpropyl ethanoate + (1-x)heptane}, and azeotropic-line (- - -) obtained by correlation: log  $p_{r,ax}^{\circ} = 2.6496 - 2.3743/(T_{r,ax} - 0.0983)$ . Inset shows the vapor pressure lines for the three first alkyl ethanoates and those alkanes studied; numbers indicate the number of carbon atoms in the saturated hydrocarbon.

Table 3. Vapor Pressures for Propyl Ethanoate<sup>a</sup>

## The system reached the equilibrium when the temperature remained constant within the experimental uncertainty $(T \pm 0.01)$ K at the working pressure p = 101.32 kPa, for at least fifteen minutes. Then, samples of both phases are extracted and their densities measured; regression of eq 1 obtains optimum values for the compositions of the liquid phases $x_i$ and vapor phases $y_i$ , with an uncertainty of $\pm 0.0007$ . The pressure was measured with a PPC2 controller/calibrator instrument, which stabilizes the still at $(101.32 \pm 0.02)$ kPa. The temperature was obtained by direct reading at two Pt-100 thermoresistances, calibrated according to ITS90, introduced in the ebulliometer (see ref 21) connected to a Comark 6800 digital apparatus that gives a reading of $(T \pm 0.01)$ K.

small-capacity system through which both phases recirculated; the operational procedure has been described previously.<sup>21–23</sup>

The mixing enthalpies  $h^{\rm E}$  were measured with a MS80D Calvet conduction calorimeter by Setaram, calibrated as described in a previous work.<sup>24</sup> Thermograms obtained in the experimentation were processed with the Setsoft software supplied by the manufacturer. The temperature of the sample was confirmed by introducing a PT100 sensor, connected to a digital thermometer by ASL, into the calorimetric cells containing paraffin oil. Then the controller was adjusted to ensure the temperature of the sample within the interval ( $T \pm 0.002$ ) K. Correct functioning of the system was verified by reproducing the  $h^{\rm E}$  of known systems<sup>25,26</sup> at the temperatures of 298.15 K and 318.15 K, since

| T/K    | $p_{\rm i}^{ m o}/{ m kPa}$ | T/K    | $p_{\rm i}^{ m o}/{ m kPa}$ | T/K    | $p_{\rm i}^{ m o}/{ m kPa}$ | T/K    | $p_{ m i}^{ m o}/{ m kPa}$ |
|--------|-----------------------------|--------|-----------------------------|--------|-----------------------------|--------|----------------------------|
| 318.35 | 12.14                       | 358.41 | 60.24                       | 375.78 | 106.19                      | 388.63 | 154.37                     |
| 322.19 | 14.43                       | 359.52 | 62.59                       | 376.51 | 108.56                      | 389.16 | 156.68                     |
| 325.87 | 17.04                       | 360.63 | 65.00                       | 377.29 | 111.14                      | 389.68 | 158.99                     |
| 328.95 | 19.43                       | 361.71 | 67.41                       | 377.98 | 113.47                      | 390.18 | 161.23                     |
| 331.59 | 21.77                       | 362.73 | 69.74                       | 378.69 | 115.96                      | 390.68 | 163.46                     |
| 334.22 | 24.29                       | 363.81 | 72.28                       | 379.36 | 118.30                      | 391.22 | 165.89                     |
| 336.60 | 26.79                       | 364.84 | 74.80                       | 380.04 | 120.71                      | 391.70 | 168.13                     |
| 338.75 | 29.12                       | 365.86 | 77.35                       | 380.74 | 123.19                      | 392.24 | 170.62                     |
| 340.72 | 31.53                       | 366.81 | 79.80                       | 381.41 | 125.61                      | 392.73 | 172.98                     |
| 342.66 | 33.96                       | 367.70 | 82.11                       | 382.06 | 128.01                      | 393.23 | 175.33                     |
| 344.52 | 36.46                       | 368.62 | 84.58                       | 382.71 | 130.42                      | 393.71 | 177.64                     |
| 346.15 | 38.78                       | 369.51 | 87.01                       | 383.34 | 132.85                      | 394.16 | 180.01                     |
| 347.73 | 41.14                       | 370.41 | 89.57                       | 384.01 | 135.42                      | 394.66 | 182.44                     |
| 349.35 | 43.69                       | 371.18 | 91.80                       | 384.55 | 137.67                      | 395.17 | 185.03                     |
| 350.81 | 46.08                       | 371.99 | 94.17                       | 385.18 | 140.04                      | 395.67 | 187.59                     |
| 352.19 | 48.41                       | 372.78 | 96.55                       | 385.79 | 142.47                      | 396.16 | 190.10                     |
| 353.57 | 50.84                       | 373.55 | 98.87                       | 386.36 | 144.80                      | 396.69 | 192.76                     |
| 354.78 | 53.11                       | 373.97 | 100.18                      | 386.90 | 147.09                      |        |                            |
| 356.03 | 55.48                       | 374.52 | 101.32                      | 387.49 | 149.51                      |        |                            |
| 357.29 | 57.96                       | 375.10 | 103.76                      | 388.06 | 151.96                      |        |                            |

Table 4. Coefficients of Antoine Equation log  $p_i^o/(kPa) = A - B/[T/(K) - C]$  and Acentric Factor  $\omega$  Calculated for Propyl Ethanoate

| А         | В         | C        |       |            |                   |
|-----------|-----------|----------|-------|------------|-------------------|
| (a)       | (b)       | (c)      | ω     | literature | $\Delta T/{ m K}$ |
| 6.05433   | 1221.75   | 72.56    |       | this work  | 315 to 400        |
| (2.53146) | (2.22402) | (0.1321) | 0.385 | this work  |                   |
| 6.51160   | 1524.56   | 36.19    |       | 27         | 320 to 430        |
| (2.977)   | (2.767)   | (0.070)  | 0.415 | 27, 29     |                   |
| 6.07167   | 1240.55   | 69.104   | 0.384 | 30         |                   |
|           |           |          | 0 387 | 31         |                   |

688

Table 5. Experimental Values of  $(x_1, \rho, \nu^E)$  for Binary Systems  $CH_3COO(CH_2)_2CH_3(1) + C_nH_{2n+2}$  (n = 5 to 10) (2) at Four Temperatures of (291.15, 298.15, 318.15, and 328.15) K and Atmospheric Pressure<sup>*a*</sup>

|        | ρ                  | $10^{9} \cdot v^{E}$              |                  | ρ                           | $10^9 \cdot v^E$                  |                  | ρ                  | $10^9 \cdot v^E$                  |
|--------|--------------------|-----------------------------------|------------------|-----------------------------|-----------------------------------|------------------|--------------------|-----------------------------------|
| $x_1$  | kg·m <sup>-3</sup> | m <sup>3</sup> ·mol <sup>-1</sup> | $x_1$            | kg·m <sup>-3</sup>          | m <sup>3</sup> ·mol <sup>-1</sup> | $x_1$            | kg·m <sup>-3</sup> | m <sup>3</sup> ·mol <sup>-1</sup> |
|        |                    |                                   |                  | T = 291.15  K               |                                   |                  |                    |                                   |
|        |                    |                                   | Propyl E         | thanoate (1) + Pe           | entane (2)                        |                  |                    |                                   |
| 0.0000 | 628.22             | 0                                 | 0.3338           | 714.10                      | 216                               | 0.7697           | 829.23             | 20                                |
| 0.0121 | 631.16             | 40                                | 0.3934           | 729.80                      | 192                               | 0.8277           | 844.59             | -7                                |
| 0.0427 | 638.75             | 113                               | 0.4636           | 748.35                      | 156                               | 0.8911           | 861.27             | -21                               |
| 0.0780 | 647.67             | 165                               | 0.5224           | 763.88                      | 128                               | 0.9230           | 869.65             | -27                               |
| 0.1417 | 663.97             | 220                               | 0.5876           | 781.12                      | 96                                | 1.0000           | 889.58             | 0                                 |
| 0.2048 | 680.25             | 250                               | 0.6565           | 799.31                      | 68                                |                  |                    |                                   |
| 0.2734 | 698.21             | 238                               | 0.7136           | 814.38                      | 46                                |                  |                    |                                   |
|        |                    |                                   | Propyl E         | Ethanoate (1) + H           | exane (2)                         |                  |                    |                                   |
| 0.0000 | 661.17             | 0                                 | 0.3085           | 722.16                      | 599                               | 0.7020           | 812.34             | 435                               |
| 0.0120 | 663.39             | 39                                | 0.3804           | 737.74                      | 607                               | 0.7697           | 829.14             | 361                               |
| 0.0372 | 667.96             | 141                               | 0.4420           | 751.35                      | 607                               | 0.8208           | 842.17             | 285                               |
| 0.0924 | 678.46             | 286                               | 0.5117           | 767.18                      | 578                               | 0.8835           | 858.38             | 198                               |
| 0.1648 | 692.70             | 423                               | 0.5781           | 782.58                      | 544                               | 0.9247           | 869.25             | 134                               |
| 0.2357 | 706.98             | 534                               | 0.6400           | 797.33                      | 488                               | 1.0000           | 889.58             | 0                                 |
|        |                    |                                   | Propyl E         | thanoate (1) + He           | eptane (2)                        |                  |                    |                                   |
| 0.0000 | 685.28             | 0                                 | 0.3308           | 738.58                      | 703                               | 0.7257           | 819.57             | 545                               |
| 0.0086 | 686.58             | 17                                | 0.3974           | 750.86                      | 733                               | 0.8000           | 837.21             | 438                               |
| 0.0320 | 690.09             | 75                                | 0.4644           | 763.73                      | 741                               | 0.8457           | 848.54             | 355                               |
| 0.0864 | 698.20             | 247                               | 0.5398           | 778.88                      | 722                               | 0.9057           | 864.03             | 222                               |
| 0.1706 | 711.31             | 471                               | 0.6055           | 792.76                      | 669                               | 0.9708           | 881.58             | 61                                |
| 0.2573 | 725.67             | 628                               | 0.6723           | 807.44                      | 603                               | 1.0000           | 889.58             | 0                                 |
|        |                    |                                   | Propyl I         | Ethanoate (1) + C           | ctane (2)                         |                  |                    |                                   |
| 0.0000 | 704.13             | 0                                 | 0.4206           | 762.45                      | 862                               | 0.8181           | 841.89             | 492                               |
| 0.0120 | 705.67             | 9                                 | 0.4808           | 772.73                      | 870                               | 0.8638           | 853.08             | 385                               |
| 0.0405 | 708.88             | 142                               | 0.5357           | 782.59                      | 857                               | 0.9109           | 865.09             | 271                               |
| 0.1465 | 721.91             | 496                               | 0.6206           | 798.82                      | 799                               | 0.9798           | 883.92             | 54                                |
| 0.1905 | 727.76             | 599                               | 0.6668           | 808.14                      | 758                               | 1.0000           | 889.58             | 0                                 |
| 0.2679 | 738.63             | 738                               | 0.7082           | 816.92                      | 696                               |                  |                    |                                   |
| 0.3573 | 752.22             | 825                               | 0.7644           | 829.30                      | 610                               |                  |                    |                                   |
|        |                    |                                   | Propyl E         | thanoate (1) + N            | onane (2)                         |                  |                    |                                   |
| 0.0000 | 719.20             | 0                                 | 0.4338           | 770.86                      | 904                               | 0.7948           | 837.08             | 570                               |
| 0.0569 | 724.61             | 232                               | 0.4846           | 778.66                      | 907                               | 0.8162           | 841.91             | 528                               |
| 0.1163 | 730.70             | 423                               | 0.5686           | 792.44                      | 892                               | 0.8844           | 858.48             | 334                               |
| 0.1916 | 739.04             | 611                               | 0.6289           | 803.22                      | 840                               | 0.9349           | 871.71             | 169                               |
| 0.2820 | 749.98             | 771                               | 0.6876           | 814.43                      | 770                               | 0.9464           | 874.88             | 125                               |
| 0.3583 | 760.02             | 866                               | 0.7441           | 826.00                      | 675                               | 1.0000           | 889.58             | 0                                 |
|        |                    |                                   | Propyl E         | Ethanoate (1) + D           |                                   |                  |                    |                                   |
| 0.0000 | 731.22             | 0                                 | 0.4514           | 778.28                      | 957                               | 0.8151           | 841.83             | 581                               |
| 0.0491 | 735.16             | 192                               | 0.5221           | 788.37                      | 954                               | 0.8554           | 851.23             | 458                               |
| 0.1081 | 740.19             | 402                               | 0.5892           | 798.75                      | 934                               | 0.8932           | 860.45             | 351                               |
| 0.2054 | 749.44             | 651                               | 0.6468           | 808.44                      | 888                               | 0.9454           | 874.25             | 165                               |
| 0.2933 | 758.78             | 810                               | 0.7079           | 819.64                      | 804                               | 0.9719           | 881.50             | 91                                |
| 0.3720 | 767.96             | 918                               | 0.7955           | 837.47                      | 634                               | 1.0000           | 889.58             | 0                                 |
|        |                    |                                   |                  | T = 298.15  K               |                                   |                  |                    |                                   |
|        |                    |                                   | Propyl           | Ethanoate (1) +             | Pentane                           |                  |                    |                                   |
| 0.0000 | 621.35             | 0                                 | 0.2830           | 693.62                      | 246                               | 0.6565           | 792.11             | 76                                |
| 0.0101 | 623.70             | 52                                | 0.3439           | 709.68                      | 210                               | 0.7085           | 805.89             | 48                                |
| 0.0346 | 629.76             | 110                               | 0.4072           | 726.35                      | 183                               | 0.8437           | 841.60             | 1                                 |
| 0.0754 | 640.01             | 176                               | 0.4881           | 747.65                      | 150                               | 0.9205           | 861.84             | -16                               |
| 0.1377 | 655.88             | 236                               | 0.5218           | 756.54                      | 135                               | 1.0000           | 882.54             | -10<br>0                          |
| 0.1377 | 671.36             | 250                               | 0.5968           | 776.36                      | 99                                | 1.0000           | 502.JT             | U                                 |
| 0.1/// | 0/1.00             | 237                               |                  | 270.30<br>Ethanoate (1) + H |                                   |                  |                    |                                   |
| 0.0000 | 654.84             | 0                                 | 0.3539           | 724.89                      | 691                               | 0.7772           | 823.86             | 392                               |
| 0.0000 | 658.01             | 68                                | 0.3339           | 739.38                      | 673                               | 0.8357           | 823.80             | 392<br>292                        |
| 0.0175 | 661.24             |                                   |                  |                             |                                   |                  |                    | 292<br>194                        |
| 0.0330 |                    | 126<br>268                        | 0.4795<br>0.5417 | 752.70<br>766.92            | 667<br>637                        | 0.8934<br>0.9187 | 853.93<br>860.54   | 194<br>162                        |
| 0.0831 | 670.27             |                                   |                  |                             |                                   |                  |                    |                                   |

Article

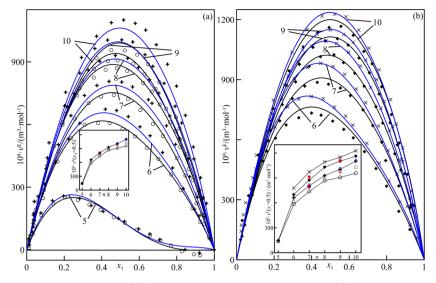
dx.doi.org/10.1021/je3011979 | J. Chem. Eng. Data 2013, 58, 686-706

## Table 5. continued

|        | ρ                  | $10^9 \cdot v^E$                  |          | ρ                          | $10^9 \cdot v^E$                  |        | ρ                  | $10^9 \cdot v^E$                  |
|--------|--------------------|-----------------------------------|----------|----------------------------|-----------------------------------|--------|--------------------|-----------------------------------|
| $x_1$  | kg·m <sup>−3</sup> | m <sup>3</sup> ·mol <sup>-1</sup> | $x_1$    | kg·m <sup>-3</sup>         | m <sup>3</sup> ·mol <sup>-1</sup> | $x_1$  | kg·m <sup>−3</sup> | m <sup>3</sup> ·mol <sup>-1</sup> |
| 1      | 0                  |                                   |          | ethanoate (1) + H          |                                   | 1      | 0                  |                                   |
| 0.1535 | 683.94             | 419                               | 0.6040   | 781.52                     | 589                               | 0.9749 | 875.68             | 52                                |
| 0.2218 | 697.58             | 531                               | 0.6583   | 794.45                     | 546                               | 1.0000 | 882.54             | 0                                 |
| 0.2836 | 710.25             | 607                               | 0.7242   | 810.59                     | 466                               |        |                    |                                   |
|        |                    |                                   | Propyl E | thanoate (1) + He          | eptane (2)                        |        |                    |                                   |
| 0.0000 | 679.48             | 0                                 | 0.3750   | 740.19                     | 787                               | 0.7930 | 828.44             | 505                               |
| 0.0149 | 681.75             | 24                                | 0.4386   | 752.12                     | 806                               | 0.8688 | 847.30             | 351                               |
| 0.0308 | 684.03             | 84                                | 0.5062   | 765.33                     | 804                               | 0.9100 | 858.00             | 252                               |
| 0.0953 | 693.48             | 313                               | 0.5643   | 777.16                     | 780                               | 0.9508 | 868.82             | 158                               |
| 0.1680 | 704.76             | 503                               | 0.6488   | 795.15                     | 719                               | 1.0000 | 882.54             | 0                                 |
| 0.2358 | 715.78             | 642                               | 0.6684   | 799.45                     | 702                               |        |                    |                                   |
| 0.3084 | 728.21             | 739                               | 0.7446   | 816.87                     | 594                               |        |                    |                                   |
|        |                    |                                   | Propyl E | Ethanoate $(1) + O$        | ctane (2)                         |        |                    |                                   |
| 0.0000 | 698.57             | 0                                 | 0.3895   | 751.12                     | 903                               | 0.8145 | 834.19             | 533                               |
| 0.0149 | 700.30             | 51                                | 0.4733   | 765.04                     | 930                               | 0.8620 | 845.60             | 435                               |
| 0.0603 | 705.44             | 256                               | 0.5382   | 776.56                     | 917                               | 0.9221 | 860.87             | 286                               |
| 0.1039 | 710.78             | 389                               | 0.5953   | 787.32                     | 873                               | 0.9349 | 864.32             | 240                               |
| 0.2154 | 725.25             | 687                               | 0.6543   | 798.99                     | 814                               | 1.0000 | 882.54             | 0                                 |
| 0.2536 | 730.62             | 749                               | 0.7043   | 809.37                     | 750                               |        |                    |                                   |
| 0.3283 | 741.54             | 860                               | 0.7628   | 822.24                     | 641                               |        |                    |                                   |
|        |                    |                                   | Propyl E | thanoate $(1) + N$         | onane (2)                         |        |                    |                                   |
| 0.0000 | 713.85             | 0                                 | 0.3636   | 754.58                     | 964                               | 0.7321 | 816.53             | 797                               |
| 0.0361 | 717.15             | 167                               | 0.4312   | 764.15                     | 1005                              | 0.7908 | 829.02             | 687                               |
| 0.0384 | 717.37             | 175                               | 0.5061   | 775.63                     | 1005                              | 0.8257 | 836.90             | 608                               |
| 0.1106 | 724.51             | 441                               | 0.5653   | 785.30                     | 995                               | 0.8918 | 852.78             | 436                               |
| 0.2023 | 734.50             | 689                               | 0.6308   | 796.89                     | 934                               | 0.9404 | 865.63             | 250                               |
| 0.2833 | 744.19             | 846                               | 0.6728   | 804.80                     | 878                               | 1.0000 | 882.54             | 0                                 |
|        |                    |                                   | 11       | Ethanoate $(1) + D$        |                                   |        |                    |                                   |
| 0.0000 | 726.2              | 0                                 | 0.4509   | 772.01                     | 1087                              | 0.7988 | 830.87             | 784                               |
| 0.0402 | 729.10             | 231                               | 0.5172   | 781.22                     | 1101                              | 0.8462 | 841.53             | 644                               |
| 0.1191 | 735.74             | 512                               | 0.5788   | 790.51                     | 1085                              | 0.8882 | 851.72             | 492                               |
| 0.2077 | 744.03             | 755                               | 0.6343   | 799.52                     | 1052                              | 0.9267 | 861.64             | 345                               |
| 0.2921 | 752.82             | 921                               | 0.6912   | 809.56                     | 982                               | 0.9583 | 870.20             | 222                               |
| 0.3727 | 762.12             | 1023                              | 0.7504   | 820.85                     | 888                               | 1.0000 | 882.54             | 0                                 |
|        |                    |                                   | Decard E | T = 318.15  K              | awana (2)                         |        |                    |                                   |
| 0.0000 | 636.65             | 0                                 | 0.3318   | thanoate (1) + H<br>700.54 | 710                               | 0.6815 | 778.85             | 541                               |
| 0.0000 |                    | 197                               | 0.3997   |                            |                                   | 0.7426 |                    | 456                               |
| 0.0304 | 641.69<br>650.67   | 354                               | 0.3997   | 714.87<br>725.91           | 734<br>723                        | 0.7420 | 793.66<br>807.68   | 430<br>368                        |
| 0.1381 | 661.70             | 494                               | 0.5124   | 739.66                     | 693                               | 0.8648 | 824.39             | 242                               |
| 0.2079 | 675.31             | 608                               | 0.5708   | 752.92                     | 652                               | 0.9227 | 839.28             | 151                               |
| 0.2642 | 686.58             | 674                               | 0.6220   | 764.76                     | 609                               | 1.0000 | 859.78             | 0                                 |
| 0.2042 | 000.50             | 0/4                               |          | thanoate (1) + He          |                                   | 1.0000 | 037.70             | 0                                 |
| 0.0000 | 662.06             | 0                                 | 0.3638   | 718.84                     | 867                               | 0.7260 | 791.42             | 671                               |
| 0.0291 | 666.08             | 118                               | 0.4295   | 730.78                     | 886                               | 0.7727 | 802.14             | 588                               |
| 0.0843 | 673.91             | 325                               | 0.4902   | 742.29                     | 877                               | 0.7949 | 807.68             | 496                               |
| 0.1595 | 685.14             | 544                               | 0.5530   | 754.61                     | 858                               | 0.8645 | 824.39             | 369                               |
| 0.2300 | 696.25             | 694                               | 0.6057   | 765.37                     | 820                               | 0.9242 | 839.28             | 260                               |
| 0.2972 | 707.31             | 805                               | 0.6734   | 779.75                     | 749                               | 1.0000 | 859.78             | 0                                 |
| 0.2772 | /0/.01             | 000                               |          | Ethanoate (1) + O          |                                   | 1.0000 | 000,10             | 0                                 |
| 0.0000 | 682.17             | 0                                 | 0.3866   | 732.28                     | 967                               | 0.7422 | 796.76             | 765                               |
| 0.0440 | 687.06             | 175                               | 0.4471   | 741.75                     | 1014                              | 0.7792 | 804.84             | 683                               |
| 0.0919 | 692.49             | 371                               | 0.5188   | 753.71                     | 1025                              | 0.8435 | 819.52             | 530                               |
| 0.1675 | 701.73             | 596                               | 0.5695   | 762.78                     | 985                               | 0.8743 | 826.88             | 449                               |
| 0.2438 | 711.68             | 776                               | 0.6293   | 773.93                     | 932                               | 0.9284 | 840.49             | 273                               |
| 0.3148 | 721.61             | 889                               | 0.6793   | 783.75                     | 868                               | 1.0000 | 859.78             | 0                                 |
|        |                    |                                   |          | thanoate (1) + N           |                                   |        |                    |                                   |
| 0.0000 | 698.06             | 0                                 | 0.4077   | 742.85                     | 1062                              | 0.7597 | 801.71             | 828                               |
| 0.0217 | 699.96             | 101                               | 0.4731   | 752.08                     | 1094                              | 0.8179 | 814.08             | 686                               |
|        |                    |                                   |          |                            |                                   |        |                    |                                   |

#### Table 5. continued

|                                   | ρ                            | $10^9 \cdot \nu^E$                      |                               | ρ                           | $10^9 \cdot v^E$                  |                                         | ρ                  | $10^9 \cdot \nu^E$                |
|-----------------------------------|------------------------------|-----------------------------------------|-------------------------------|-----------------------------|-----------------------------------|-----------------------------------------|--------------------|-----------------------------------|
| $x_1$                             | kg·m <sup>-3</sup>           | m <sup>3</sup> ·mol <sup>-1</sup>       | $x_1$                         | kg·m <sup>−3</sup>          | m <sup>3</sup> ·mol <sup>−1</sup> | $x_1$                                   | kg·m <sup>-3</sup> | m <sup>3</sup> ·mol <sup>-1</sup> |
|                                   |                              |                                         | Propyl E                      | thanoate (1) + N            | Jonane (2)                        |                                         |                    |                                   |
| 0.1046                            | 707.72                       | 424                                     | 0.5367                        | 761.66                      | 1105                              | 0.8565                                  | 822.81             | 574                               |
| 0.1791                            | 715.36                       | 648                                     | 0.5943                        | 771.02                      | 1073                              | 0.8964                                  | 832.40             | 430                               |
| 0.2659                            | 724.95                       | 872                                     | 0.6526                        | 781.18                      | 1008                              | 0.9373                                  | 842.73             | 275                               |
| 0.3350                            | 733.37                       | 976                                     | 0.7078                        | 791.39                      | 934                               | 1.0000                                  | 859.78             | 0                                 |
|                                   |                              |                                         | Propyl I                      | Ethanoate (1) + D           | Decane (2)                        |                                         |                    |                                   |
| 0.0000                            | 710.90                       | 0                                       | 0.4333                        | 752.19                      | 1136                              | 0.7733                                  | 805.48             | 865                               |
| 0.0640                            | 715.53                       | 320                                     | 0.4936                        | 759.95                      | 1161                              | 0.8247                                  | 816.07             | 726                               |
| 0.1164                            | 719.72                       | 524                                     | 0.5563                        | 768.63                      | 1167                              | 0.8670                                  | 825.48             | 584                               |
| 0.1961                            | 726.75                       | 755                                     | 0.6213                        | 778.51                      | 1122                              | 0.9092                                  | 835.51             | 427                               |
| 0.2794                            | 734.84                       | 944                                     | 0.6781                        | 787.96                      | 1041                              | 0.9463                                  | 844.94             | 269                               |
| 0.3548                            | 742.92                       | 1064                                    | 0.7226                        | 795.79                      | 980                               | 1.0000                                  | 859.78             | 0                                 |
|                                   |                              |                                         |                               | T = 328.15  K               |                                   |                                         |                    |                                   |
|                                   |                              |                                         | 17                            | Ethanoate (1) + F           | Hexane (2)                        |                                         |                    |                                   |
| 0.0000                            | 627.21                       | 0                                       | 0.3322                        | 690.12                      | 803                               | 0.6944                                  | 770.81             | 582                               |
| 0.0253                            | 631.33                       | 173                                     | 0.3986                        | 704.04                      | 816                               | 0.7605                                  | 786.79             | 484                               |
| 0.0749                            | 640.18                       | 356                                     | 0.4614                        | 717.55                      | 805                               | 0.8114                                  | 799.39             | 396                               |
| 0.1369                            | 651.64                       | 528                                     | 0.5209                        | 730.74                      | 763                               | 0.8707                                  | 814.35             | 288                               |
| 0.2052                            | 664.70                       | 665                                     | 0.5809                        | 744.27                      | 719                               | 0.9235                                  | 828.02             | 174                               |
| 0.2719                            | 677.82                       | 764                                     | 0.6200                        | 753.31                      | 673                               | 1.0000                                  | 848.30             | 0                                 |
|                                   | <i></i>                      | _                                       |                               | thanoate $(1) + H$          | -                                 | /-                                      |                    |                                   |
| 0.0000                            | 653.72                       | 0                                       | 0.3783                        | 711.79                      | 960                               | 0.7560                                  | 787.53             | 669                               |
| 0.0373                            | 658.49                       | 226                                     | 0.4478                        | 724.30                      | 982                               | 0.8074                                  | 799.52             | 547                               |
| 0.0866                            | 665.39                       | 411                                     | 0.5142                        | 736.83                      | 966                               | 0.8560                                  | 811.20             | 428                               |
| 0.1645                            | 676.84                       | 643                                     | 0.5756                        | 748.92                      | 927                               | 0.9097                                  | 824.69             | 266                               |
| 0.2401                            | 688.62                       | 800                                     | 0.6377                        | 761.72                      | 853                               | 0.9638                                  | 838.67             | 109                               |
| 0.3096                            | 699.98                       | 904                                     | 0.6884                        | 772.52<br>Ethanoate (1) + 0 | 785                               | 1.0000                                  | 848.30             | 0                                 |
| 0.0000                            | 674.14                       | 0                                       | 0.4000                        | 724.96                      | 1066                              | 0.7686                                  | 791.91             | 758                               |
| 0.0249                            | 676.67                       | 143                                     | 0.4000                        | 736.96                      | 1000                              | 0.8149                                  | 802.10             | 647                               |
| 0.1032                            | 685.41                       | 454                                     | 0.5341                        | 746.69                      | 1095                              | 0.8651                                  | 813.78             | 496                               |
| 0.1801                            | 694.64                       | 697                                     | 0.5975                        | 757.93                      | 1030                              | 0.9233                                  | 828.00             | 310                               |
| 0.2554                            | 704.35                       | 873                                     | 0.6603                        | 769.72                      | 968                               | 0.9404                                  | 832.41             | 241                               |
| 0.3244                            | 713.85                       | 988                                     | 0.7147                        | 780.66                      | 859                               | 1.0000                                  | 848.30             | 0                                 |
| 0.0211                            | , 10,000                     | ,                                       |                               | (1) + N                     |                                   | 10000                                   | 010100             | Ũ                                 |
| 0.0000                            | 690.17                       | 0                                       | 0.4290                        | 736.68                      | 1127                              | 0.7857                                  | 796.76             | 791                               |
| 0.0560                            | 695.08                       | 247                                     | 0.4999                        | 746.72                      | 1149                              | 0.8318                                  | 806.59             | 667                               |
| 0.1062                            | 699.77                       | 435                                     | 0.5709                        | 757.63                      | 1126                              | 0.8801                                  | 817.62             | 503                               |
| 0.1918                            | 708.26                       | 730                                     | 0.6217                        | 765.98                      | 1086                              | 0.8853                                  | 818.82             | 488                               |
| 0.2757                            | 717.52                       | 919                                     | 0.6881                        | 777.69                      | 999                               | 0.9429                                  | 832.95             | 273                               |
| 0.3519                            | 726.64                       | 1049                                    | 0.7461                        | 788.66                      | 901                               | 1.0000                                  | 848.30             | 0                                 |
|                                   |                              |                                         | Propyl I                      | Ethanoate (1) + D           | Decane (2)                        |                                         |                    |                                   |
| 0.0000                            | 703.34                       | 0                                       | 0.4553                        | 745.99                      | 1218                              | 0.8204                                  | 804.55             | 801                               |
| 0.0485                            | 706.59                       | 286                                     | 0.5227                        | 754.73                      | 1227                              | 0.8511                                  | 811.22             | 678                               |
| 0.1075                            | 711.11                       | 524                                     | 0.5818                        | 763.01                      | 1214                              | 0.8851                                  | 818.81             | 560                               |
| 0.1960                            | 718.63                       | 797                                     | 0.6506                        | 773.58                      | 1148                              | 0.9321                                  | 830.23             | 343                               |
| 0.2952                            | 728.02                       | 1038                                    | 0.7058                        | 782.86                      | 1058                              | 0.9580                                  | 836.88             | 218                               |
| 0.3758                            | 736.64                       | 1150                                    | 0.7598                        | 792.64                      | 949                               | 1.0000                                  | 848.30             | 0                                 |
| <sup><i>a</i></sup> Uncertainties | $u \text{ are: } u(T) = \pm$ | $0.02 \text{ K}, u(\rho) = \frac{1}{2}$ | ± 0.02 kg·m <sup>-3</sup> , a | $u(x) = \pm 0.000$          | 5, $u(10^9 v^{\rm E}) = \pm$      | $2 \text{ m}^3 \cdot \text{mol}^{-1}$ . |                    |                                   |


<sup>*a*</sup>Uncertainties *u* are:  $u(T) = \pm 0.02$  K,  $u(\rho) = \pm 0.02$  kg·m<sup>-3</sup>,  $u(x) = \pm 0.0005$ ,  $u(10^9 \nu^{\rm E}) = \pm 2$  m<sup>3</sup>·mol<sup>-1</sup>.

the values of  $h^{\rm E}$  presented uncertainties of less than 1 %, and considering an uncertainty of ± 0.0005 for the molar fraction. No certified  $h^{\rm E}$  values for calibrating at the temperature of 291.15 K was found.

## Refractive indices for the pure products were measured with a 320 Zuzi refractometer, with a reading error of $\pm$ 0.0002 units in $n_{\rm D}$ . The temperature was maintained constant around $(T \pm 0.01)$ K with the circulating water bath mentioned above.

#### PRESENTATION AND TREATMENT OF RESULTS

**Vapor Pressures.** In previous works of this series on mixtures of alkyl ethanoates with alkanes, it was proposed to measure the vapor pressures of the pure substances to verify the quality of the data available in the literature, because of the influence of these values, or their correlations, on VLE calculations. So, values of  $(T,p_i^o)$  and their correlations were published previously<sup>3</sup> for hydrocarbons  $(C_6-C_{10})$ , extending in some cases the range of quantities measured. Propyl ethanoate is the compound



**Figure 2.** Excess molar volumes and correlation curves (—) obtained by eq 3 at the temperatures of: (a) 291.15 K, O, black line; 298.15 K, +, blue line. (b) 318.15 K,  $\blacklozenge$ , black line; 328.15 K, ×, blue line. Inset figures show the equimolar  $\nu^{E}$  values vs n ( $C_{n}H_{2n+2}$ ) obtained in this work and their comparison with those from literature referenced: at T = 298.15 K: red ×, ref 4; blue ×, ref 6;  $\Box$ , ref 7; red +, ref 9; blue +, ref 10; red  $\diamondsuit$ , ref 11; at T = 318.15 K: red  $\blacklozenge$ , ref 5.

common to the mixtures in this work, and the curve  $p_i^{o} = \phi(T)$ was obtained previously;<sup>27</sup> however, in the experimentation, some discrepancies were observed when the acentric factor calculated from vapor pressure data was compared to values recorded in the literature. Figure 1a shows the differences between the data measured here and those published,<sup>27</sup> especially in the interval T < 360 K. The differences in relation to those published by Farková and Witcherle<sup>30</sup> were smaller. These facts, together with the above discrepancy for the acentric factor, justify making new measurements to establish a more precise saturation curve. Experimental values  $(T_i p_i^o)$  are presented in Table 3, and they were correlated with Antoine's equation. Optimum values for A, B and C coefficients were obtained after applying a linear-regression procedure (varying the C-value to get the optimum fit) minimizing the standard deviation  $s(p_i^{o})$  of the pressure data; the results are recorded in Table 4.

By using the theorem of the corresponding states, a modified version of Antoine's equation is obtained when reduced quantities are used, which has a similar format to the original equation

$$\log p_{i,r}^{o} = a - b/(T_{r} - c)$$
(2)

Coefficients a, b, and c were determined by a same procedure indicated above but with experimental data in reduced coordinates; the coefficients obtained appear in brackets in Table 4. A previous work<sup>28</sup> described in detail the relationships existing between both types of coefficients, which would be identical if Antoine's equation were valid over the entire range of the saturation curve (up to the critical point), since the boundary conditions for the critical point are implicit to eq 2. The values for *a*, *b*, and *c* permit calculate the acentric factor of the ester, introducing eq 2 in the Pitzer expression,<sup>29</sup> which produces:  $(0.7 - c)(\omega + a + 1) = b$ . This value is shown in Table 2 and is similar to published values<sup>27</sup> and that determined by the Lee–Kesler method.<sup>31</sup> The differences in relation to those published by Farková and Witcherle<sup>30</sup> were smaller; see Figure 1a. Figure 1b shows the straight-lines of vapor pressures in reduced coordinates for propyl ethanoate and heptane and the azeotropic points fot the corresponding mixture, which we

discuss later. The inset compares the vapor pressure lines in reduced coordinates for the first three ethanoates and alkanes, revealing their tendency to converge toward the so-called *"infinite point"*.

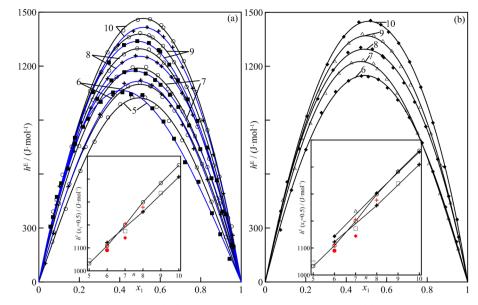
Excess Properties. For all of the binary systems, established empirically as:  $H_3CCOOC_3H_7(1) + C_nH_{2n+2}(2)$  (*n* = 5 to 10), the excess volumes  $v^{E}$  were determined from the mixing densities, which are prepared by weighing. Measurements were recorded at four temperatures, (291.15, 298.15, 318.15, and 328.15) K, except for mixtures containing pentane, since its boiling point limits working with this product to just the first two temperatures. Experimental points  $(x_1, \rho, \nu^E)$  are found in Table 5 and the corresponding representations in Figure 2a,b. The inset figures show the comparison between the equimolar values obtained here and those from literature, including those published previously by our research team.<sup>4-6</sup> In general, there is good agreement with the exception of the value corresponding to the propyl ethanoate + decane system at 298.15 K,<sup>7</sup> which has a much lower value than the one obtained here. However, new values of  $\nu^E$  were determined for all of the mixtures in an attempt to achieve correlations for the densities, eq 1, which are used to determine the VLE compositions. The  $h^{\rm E}$  values were measured for the six systems at T = (291.15, 298.15, and318.15) K, but only for mixtures with even alkanes since values for mixtures with n = 5, 7, and 9 were already published.<sup>4,5</sup> The  $(x_1, h^E)$  values are recorded in Table 6 and represented graphically in Figure 3a,b; the inset figures show the comparison between the equimolar values with the values taken from the literature. On the whole, there is good agreement except for the measurements of some authors,  $^{11-13}$  which present slightly lower values.

Correlations were carried out for  $v^{E}$  and  $h^{E}$ , Tables 5 and 6, versus the *active fraction* of the property considered, related to the ester  $z_{1}(x_{1},T)$  by a simple polynomial expression whose previous have been acceptable, which for a generic excess function  $y^{E}$  takes the following form:

$$y^{\rm E} = z_1(1-z_1) \sum_{i=0}^{i=2} \left(\frac{y_{i0}}{T} + y_{i1} + y_{i2}T\right) z_1^i$$
(3)

Table 6. Experimental Values of  $(x_1, h^E)$  for Binary Systems  $CH_3COO(CH_2)_2CH_3(1) + C_nH_{2n+2}$  (n = 5 to 10)(2) at Three Temperatures of (291.15, 298.15, and 318.15) K and Atmospheric Pressure<sup>a</sup>

| -      | $h^{\mathrm{E}}$    |                | $h^{\mathrm{E}}$    |        | $h^{\rm E}$         |        | $h^{\mathrm{E}}$    |                 | $h^{\mathrm{E}}$    |        | $h^{\mathrm{E}}$    |
|--------|---------------------|----------------|---------------------|--------|---------------------|--------|---------------------|-----------------|---------------------|--------|---------------------|
| $x_1$  | J·mol <sup>-1</sup> | $x_1$          | J·mol <sup>-1</sup> | $x_1$  | J·mol <sup>−1</sup> | $x_1$  | J·mol <sup>-1</sup> | $x_1$           | J·mol <sup>-1</sup> | $x_1$  | J·mol <sup>-1</sup> |
| •      | <u>,</u>            | T = 292        |                     |        | 5                   |        | Prop                | yl Ethanoate (  | (1) + Hexan         |        | 5                   |
|        | Prop                | yl Ethanoate ( |                     | e (2)  |                     | 0.1450 | 529                 | 0.5590          | 1094                | 0.8989 | 376                 |
| 0.0667 | 224                 | 0.4028         | 988                 | 0.6434 | 896                 | 0.2223 | 743                 | 0.6073          | 1044                | 0.9494 | 195                 |
| 0.1334 | 406                 | 0.4610         | 1026                | 0.7089 | 787                 | 0.3011 | 931                 | 0.6518          | 979                 |        |                     |
| 0.2047 | 617                 | 0.5088         | 1031                | 0.7812 | 636                 | 0.3660 | 1038                | 0.7091          | 874                 |        |                     |
| 0.2753 | 780                 | 0.5257         | 1025                | 0.8537 | 446                 |        | Prop                | oyl Ethanoate ( | (1) + Octan         | e (2)  |                     |
| 0.3414 | 914                 | 0.5824         | 973                 | 0.9242 | 249                 | 0.0883 | 429                 | 0.4117          | 1219                | 0.6055 | 1199                |
|        | Prop                | yl Ethanoate ( | (1) + Hexan         | e (2)  |                     | 0.1747 | 727                 | 0.4788          | 1257                | 0.6550 | 1139                |
| 0.0740 | 275                 | 0.4417         | 1087                | 0.6705 | 952                 | 0.2568 | 966                 | 0.5346          | 1249                | 0.7074 | 1049                |
| 0.1514 | 544                 | 0.4984         | 1109                | 0.7361 | 817                 | 0.3398 | 1130                | 0.5849          | 1219                | 0.7607 | 929                 |
| 0.2307 | 751                 | 0.5492         | 1090                | 0.8064 | 655                 |        | Prop                | yl Ethanoate (  | (1) + Decan         | e (2)  |                     |
| 0.3056 | 922                 | 0.5528         | 1087                | 0.8762 | 464                 | 0.1028 | 532                 | 0.5348          | 1416                | 0.7601 | 1076                |
| 0.3758 | 1038                | 0.6101         | 1029                | 0.9422 | 246                 | 0.2102 | 889                 | 0.5925          | 1395                | 0.8123 | 898                 |
|        | Prop                | yl Ethanoate ( | 1) + Heptan         | ne (2) |                     | 0.3062 | 1158                | 0.6163          | 1363                | 0.8626 | 707                 |
| 0.0996 | 436                 | 0.5309         | 1195                | 0.7717 | 810                 | 0.3924 | 1317                | 0.6615          | 1305                | 0.9119 | 492                 |
| 0.2001 | 756                 | 0.5880         | 1149                | 0.8326 | 639                 | 0.4676 | 1394                | 0.7100          | 1195                | 0.9581 | 259                 |
| 0.2956 | 1001                | 0.6380         | 1073                | 0.8942 | 437                 |        |                     | T = 318         | 3.15 K              |        |                     |
| 0.3852 | 1140                | 0.6560         | 1046                | 0.9501 | 226                 |        | Prop                | yl Ethanoate (  | (1) + Hexan         | e (2)  |                     |
| 0.4642 | 1192                | 0.7113         | 948                 |        |                     | 0.0748 | 289                 | 0.4746          | 1146                | 0.7753 | 774                 |
|        | Prop                | yl Ethanoate   | (1) + Octano        | e (2)  |                     | 0.1298 | 511                 | 0.5084          | 1142                | 0.8288 | 613                 |
| 0.0879 | 457                 | 0.4860         | 1298                | 0.7256 | 1020                | 0.2004 | 736                 | 0.5582          | 1127                | 0.8906 | 417                 |
| 0.1784 | 765                 | 0.5436         | 1292                | 0.7843 | 862                 | 0.2777 | 941                 | 0.6039          | 1080                | 0.9452 | 224                 |
| 0.2664 | 1014                | 0.5927         | 1257                | 0.8412 | 686                 | 0.3479 | 1058                | 0.6543          | 1012                |        |                     |
| 0.3472 | 1175                | 0.6180         | 1219                | 0.8983 | 469                 | 0.4119 | 1119                | 0.7123          | 914                 |        |                     |
| 0.4208 | 1265                | 0.6703         | 1139                | 0.9546 | 233                 |        | Prop                | yl Ethanoate (  | (1) + Octan         | e (2)  |                     |
|        | Prop                | yl Ethanoate ( | (1) + Nonan         | e (2)  |                     | 0.0767 | 394                 | 0.5293          | 1296                | 0.7936 | 864                 |
| 0.1167 | 596                 | 0.5009         | 1383                | 0.7299 | 1085                | 0.1676 | 740                 | 0.5791          | 1257                | 0.8521 | 682                 |
| 0.2247 | 946                 | 0.5447         | 1371                | 0.7964 | 899                 | 0.2591 | 1018                | 0.5859          | 1248                | 0.9064 | 476                 |
| 0.3093 | 1167                | 0.5617         | 1359                | 0.8649 | 648                 | 0.3352 | 1179                | 0.6316          | 1191                | 0.9555 | 249                 |
| 0.3790 | 1298                | 0.6139         | 1312                | 0.9356 | 355                 | 0.4086 | 1276                | 0.6848          | 1108                |        |                     |
| 0.4448 | 1360                | 0.6683         | 1222                |        |                     | 0.4719 | 1304                | 0.7377          | 1001                |        |                     |
|        | Prop                | yl Ethanoate ( | (1) + Decan         | e (2)  |                     |        | Prop                | yl Ethanoate (  | (1) + Decan         | e (2)  |                     |
| 0.0703 | 391                 | 0.4892         | 1457                | 0.7166 | 1228                | 0.1083 | 556                 | 0.5203          | 1454                | 0.7682 | 1083                |
| 0.1623 | 752                 | 0.5501         | 1460                | 0.7751 | 1056                | 0.2064 | 922                 | 0.5710          | 1432                | 0.8288 | 885                 |
| 0.2528 | 1061                | 0.6049         | 1428                | 0.8324 | 844                 | 0.3068 | 1211                | 0.6098          | 1391                | 0.8862 | 640                 |
| 0.3401 | 1276                | 0.6150         | 1413                | 0.8924 | 585                 | 0.3885 | 1364                | 0.6588          | 1329                | 0.9480 | 347                 |
| 0.4179 | 1399                | 0.6649         | 1337                | 0.9524 | 309                 | 0.4625 | 1446                | 0.7129          | 1225                |        |                     |
|        |                     | T = 298        | 8.15 K              |        |                     |        |                     |                 |                     |        |                     |
|        | Prop                | yl Ethanoate ( | (1) + Hexan         | e (2)  |                     |        |                     |                 |                     |        |                     |
| 0.0319 | 103                 | 0.4223         | 1104                | 0.7653 | 741                 |        |                     |                 |                     |        |                     |
| 0.0736 | 271                 | 0.5030         | 1122                | 0.8334 | 569                 |        |                     |                 |                     |        |                     |
|        |                     |                |                     |        |                     |        |                     |                 |                     |        |                     |


<sup>*a*</sup>Uncertainties *u* are:  $u(T) = \pm 0.002$  K,  $u(x) = \pm 0.0005$ , and  $u(h^{E}) = \pm 2$  J·mol<sup>-1</sup>.

For the volumes, their dependence on the composition of the mixtures is determined by the *volume active fraction*  $z_1$ , given by the expression,

$$z_{1} = \frac{x_{1}}{x_{1} + [v_{2}^{o}(T)/v_{1}^{o}(T)]x_{2}}$$
  
=  $\frac{x_{1}}{x_{1} + k_{\nu}^{21}(T)x_{2}}$   
=  $\frac{x_{1}}{x_{1} + [M_{2}\rho_{1}/M_{1}\rho_{2}](T)x_{2}}$  (4)

where  $M_i$  and  $\rho_i$  are, respectively, the molecular masses and densities of the pure component *i*. The so-called active fraction  $z_1$  coincides, eq 4, with the expression of the volumetric fraction, although this latter concept is not used in the correlation of other properties. The values of  $k_v^{21}(T)$  vary with the working temperature, although, in some mixtures this is negligible; so, in this case the slope varies from a slightly positive value in mixtures with pentane  $(dk_v^{21}/dT) = 4.4 \cdot 10^{-4} \text{ K}^{-1}$  to a negative value of  $-3.9 \cdot 10^{-4} \text{ K}^{-1}$  in mixtures with decane. Therefore, to simplify the data treatment, a constant mean value is taken for  $k_v^{21}$ , which is calculated as shown in eq 4, since the greatest difference (in the variation in *T*) is less than 0.4 %.

When eq 3 is used to correlate the enthalpy data  $h^{\rm E}(x_{\rm 1},T)$ , there is considered to be a dependence on the energetic effects arising during the mixing process, taking into account the contact intermolecular surfaces. Hence, eq 4 should be considered as a function of "surface active fractions" assigning a



**Figure 3.** Excess molar enthalpies and correlation curves (—) obtained by eq 3 at the temperatures of: (a) 291.15 K,  $\bigcirc$ , black line; 298.15 K, +, blue line. (b) 318.15 K,  $\blacklozenge$ , black line. Inset figures show the equimolar  $h^{\text{E}}$  values vs *n* (C<sub>n</sub>H<sub>2n+2</sub>) obtained in this work and their comparison with those from literature referenced: at *T* = 298.15 K:  $\Box$ , ref 4; red  $\blacklozenge$ , ref 11; red +, ref 12; red  $\diamondsuit$ , ref 13; at *T* = 318.15 K:  $\triangle$ , ref 5.

| Table 7. Coefficients $y_{ij}$ and k and Standard Deviations $s(y^E)$ Obtained in the Correlation of Experimental $10^9 v^E(x_1, T)$ and        |
|-------------------------------------------------------------------------------------------------------------------------------------------------|
| $h^{\rm E}(x_1, T)$ Data at Various Temperatures, for Binaries $CH_3COO(CH_2)_2CH_3(1) + C_nH_{2n+2}(n = 5 \text{ to } 10)(2)$ Using eqs 3 to 5 |

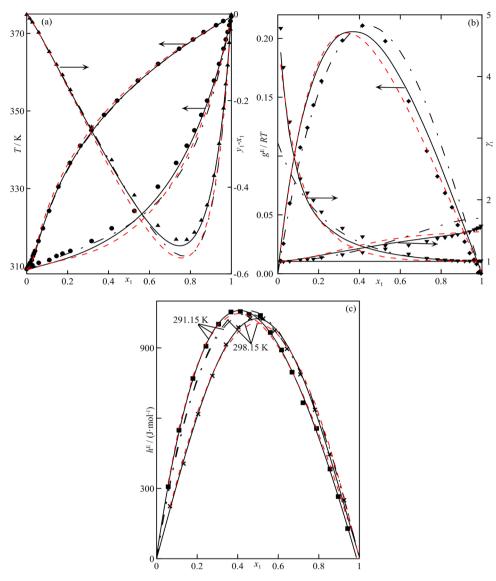
| propyl ethanoate +          | pentane               | hexane                | heptane               | octane                | nonane                | decane                |
|-----------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| $y_{ij} \rightarrow v_{ij}$ |                       |                       |                       |                       |                       |                       |
| $\nu_{00}$                  | $3.689 \cdot 10^{6}$  | 3.688·10 <sup>7</sup> | $2.561 \cdot 10^7$    | 2.730·10 <sup>7</sup> | $-9.556 \cdot 10^{6}$ | $-2.871 \cdot 10^{7}$ |
| $v_{01}$                    | $-3.287 \cdot 10^4$   | $-2.488 \cdot 10^{5}$ | $-1.759 \cdot 10^{5}$ | $-1.788 \cdot 10^{5}$ | $6.086 \cdot 10^4$    | $1.787 \cdot 10^{5}$  |
| $\nu_{02}$                  | $7.770 \cdot 10^{1}$  | $4.336 \cdot 10^2$    | $3.173 \cdot 10^2$    | $3.119 \cdot 10^2$    | $-7.526 \cdot 10^{1}$ | $-2.527 \cdot 10^2$   |
| $v_{10}$                    | $2.234 \cdot 10^{6}$  | $-1.449 \cdot 10^{8}$ | $-6.054 \cdot 10^{7}$ | $-6.531 \cdot 10^{7}$ | 2.036·10 <sup>7</sup> | $7.679 \cdot 10^7$    |
| $v_{11}$                    | $2.037 \cdot 10^4$    | 9.601·10 <sup>5</sup> | 4.113·10 <sup>5</sup> | 4.184·10 <sup>5</sup> | $-1.371 \cdot 10^{5}$ | $-4.826 \cdot 10^{5}$ |
| $v_{12}$                    | $-1.135 \cdot 10^{2}$ | $-1.605 \cdot 10^3$   | $-7.123 \cdot 10^{2}$ | $-6.890 \cdot 10^2$   | $2.076 \cdot 10^2$    | $7.264 \cdot 10^2$    |
| $\nu_{20}$                  | $-2.612 \cdot 10^{5}$ | $1.193 \cdot 10^{8}$  | $1.904 \cdot 10^{7}$  | 3.369·10 <sup>7</sup> | $-5.274 \cdot 10^{7}$ | $-1.050 \cdot 10^{8}$ |
| $v_{21}$                    | $-3.634 \cdot 10^4$   | $-7.880 \cdot 10^{5}$ | $-1.358 \cdot 10^{5}$ | $-2.137 \cdot 10^{5}$ | 3.418·10 <sup>5</sup> | 6.643·10 <sup>5</sup> |
| $\nu_{22}$                  | $1.365 \cdot 10^2$    | $1.307 \cdot 10^{3}$  | $2.476 \cdot 10^2$    | $3.483 \cdot 10^2$    | $-5.420 \cdot 10^2$   | $-1.032 \cdot 10^{3}$ |
| $k_{\rm v}^{21}$            | 1.071                 | 1.138                 | 1.274                 | 1.411                 | 1.549                 | 1.688                 |
| s(291.15 K)                 | 15                    | 8                     | 15                    | 16                    | 24                    | 19                    |
| s(298.15 K)                 | 19                    | 16                    | 25                    | 17                    | 29                    | 59                    |
| s(318.15 K)                 |                       | 34                    | 20                    | 10                    | 11                    | 30                    |
| s(328.15 K)                 |                       | 18                    | 20                    | 10                    | 7                     | 27                    |
| $y_{ij} \rightarrow h_{ij}$ |                       |                       |                       |                       |                       |                       |
| $h_{00}$                    | $1.151 \cdot 10^{7}$  | 3.733·10 <sup>7</sup> | $-1.322 \cdot 10^{8}$ | 4.898·10 <sup>7</sup> | $-1.323 \cdot 10^{7}$ | $6.605 \cdot 10^7$    |
| $h_{01}$                    | $-1.850 \cdot 10^{5}$ | $-2.462 \cdot 10^{5}$ | 8.707·10 <sup>5</sup> | $-3.194 \cdot 10^{5}$ | $9.473 \cdot 10^4$    | $-4.296 \cdot 10^{5}$ |
| $h_{02}$                    | $5.106 \cdot 10^2$    | $4.198 \cdot 10^2$    | $-1.411 \cdot 10^3$   | $5.429 \cdot 10^2$    | $-1.423 \cdot 10^2$   | $7.250 \cdot 10^2$    |
| $h_{10}$                    | $-5.440 \cdot 10^7$   | $-1.942 \cdot 10^{8}$ | 5.891·10 <sup>8</sup> | $-6.075 \cdot 10^{6}$ | $1.474 \cdot 10^8$    | $-9.318 \cdot 10^{7}$ |
| $h_{11}$                    | 6.875·10 <sup>5</sup> | $1.286 \cdot 10^{6}$  | $-3.874 \cdot 10^{6}$ | $5.348 \cdot 10^4$    | $-9.732 \cdot 10^5$   | 6.244·10 <sup>5</sup> |
| $h_{12}$                    | $-1.707 \cdot 10^{3}$ | $-2.122 \cdot 10^3$   | 6.349·10 <sup>3</sup> | $-1.269 \cdot 10^{2}$ | $1.583 \cdot 10^{3}$  | $-1.068 \cdot 10^{3}$ |
| $h_{20}$                    | 6.265·10 <sup>5</sup> | $2.281 \cdot 10^8$    | $-5.508 \cdot 10^{8}$ | $-6.858 \cdot 10^{7}$ | $-9.367 \cdot 10^{7}$ | $5.732 \cdot 10^{7}$  |
| $h_{21}$                    | $-1.986 \cdot 10^{5}$ | $-1.506 \cdot 10^{6}$ | $3.631 \cdot 10^{6}$  | 4.337·10 <sup>5</sup> | 6.163·10 <sup>5</sup> | $-3.940 \cdot 10^{5}$ |
| $h_{22}$                    | $6.612 \cdot 10^2$    | $2.475 \cdot 10^3$    | $-5.973 \cdot 10^3$   | $-6.757 \cdot 10^2$   | $-1.003 \cdot 10^3$   | $6.853 \cdot 10^2$    |
| $k_{\mathrm{v}}^{21}$       | 1.002                 | 1.049                 | 1.176                 | 1.303                 | 1.431                 | 1.559                 |
| s(291.15 K)                 | 11                    | 12                    | 8                     | 11                    | 11                    | 16                    |
| s(298.15 K)                 | 13                    | 12                    | 9                     | 6                     | 9                     | 17                    |
| s(318.15 K)                 |                       | 9                     | 7                     | 9                     | 11                    | 12                    |

surface parameter  $\varsigma_i$  (proportional to the surface of each molecule), which describes its specific contribution to the "excess quantity" produced.

The relationship between the k parameters of eqs 4 and 5 is established by an equation of the form:

$$z_{1} = \frac{x_{1}}{x_{1} + [\varsigma_{2}^{\circ}(T)/\varsigma_{1}^{\circ}(T)]x_{2}} = \frac{x_{1}}{x_{1} + k_{h}^{21}(T)x_{2}}$$
(5)

$$k_h^{21} = (k_q^{21}) \left( \frac{k_v^{21}}{k_r^{21}} \right)^{2/3}$$
(6)

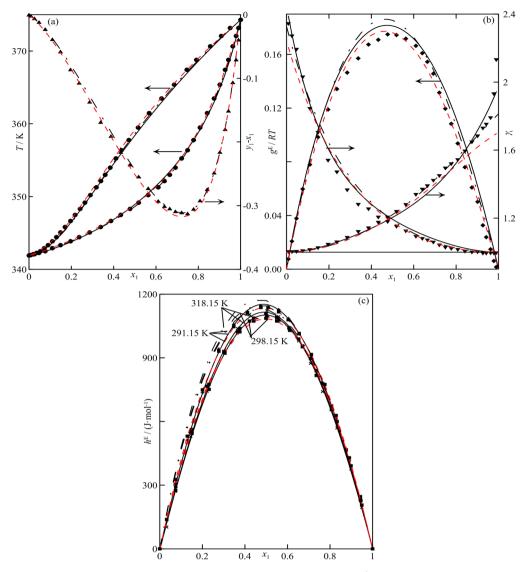

| · /    | · · ·  |        |            |            |                |               |            |        |            |            |                |
|--------|--------|--------|------------|------------|----------------|---------------|------------|--------|------------|------------|----------------|
| T/K    | $x_1$  | $y_1$  | $\gamma_1$ | $\gamma_2$ | $g^{\rm E}/RT$ | T/K           | $x_1$      | $y_1$  | $\gamma_1$ | $\gamma_2$ | $g^{\rm E}/RT$ |
|        |        |        |            | -          | -              | (1) + Pentane |            |        |            |            |                |
| 309.24 | 0.0000 | 0.0000 |            | 1.000      | 0.000          | 341.02        | 0.7819     | 0.2622 | 1.020      | 1.361      | 0.083          |
| 309.88 | 0.0146 | 0.0061 | 4.773      | 0.988      | 0.011          | 344.98        | 0.8189     | 0.3160 | 1.013      | 1.377      | 0.069          |
| 310.21 | 0.0276 | 0.0102 | 4.140      | 0.986      | 0.026          | 348.96        | 0.8530     | 0.3782 | 1.008      | 1.402      | 0.056          |
| 310.83 | 0.0579 | 0.0170 | 3.255      | 0.991      | 0.060          | 352.67        | 0.8810     | 0.4411 | 0.999      | 1.427      | 0.041          |
| 311.59 | 0.1101 | 0.0241 | 2.330      | 1.016      | 0.107          | 357.79        | 0.9150     | 0.5433 | 0.995      | 1.455      | 0.027          |
| 312.60 | 0.1455 | 0.0303 | 2.100      | 1.019      | 0.124          | 362.12        | 0.9401     | 0.6420 | 0.994      | 1.473      | 0.018          |
| 313.21 | 0.1744 | 0.0352 | 1.985      | 1.029      | 0.143          | 366.04        | 0.9615     | 0.7451 | 0.996      | 1.503      | 0.012          |
| 313.91 | 0.2135 | 0.0400 | 1.793      | 1.051      | 0.164          | 368.43        | 0.9734     | 0.8131 | 0.997      | 1.520      | 0.008          |
| 316.48 | 0.3165 | 0.0574 | 1.529      | 1.098      | 0.198          | 370.32        | 0.9817     | 0.8650 | 0.993      | 1.535      | 0.001          |
| 319.77 | 0.4148 | 0.0791 | 1.392      | 1.134      | 0.211          | 372.10        | 0.9902     | 0.9250 | 0.998      | 1.537      | 0.002          |
| 324.20 | 0.5263 | 0.1092 | 1.245      | 1.190      | 0.198          | 373.21        | 0.9951     | 0.9611 | 0.998      | 1.565      | 0.000          |
| 330.46 | 0.6412 | 0.1542 | 1.109      | 1.251      | 0.147          | 374.34        | 1.0000     | 1.0000 | 1.000      |            | 0.000          |
| 336.62 | 0.7303 | 0.2110 | 1.042      | 1.317      | 0.104          |               | <i>.</i> . |        |            |            |                |
|        |        |        |            | -          |                | (1) + Hexane  | • •        |        |            |            |                |
| 341.89 | 0.0000 | 0.0000 |            | 1.000      | 0.000          | 352.13        | 0.6403     | 0.3396 | 1.078      | 1.368      | 0.161          |
| 341.95 | 0.0088 | 0.0070 | 2.341      | 1.000      | 0.007          | 352.98        | 0.6643     | 0.3599 | 1.069      | 1.388      | 0.154          |
| 342.07 | 0.0253 | 0.0196 | 2.269      | 1.000      | 0.021          | 353.97        | 0.6922     | 0.3833 | 1.056      | 1.420      | 0.146          |
| 342.25 | 0.0470 | 0.0354 | 2.191      | 1.001      | 0.038          | 355.22        | 0.7209     | 0.4104 | 1.040      | 1.447      | 0.131          |
| 342.50 | 0.0767 | 0.0540 | 2.028      | 1.006      | 0.060          | 356.36        | 0.7493     | 0.4371 | 1.026      | 1.492      | 0.120          |
| 342.91 | 0.1100 | 0.0715 | 1.843      | 1.012      | 0.078          | 357.75        | 0.7772     | 0.4721 | 1.020      | 1.517      | 0.108          |
| 343.32 | 0.1485 | 0.0905 | 1.702      | 1.023      | 0.098          | 359.48        | 0.8080     | 0.5161 | 1.013      | 1.542      | 0.094          |
| 343.84 | 0.1959 | 0.1100 | 1.538      | 1.044      | 0.119          | 361.45        | 0.8422     | 0.5680 | 1.003      | 1.592      | 0.076          |
| 344.43 | 0.2372 | 0.1301 | 1.469      | 1.058      | 0.134          | 363.46        | 0.8746     | 0.6264 | 0.998      | 1.646      | 0.061          |
| 345.08 | 0.2860 | 0.1492 | 1.364      | 1.084      | 0.146          | 365.36        | 0.9015     | 0.6857 | 0.999      | 1.681      | 0.050          |
| 345.80 | 0.3385 | 0.1699 | 1.279      | 1.118      | 0.157          | 367.41        | 0.9265     | 0.7465 | 0.992      | 1.727      | 0.033          |
| 346.64 | 0.3866 | 0.1959 | 1.252      | 1.140      | 0.167          | 368.79        | 0.9423     | 0.7914 | 0.991      | 1.750      | 0.024          |
| 347.46 | 0.4332 | 0.2175 | 1.204      | 1.173      | 0.171          | 370.65        | 0.9629     | 0.8567 | 0.993      | 1.788      | 0.015          |
| 348.30 | 0.4773 | 0.2415 | 1.177      | 1.204      | 0.175          | 372.07        | 0.9787     | 0.9082 | 0.992      | 1.929      | 0.006          |
| 349.16 | 0.5184 | 0.2641 | 1.149      | 1.237      | 0.174          | 373.16        | 0.9899     | 0.9507 | 0.994      | 2.129      | 0.002          |
| 350.20 | 0.5629 | 0.2904 | 1.122      | 1.277      | 0.172          | 374.34        | 1.0000     | 1.0000 | 1.000      |            | 0.000          |
| 351.25 | 0.6104 | 0.3179 | 1.091      | 1.337      | 0.166          |               |            |        |            |            |                |
|        |        |        |            | Prop       | yl Ethanoate ( | (1) + Heptane | e (2)      |        |            |            |                |
| 371.55 | 0.0000 | 0.0000 |            | 1.000      | 0.000          | 367.64        | 0.6001     | 0.5341 | 1.089      | 1.303      | 0.157          |
| 370.51 | 0.0298 | 0.0603 | 2.275      | 0.997      | 0.022          | 367.79        | 0.6279     | 0.5521 | 1.071      | 1.340      | 0.152          |
| 370.13 | 0.0590 | 0.1033 | 1.990      | 0.992      | 0.033          | 367.90        | 0.6498     | 0.5686 | 1.062      | 1.367      | 0.149          |
| 369.57 | 0.0954 | 0.1513 | 1.833      | 0.992      | 0.051          | 368.19        | 0.6729     | 0.5869 | 1.049      | 1.390      | 0.140          |
| 368.86 | 0.1398 | 0.2084 | 1.760      | 0.993      | 0.073          | 368.44        | 0.7003     | 0.6065 | 1.034      | 1.435      | 0.132          |
| 368.29 | 0.1895 | 0.2627 | 1.665      | 0.998      | 0.095          | 368.74        | 0.7306     | 0.6301 | 1.020      | 1.489      | 0.122          |
| 367.78 | 0.2337 | 0.3031 | 1.582      | 1.012      | 0.116          | 369.06        | 0.7556     | 0.6507 | 1.008      | 1.536      | 0.111          |
| 367.46 | 0.2761 | 0.3347 | 1.493      | 1.032      | 0.133          | 369.43        | 0.7801     | 0.6762 | 1.004      | 1.566      | 0.102          |
| 367.27 | 0.3070 | 0.3578 | 1.444      | 1.047      | 0.145          | 369.85        | 0.8033     | 0.7023 | 0.999      | 1.591      | 0.091          |
| 367.11 | 0.3411 | 0.3828 | 1.397      | 1.063      | 0.154          | 370.29        | 0.8275     | 0.7289 | 0.994      | 1.632      | 0.080          |
| 367.08 | 0.3789 | 0.4073 | 1.341      | 1.086      | 0.162          | 370.75        | 0.8508     | 0.7561 | 0.989      | 1.676      | 0.068          |
| 367.07 | 0.4138 | 0.4308 | 1.299      | 1.105      | 0.167          | 371.26        | 0.8823     | 0.7959 | 0.988      | 1.753      | 0.055          |
| 367.05 | 0.4450 | 0.4470 | 1.257      | 1.129      | 0.169          | 371.73        | 0.9069     | 0.8321 | 0.991      | 1.800      | 0.047          |
| 367.12 | 0.4716 | 0.4624 | 1.219      | 1.154      | 0.169          | 372.54        | 0.9372     | 0.8805 | 0.990      | 1.857      | 0.029          |
| 367.23 | 0.5025 | 0.4781 | 1.179      | 1.187      | 0.168          | 373.25        | 0.9652     | 0.9292 | 0.994      | 1.948      | 0.017          |
| 367.35 | 0.5492 | 0.5014 | 1.127      | 1.247      | 0.165          | 373.98        | 0.9912     | 0.9712 | 0.990      | 3.072      | 0.000          |
| 367.46 | 0.5694 | 0.5155 | 1.114      | 1.265      | 0.163          | 374.34        | 1.0000     | 1.0000 | 1.000      |            |                |
|        |        |        |            |            |                | (1) + Octane  |            |        |            |            |                |
| 398.85 | 0.0000 | 0.0000 |            | 1.000      | 0.000          | 375.17        | 0.7735     | 0.8285 | 1.045      | 1.490      | 0.124          |
| 394.46 | 0.0553 | 0.1455 | 1.523      | 1.016      | 0.038          | 375.07        | 0.7899     | 0.8386 | 1.039      | 1.516      | 0.118          |
| 391.36 | 0.1003 | 0.2423 | 1.513      | 1.030      | 0.068          | 374.89        | 0.8078     | 0.8500 | 1.035      | 1.549      | 0.112          |
| 389.47 | 0.1319 | 0.2986 | 1.489      | 1.041      | 0.087          | 374.83        | 0.8165     | 0.8547 | 1.032      | 1.575      | 0.109          |
| 386.59 | 0.1931 | 0.3968 | 1.459      | 1.046      | 0.109          | 374.77        | 0.8309     | 0.8643 | 1.032      | 1.599      | 0.102          |
| 384.48 | 0.2438 | 0.4619 | 1.424      | 1.058      | 0.129          | 374.64        | 0.8455     | 0.8736 | 1.027      | 1.637      | 0.096          |
| 382.65 | 0.3092 | 0.5235 | 1.338      | 1.030      | 0.129          | 374.54        | 0.8577     | 0.8816 | 1.024      | 1.670      | 0.092          |
| 381.89 | 0.3414 | 0.5482 | 1.295      | 1.100      | 0.144          | 374.46        | 0.8709     | 0.8906 | 1.022      | 1.705      | 0.092          |
| 380.14 | 0.4125 | 0.6088 | 1.250      | 1.125      | 0.151          | 374.42        | 0.8829     | 0.8993 | 1.019      | 1.733      | 0.078          |
| 550.14 | 0.7123 | 0.0000 | 1.230      | 1.123      | 0.101          | 5/ 7.74       | 0.0027     | 0.0773 | 1.010      | 1./ 55     | 0.070          |

#### Table 8. continued

| /T / **                          |               |                           |                 |             | E /nm           | /TT / **              |                       |        |            |            | E (nm          |
|----------------------------------|---------------|---------------------------|-----------------|-------------|-----------------|-----------------------|-----------------------|--------|------------|------------|----------------|
| T/K                              | $x_1$         | $y_1$                     | $\gamma_1$      | $\gamma_2$  | $g^{\rm E}/RT$  | T/K                   | <i>x</i> <sub>1</sub> | $y_1$  | $\gamma_1$ | $\gamma_2$ | $g^{\rm E}/RT$ |
|                                  |               |                           |                 | 1           |                 | (1) + Octane          | • •                   |        |            |            |                |
| 378.44                           | 0.4913        | 0.6653                    | 1.203           | 1.170       | 0.171           | 374.39                | 0.8949                | 0.9081 | 1.013      | 1.764      | 0.071          |
| 377.58                           | 0.5447        | 0.6986                    | 1.168           | 1.209       | 0.171           | 374.37                | 0.9050                | 0.9158 | 1.011      | 1.789      | 0.065          |
| 377.31                           | 0.5692        | 0.7115                    | 1.147           | 1.233       | 0.168           | 374.36                | 0.9146                | 0.9234 | 1.009      | 1.811      | 0.059          |
| 376.99                           | 0.5886        | 0.7228                    | 1.137           | 1.253       | 0.168           | 374.35                | 0.9246                | 0.9315 | 1.007      | 1.835      | 0.052          |
| 376.84                           | 0.6019        | 0.7308                    | 1.129           | 1.263       | 0.166           | 374.34                | 0.9344                | 0.9393 | 1.005      | 1.870      | 0.046          |
| 376.67                           | 0.6168        | 0.7410                    | 1.123           | 1.269       | 0.163           | 374.32                | 0.9532                | 0.9557 | 1.003      | 1.915      | 0.033          |
| 376.11                           | 0.6732        | 0.7712                    | 1.088           | 1.338       | 0.152           | 374.31                | 0.9628                | 0.9636 | 1.001      | 1.980      | 0.026          |
| 376.03                           | 0.6918        | 0.7792                    | 1.072           | 1.372       | 0.146           | 374.31                | 0.9730                | 0.9731 | 1.001      | 2.016      | 0.020          |
| 375.79                           | 0.7113        | 0.7909                    | 1.066           | 1.398       | 0.142           | 374.32                | 0.9833                | 0.9829 | 1.000      | 2.072      | 0.012          |
| 375.58                           | 0.7295        | 0.8025                    | 1.061           | 1.418       | 0.138           | 374.33                | 0.9914                | 0.9909 | 0.999      | 2.140      | 0.006          |
| 375.37                           | 0.7528        | 0.8157                    | 1.051           | 1.458       | 0.131           | 374.34                | 1.0000                | 1.0000 | 1.000      |            | 0.000          |
|                                  |               |                           |                 | Prop        | yl Ethanoate    | (1) + Nonane          | (2)                   |        |            |            |                |
| 423.94                           | 0.0000        | 0.0000                    |                 | 1.000       | 0.000           | 383.46                | 0.5720                | 0.8381 | 1.131      | 1.203      | 0.149          |
| 422.45                           | 0.0127        | 0.0577                    | 1.382           | 0.998       | 0.003           | 382.34                | 0.6152                | 0.8531 | 1.104      | 1.258      | 0.149          |
| 420.60                           | 0.0250        | 0.1133                    | 1.432           | 0.996       | 0.006           | 381.35                | 0.6546                | 0.8673 | 1.084      | 1.309      | 0.146          |
| 418.03                           | 0.0444        | 0.1855                    | 1.394           | 0.997       | 0.012           | 380.41                | 0.6949                | 0.8818 | 1.066      | 1.361      | 0.138          |
| 414.85                           | 0.0722        | 0.2671                    | 1.318           | 1.003       | 0.023           | 379.60                | 0.7311                | 0.8943 | 1.051      | 1.419      | 0.131          |
| 411.13                           | 0.1076        | 0.3537                    | 1.277           | 1.015       | 0.040           | 378.81                | 0.7702                | 0.9067 | 1.035      | 1.504      | 0.120          |
| 407.09                           | 0.1490        | 0.4470                    | 1.278           | 1.017       | 0.051           | 377.99                | 0.8112                | 0.9224 | 1.023      | 1.566      | 0.103          |
| 403.33                           | 0.1913        | 0.5268                    | 1.280           | 1.017       | 0.061           | 377.21                | 0.8507                | 0.9359 | 1.012      | 1.679      | 0.088          |
| 399.70                           | 0.2419        | 0.5915                    | 1.241           | 1.039       | 0.082           | 376.55                | 0.8853                | 0.9505 | 1.007      | 1.726      | 0.068          |
| 396.20                           | 0.2952        | 0.6524                    | 1.222           | 1.055       | 0.097           | 376.01                | 0.9151                | 0.9624 | 1.001      | 1.805      | 0.051          |
| 394.25                           | 0.3240        | 0.6851                    | 1.228           | 1.056       | 0.103           | 375.59                | 0.9373                | 0.9701 | 0.998      | 2.020      | 0.042          |
| 392.13                           | 0.3624        | 0.7188                    | 1.216           | 1.066       | 0.112           | 375.23                | 0.9577                | 0.9767 | 0.993      | 2.362      | 0.030          |
| 390.12                           | 0.4017        | 0.7490                    | 1.205           | 1.079       | 0.120           | 374.88                | 0.9749                | 0.9843 | 0.994      | 2.715      | 0.019          |
| 389.02                           | 0.4245        | 0.7647                    | 1.198           | 1.088       | 0.125           | 374.65                | 0.9873                | 0.9899 | 0.993      | 3.469      | 0.009          |
| 387.13                           | 0.4703        | 0.7903                    | 1.175           | 1.118       | 0.135           | 374.50                | 0.9949                | 0.9955 | 0.996      | 3.945      | 0.003          |
| 385.53                           | 0.5126        | 0.8107                    | 1.154           | 1.155       | 0.144           | 374.34                | 1.0000                | 1.0000 | 1.000      |            | 0.000          |
| 384.63                           | 0.5346        | 0.8226                    | 1.151           | 1.166       | 0.147           |                       |                       |        |            |            |                |
|                                  |               |                           |                 | Prop        | yl Ethanoate    | (1) + Decane          | (2)                   |        |            |            |                |
| 447.27                           | 0.0000        | 0.0000                    |                 | 1.000       | 0.000           | 385.80                | 0.5739                | 0.9117 | 1.150      | 1.257      | 0.178          |
| 444.79                           | 0.0082        | 0.0669                    | 1.608           | 0.998       | 0.002           | 384.48                | 0.6114                | 0.9204 | 1.130      | 1.302      | 0.177          |
| 441.09                           | 0.0208        | 0.1568                    | 1.588           | 1.001       | 0.011           | 383.18                | 0.6479                | 0.9291 | 1.115      | 1.342      | 0.174          |
| 437.03                           | 0.0357        | 0.2518                    | 1.601           | 0.999       | 0.016           | 382.32                | 0.6810                | 0.9354 | 1.094      | 1.392      | 0.167          |
| 432.26                           | 0.0547        | 0.3527                    | 1.603           | 0.997       | 0.023           | 381.16                | 0.7285                | 0.9441 | 1.066      | 1.477      | 0.152          |
| 428.68                           | 0.0722        | 0.4238                    | 1.566           | 0.995       | 0.028           | 380.28                | 0.7635                | 0.9506 | 1.050      | 1.548      | 0.141          |
| 423.19                           | 0.0998        | 0.5187                    | 1.550           | 0.996       | 0.040           | 379.43                | 0.8002                | 0.9566 | 1.032      | 1.661      | 0.127          |
| 417.23                           | 0.1383        | 0.6084                    | 1.489           | 1.003       | 0.058           | 378.33                | 0.8427                | 0.9654 | 1.021      | 1.753      | 0.106          |
| 411.51                           | 0.1803        | 0.6840                    | 1.457           | 1.007       | 0.074           | 377.27                | 0.8839                | 0.9734 | 1.011      | 1.900      | 0.084          |
| 406.02                           | 0.2298        | 0.7473                    | 1.416           | 1.014       | 0.091           | 376.49                | 0.9143                | 0.9799 | 1.006      | 2.004      | 0.065          |
| 401.08                           | 0.2811        | 0.7967                    | 1.388           | 1.022       | 0.108           | 375.87                | 0.9382                | 0.9847 | 1.003      | 2.166      | 0.051          |
| 397.63                           | 0.3242        | 0.8281                    | 1.362           | 1.029       | 0.119           | 375.31                | 0.9578                | 0.9890 | 1.003      | 2.330      | 0.039          |
| 394.41                           | 0.3707        | 0.8539                    | 1.331           | 1.045       | 0.134           | 374.92                | 0.9734                | 0.9926 | 1.002      | 2.524      | 0.027          |
| 391.99                           | 0.4155        | 0.8709                    | 1.289           | 1.079       | 0.150           | 374.62                | 0.9839                | 0.9954 | 1.003      | 2.622      | 0.018          |
| 390.36                           | 0.4598        | 0.8815                    | 1.230           | 1.134       | 0.163           | 374.35                | 0.9934                | 0.9976 | 1.004      | 3.372      | 0.012          |
| 388.74                           | 0.5001        | 0.8919                    | 1.194           | 1.182       | 0.172           | 374.34                | 1.0000                | 1.0000 | 1.000      |            | 0.000          |
| 387.75                           | 0.5249        | 0.8984                    | 1.176           | 1.210       | 0.176           |                       |                       |        |            |            |                |
| <sup><i>a</i></sup> Uncertaintie | es u are: u(7 | $T) = \pm 0.01 \text{ I}$ | K, $u(p) = \pm$ | 0.02 kPa, 1 | $u(x_1)=\pm 0.$ | .002, and <i>u</i> () | $(v_1) = \pm 0.002$   |        |            |            |                |

being calculated  $k_r^{21}$  and  $k_q^{21}$  by a procedure already used.<sup>2,3</sup> The parameter  $k_r^{21}$  is the quotient of the van der Waals group volume parameters  $R_k$ , given by Bondi,<sup>32</sup> by the sum  $r_i = \sum_k v_k^{i1} R_k$ weighted by the number of k type groups in the molecule i,  $v_k^{(i)}$ . The parameter  $k_q^{21}$  is the quotient of  $q_i$  parameters,  $k_q = q_2/q_1$ , which are obtained from the weighted sum of the van der Waals group area parameters  $Q_k$  by  $q_i = \sum_k v_k^{(i)} Q_k$ . Now, the different properties are correlated to obtain the  $y_{ij}$  coefficients of eq 3. Table 7 shows the coefficients obtained in the regression of the experimental values of volumes and enthalpies

to an expression such as eq 3. A nonlinear regression procedure was followed using a software based in the simplexmethod implemented in Matlab and minimizing the standard deviation of data,  $s(y^{\rm E})$ . Figures 2 and 3 represent, respectively, the functions obtained for the fits of  $v^{\rm E}(x_1,T)$  and  $h^{\rm E}(x_1,T)$ . Both in Figure 2 and in Table 7 (through the standard deviations) high values of *s* are observed in the  $v^{\rm E}$ correlation curves, but these differences are smaller for the  $h^{\rm E}$ . This is because of the difficulty to correlate the  $v^{\rm E}$  at four temperatures with the same model and the presence of a sigmoidal




**Figure 4.** Plots of experimental values and curves obtained in the multiproperty correlation process (—, proposed model; red dashed line, NRTL; —, UNIFAC) for binary propyl ethanoate (1) + pentane (2). (a) iso-*p* VLE, this work:  $\bullet$ , *T* vs  $x_1, y_1$ ;  $\blacktriangle$ ,  $(y_1-x_1)$  vs  $x_1$ . (b) iso-*p* VLE, this work:  $\blacklozenge$ ,  $g^E/RT$  vs  $x_1$ ;  $\bigtriangledown$ ,  $\gamma_i$  vs  $x_1$ . (c)  $h^E$  vs  $x_1$  at T = 291.15 K ( $\blacksquare$ ) and T = 298.15 K (×) (ref 4).

distribution of the points corresponding to the propyl ethanoate + pentane system at temperatures of (291.15 and 298.15) K. It was checked how the introduction of a variation in the  $k_v^{21}$  and  $k_h^{21}$  parameters with *T* in the regression process did not significantly change the final results.

Regarding the interpretation of the results of mixing properties, the systems studied present expansive effects in all cases,  $v^{\rm E} > 0$ , also complying with  $(\partial v^{\rm E}/\partial T)_p > 0$  in the range of temperatures used in this work. Although the enthalpies are found to obey the expression  $h^{\rm E} > 0$ , variation of this property with temperature presents an inversion of the slope  $(\partial h^{\rm E}/\partial T)_p$ , which goes from negative, in systems with n > 6in the interval (291.15 to 298.15) K, to positive in the interval (298.15 to 318.15) K. However, this change is not as pronounced in systems with  $n \le 6$ . This behavior confirms the details of the structural model presented in previous works,<sup>3-5</sup> explaining the expansive and endothermic effects of the experimentation and the increase in excess quantities with increasing alkane chain length. By contrast, if net values of the properties  $v^{\rm E}$  and  $h^{\rm E}$  of the mixtures with different ethanoates are compared a slight increase in the permanent dipolar moment is observed  $\mu \cdot 10^{30}/(C \cdot m)$  associated with the COO– group (5.60 for methyl, 5.90 for ethyl, and 5.97 for propyl) that gives rise to an increase in the dipole–dipole attractions, both in the pure component and in the mixture, but less pronounced in the latter due to the greater distance between the dipoles. If this were the only effect, the mixing process would raise the endothermicity and expansivity with increasing alkanolic chain length of the ethanoate. However, experimentally, we find that the opposite occurs, indicating that the effect of  $\mu$  is smaller than the effect dominating these types of mixtures, such as the molecular size of the ethanoates, in other words, due to the increase in nonpolar interactions.

It is important to highlight the aforementioned effect of temperature on  $h^{\rm E}$  since variations in  $h^{\rm E} = \varphi(T)$  present local minima where  $c_p^{\rm E} = 0$ . The literature<sup>9</sup> contains data for systems of propyl ethanoate +  $C_7$ , + $C_{10}$ , presenting in both cases a so-called "omega effect" of the curves, although in the former system, the representation of  $c_p^{\rm E} = \vartheta(x)$  cuts the abscissa at two points. In the



**Figure 5.** Plots of experimental values and curves obtained in the multiproperty correlation process (—, proposed model; red dashed line, NRTL; —, UNIFAC) of the binary propyl ethanoate (1) + hexane (2). (a) iso-*p* VLE, this work:  $\bullet$ , *T* vs  $x_1,y_1$ ;  $\blacktriangle$ , ( $y_1-x_1$ ) vs  $x_1$ . (b) iso-*p* VLE, this work:  $\blacklozenge$ ,  $g^E/RT$  vs  $x_1$ ;  $\blacktriangledown$ ,  $\gamma_i$  vs  $x_1$ . (c)  $h^E$  vs  $x_1$  this work: at *T* = 291.15 K ( $\blacksquare$ ), at *T* = 298.15 K (×), at *T* = 318.15 K (+).

second mixture mentioned above, the "omega curve" appears in the negative region, indicating that the minimum of the function  $h^{\rm E} = h^{\rm E}(T)$  should be found at temperatures higher than 298.15 K, which does occur with the data presented in Table 4. This unusual behavior of some esters in solution is due to the change in their dipolar moments with temperature,<sup>33</sup> which is reflected in their thermal capacities. Pure esters present a conformational equilibrium between the s-trans and s-cis forms, but any change, such as the presence of foreign molecules, would also produce a change in the electrical dipolar moment,<sup>34</sup> caused by a shift in this equilibrium. Another consequence is that the curves  $c_{\rm p}^{\rm E} = \vartheta(x)$  are  $\omega$ -shaped, which, in fact, corresponds to a superposition of two "v-shaped" curves, each corresponding to a dominant conformation. Evidently, at low values for the molar fraction of the ester the dominant *s*-trans shaped curve appears, while at high values of *x* the *s*-*cis* shaped curve dominates. The two "v"-shaped curves form the central maximum of these types of representations.

**VLE Data.** The direct experimental values obtained for isobaric VLE values at  $(101.32 \pm 0.02)$  kPa for the six binaries H<sub>3</sub>CCOOC<sub>3</sub>H<sub>7</sub> (1) + C<sub>n</sub>H<sub>2n+2</sub> (2) (*n* = 5 to 10) are recorded

in Table 8 and represented graphically in Figures 4a to 9a. A comparison of the experimental values obtained in this work with those from another previously published,<sup>6</sup> is carried out by means of the representations of *T* vs  $x_1, y_1$  and  $(y_1 - x_1)$ vs  $x_1$  for the binaries of propyl ethanoate with heptane and nonane. These are shown in Figure 6a and 8a, respectively, showing an acceptable agreement between them. There was some discrepancy between the coordinates  $(x_{az}/T_{az}/K)$  found for the azeotropic point of the binary with n = 7, of (0.445, 367.05), (0.423, 366.99);<sup>35</sup> the mixture with n = 8 produces an azeotropic point at (0.973, 374.31) although no data have been found in the literature for comparison. Figure 1b represents the azeotropic points obtained in isobaric and isothermic conditions for the propyl ethanoate + heptane mixture, using reduced coordinates. The distribution of the azeotropic points for this mixture has enabled a correlation to be achieved using an analogous equation to Antoine's equation, the expression of which appears at the footnote of Figure 1.

The coefficients of activity  $\gamma_i$  of each component in the mixtures were calculated by considering the nonideality of the

vapor phase and determined by the expression:

$$\ln \gamma_{i} = \ln \left[ \frac{y_{i}p}{x_{i}p_{i}^{o}} \right] + \left[ \frac{(B_{ii} - v_{i}^{o})(p - p_{i}^{o})}{RT} \right] + \left[ \frac{p\delta_{12}(1 - y_{i})^{2}}{RT} \right]$$
(7)

where the vapor pressures,  $p_i^{\circ}$ , are obtained from Antoine's equation with the coefficients from Table 4 for the ester and those published in previous works<sup>3,36</sup> for the alkanes. The molar volumes  $v_i^{\circ}$  in saturation conditions were estimated using a modified version of Rackett's equation, using the values of  $Z_{RA}$  given by Spencer and Danner.<sup>37</sup> The second virial coefficients for the pure  $B_{ii}$  compounds and for the mixtures  $B_{12}$  were estimated with the expressions proposed by Tsonopoulos,<sup>38</sup> which are used to calculate the parameter  $\delta_{12} = 2B_{12} - B_{11} - B_{22}$ . The values calculated with eq 7 are presented in Table 8, together with the corresponding to the adimensional Gibbs function  $g^E/RT = \sum x_i \ln \gamma_i$  and are represented graphically in Figures 4b to 9b for the six systems studied. Compliance with the global condition

proposed by Fredenslund et al.<sup>39</sup> for the consistency of VLE data was verified previously. Activity coefficients for the mixtures reveal the degree of interaction among the components present, showing deviation from ideality of the liquid phase. Propyl ethanoate (1) + alkane (2) systems present a quasi-regular variation in the  $\gamma_{i\nu}$  and  $\gamma_2$  increases with alkane chain length while the  $\gamma_1$  decreases with the diminishing relative contact areas of the aliphatic portions. For the propyl ethanoate (1) + nonane (2) system there is a difference between the variation in the  $\gamma_1$  and those presented in a previous work,<sup>6</sup> which is not observed in the mixture with heptane, possibly due to the greater influence of the vapor pressures at higher temperatures corresponding to nonane rather than those of the ester; this is highlighted in section corresponding to vapor presures, with reference to Figure 1a.

## CORRELATION AND PREDICTION OF PROPERTIES FOR PROPYL ETHANOATE + ALKANE MIXTURES

**Correlation.** For the mathematical treatment of the properties of each of the binary systems a multiproperty correlation procedure was employed using two models, the principles of which are described below:

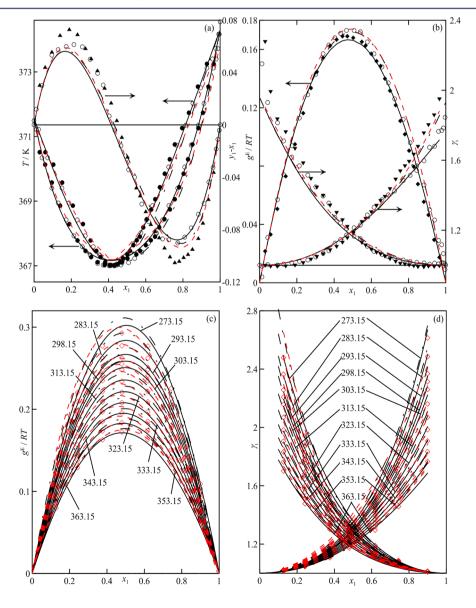
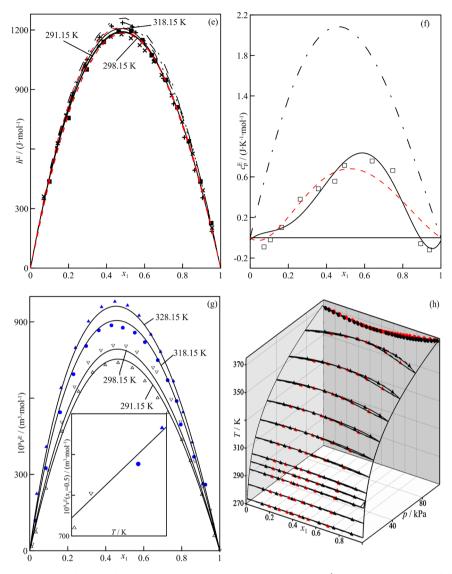




Figure 6. continued

Article



**Figure 6.** Plots of experimental values and curves obtained in the multiproperty correlation process (—, proposed model; red dashed line, NRTL; —, UNIFAC) of the binary propyl ethanoate (1) + heptane (2). (a) iso-*p* VLE, this work:  $\bullet$ , *T* vs  $x_1,y_1$ ;  $\blacktriangle$ ,  $(y_1-x_1)$  vs  $x_1$ ;  $\bigcirc$ , from ref 6. (b) iso-*p* VLE, this work:  $\bullet$ ,  $g^E/RT$  vs  $x_1$ ;  $\bigtriangledown$ ,  $\gamma_i$  vs  $x_1$ ;  $\bigcirc$ ,  $\gamma_i$  vs  $x_1$ ;  $\bigcirc$ , from ref 6. (c) iso-*T* VLE, red  $\diamondsuit$ ,  $g^E/RT$  vs  $x_1$  from ref 13. (d) iso-*T* VLE, red  $\diamondsuit$ ,  $\gamma_i$  vs  $x_1$ ; this work: at *T* = 291.15 K ( $\blacksquare$ ), at *T* = 298.15 K ( $\times$ ) from ref 4, at *T* = 318.15 K (+) from ref 5. (f)  $c_p^E$ -values ( $\square$ ) at *T* = 298.15 K ( $\bigtriangledown$ ), at *T* = 318.15 K (blue  $\bullet$ ), at *T* = 328.15 K (blue  $\bullet$ ); inset shows the equimolar  $v^E(T)$  experimental values and the corresponding straight-line estimated by the proposed model. (h) 3D-representation of iso-*p* VLE experimental values (circle) in this work and iso-*T* VLE from literature (triangle) and correlation curves using the proposed model for binary propyl ethanoate + heptane.

I. A polynomial model implemented over the excess Gibbs function  $g^{E} = g^{E}(x_{1},p,T)$ , with a similar formula to eq 3. This procedure has already been described and used in previous works,<sup>3,15,16</sup> so only a summary of the equations used are presented here:

The main model:

$$g^{\rm E} = z_1(1-z_1)(g_0 + g_1 z_1 + g_2 z_1^2)$$
(8)

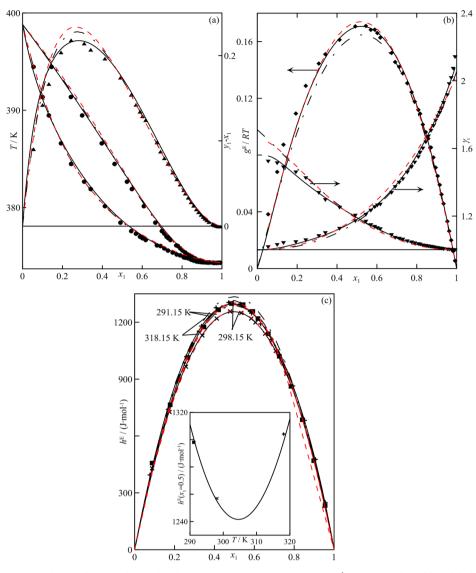
Expression for the coefficients:

$$g_i(p, T) = G_{i1} + G_{i2}p^2 + G_{i3}pT + G_{i4}/T + G_{i5}T^2$$
 (9)

Expression for  $z_1$  of Gibbs function:

$$z_1 = x_1 / (x_1 + k_g^{21} x_2) \tag{10}$$

Expression for  $h^{E}$ :


$$h^{\rm E} = g^{\rm E} - T\left(\frac{\partial g^{\rm E}}{\partial T}\right) = z_1(1-z_1) \sum_{i=0}^2 \left[g_i - T\left(\frac{\partial g_i}{\partial T}\right)_p\right] z_1^i$$
(11)

Expression for  $c_p^{\text{E}}$ :

$$c_p^{\rm E} = \left(\frac{\partial h^{\rm E}}{\partial T}\right)_p = -z_1(1-z_1)T\sum_{i=0}^2 \left(\frac{\partial^2 g_i}{\partial T^2}\right) z_1^i$$
(12)

Expression for  $v^{E}$ :

$$\nu^{\rm E} = \left(\frac{\partial g^{\rm E}}{\partial p}\right)_{\rm T} = z_1(1-z_1) \sum_{i=0}^2 \left(\frac{\partial g_i}{\partial p}\right)_{\rm T} z_1^i$$
(13)



**Figure 7.** Plots of experimental values and curves obtained in the multiproperty correlation process (—, proposed model; red dashed line, NRTL; —, UNIFAC) of the binary propyl ethanoate (1) + octane (2). (a) iso-*p* VLE, this work:  $\bullet$ , *T* vs  $x_1, y_1$ ;  $\blacktriangle$ , ( $y_1-x_1$ ) vs  $x_1$ . (b) iso-*p* VLE, this work:  $\blacklozenge$ ,  $q^E/RT$  vs  $x_1, \psi_1$ ;  $\checkmark$ , ( $y_1-x_1$ ) vs  $x_1$ . (b) iso-*p* VLE, this work:  $\blacklozenge$ ,  $q^E/RT$  vs  $x_1$ ;  $\blacktriangledown$ ,  $\gamma_i$  vs  $x_1$ . (c)  $h^E$  vs  $x_1$  this work: at T = 291.15 K ( $\blacksquare$ ), at T = 298.15 K (×), at T = 318.15 K (+); inset shows the variation of equimolar  $h^E(T)$  as a function of *T* and the corresponding curve obtained by the proposed model.

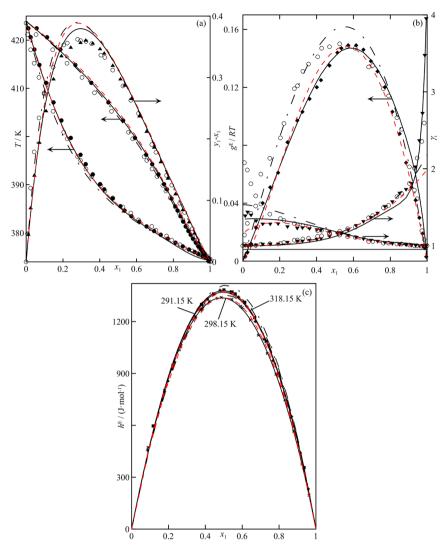
For each of the properties a value is determined for the corresponding *k* parameter  $(k_g^{21}, k_e^{21}, k_c^{21}, k_v^{21})$  independent in each cases according to the particular expression for the active fraction of the corresponding property, eq 10. They are considered as adjustable parameters in the regression procedure.

Equations 8 and 11 to 13 can be defined using a multiobjective optimization algorithm to locate the set of coefficients,  $g_{\vartheta}$  that give the best fit for the set of excess properties. A regression method has been employed for nonlinear functions, implemented in Matlab, generating an objective function (OF) where a weighted standard deviation is considered for each of the properties in the correlation procedure.

$$OF = \sum_{1}^{n} c_{i} s(y^{E}) = \sum_{1}^{n} c_{i} \left[ \sum_{1}^{N} (y^{E}_{i, exp} - y^{E}_{i, cal})^{2} / (N-1) \right]^{1/2}$$
(14)

where  $s(y^{\rm E})$  represents the standard deviations corresponding to each of the properties  $y^{\rm E} = {\rm VLE}$  (iso-*p*, iso-*T*),  $h^{\rm E}$ ,  $v^{\rm E}$ ,  $c_p^{\rm E}$  considered in the fitting procedure, *N* is the number of experimental points for each property, and n the number of different properties that are correlated. The coefficients "c" are correction-parameters for the different quantities, which permit these to be modulated (into an interval) to obtain the best value for OF.

II. The NRTL model,<sup>17</sup> one of the most used for treatment of the thermodynamic properties of solutions, is also used here to validate the application indicated. The basic expression of the model on the Gibbs function is:


$$g^{\rm E}/RT = x_1 x_2 \left[ \frac{G_{12} \tau_{12}}{G_{12} x_1 + x_2} + \frac{G_{21} \tau_{21}}{x_1 + G_{21} x_2} \right]$$
(15)

with

$$G_{ij} = \exp(-\alpha \tau_{ij}) \tag{16}$$

but with

$$\tau_{ij} = \Delta g_{ij0} + \frac{\Delta g_{ij1}}{T} + \Delta g_{ij2} \log T + \Delta g_{ij3} T$$
(17)



**Figure 8.** Plots of experimental values and curves obtained in the multiproperty correlation process (—, proposed model; red dashed line, NRTL; —, UNIFAC) of the binary propyl ethanoate (1) + nonane (2). (a) iso-*p* VLE, this work:  $\bullet$ , *T* vs  $x_1,y_1$ ;  $\bullet$ , ( $y_1-x_1$ ) vs  $x_1$ ;  $\bigcirc$ , from ref 6. (b) iso-*p* VLE, this work:  $\bullet$ ,  $g^E/RT$  vs  $x_1,y_1$ ;  $\bullet$ , ( $y_1-x_1$ ) vs  $x_1$ ;  $\bigcirc$ , from ref 6. (b) iso-*p* VLE, this work:  $\bullet$ ,  $g^E/RT$  vs  $x_1,y_1$ ;  $\bullet$ , ( $y_1-x_1$ ) vs  $x_1$ ;  $\bigcirc$ , from ref 6. (b) iso-*p* VLE, this work:  $\bullet$ ,  $g^E/RT$  vs  $x_1$ ;  $\bigtriangledown$ ,  $\gamma_i$  vs  $x_1$ ;  $\bigcirc$ , from ref 6. (c)  $h^E$  vs  $x_1$  this work: at *T* = 291.15 K ( $\blacksquare$ ); at *T* = 298.15 K (×) from ref 4, at *T* = 318.15 K (+) from ref 5.

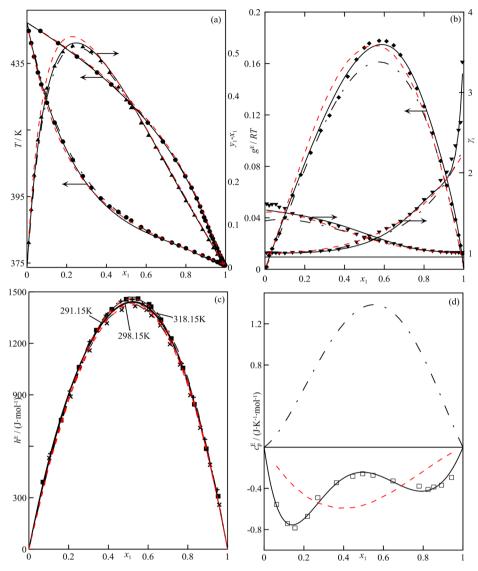
being now  $\Delta g_{ijk}$  the parameters of extended NRTL equation.

$$h^{\rm E} = Rx_1 x_2 \left[ \frac{\tau'_{21}G_{21}}{x_1 + x_2 G_{21}} + \frac{x_1 \tau_{21}G'_{21}}{(x_1 + x_2 G_{21})^2} + \frac{\tau'_{12}G_{12}}{x_1 G_{12} + x_2} + \frac{x_2 \tau_{12}G'_{12}}{(x_1 G_{12} + x_2)^2} \right]$$
(18)

$$\tau'_{ij} = \frac{d\tau_{ij}}{d(1/T)} \quad \text{and} \quad G'_{ij} = \frac{dG_{ij}}{d(1/T)}$$
(19)

Equation 17 is the extended form of another expression previously presented in the literature by Ko et al.,<sup>40</sup> since the original, simpler one does not allow an adequate representation of Gibbs function  $g^{\rm E}$  over a broad temperature range. From eq 18 the one corresponding to  $c_p^{\rm E} = (\partial h^{\rm E} / \partial T)_{p,x}$  is obtained,

$$c_{p}^{E}/RT = -x_{1}x_{2}\left[2\frac{\partial}{\partial T}\left(\frac{G_{12}\tau_{12}}{G_{12}x_{1}+x_{2}}+\frac{G_{21}\tau_{21}}{x_{1}+G_{21}x_{2}}\right) + T\frac{\partial^{2}}{\partial T^{2}}\left(\frac{G_{12}\tau_{12}}{G_{12}x_{1}+x_{2}}+\frac{G_{21}\tau_{21}}{x_{1}+G_{21}x_{2}}\right)\right]$$
(20)


or an alternative form more condensed:

$$c_p^{\rm E}/RT = \left[2(h^{\rm E}/RT) - T\frac{\partial(h^{\rm E}/RT)}{\partial T}\right]$$
(21)

Hence, in this model nine parameters can be determined to optimize the correlation, eight  $\Delta g_{ijk}$  included in eq 17 and the nonrandomness parameter  $\alpha$ . The correlation procedure is the same as the one recorded in part I, using the same (OF) expressed by eq 14.

**Prediction.** The version by Gmehling et al.<sup>18</sup> of the UNIFAC method was used to estimate the mixing properties of the six saturated hydrocarbons with propyl ethanoate, and the results for  $g^E$ ,  $\gamma_i$ ,  $h^E$ , T, and for  $(y_1-x_1)$ , vs  $x_1$  are shown in Figures 4 to 9 which also include the estimations of  $c_p^E$  vs  $x_1$  for the systems with heptanes and decane.

The coefficients obtained for the two models described in detail in the previous section for the correlation of six systems are recorded in Table 7. Owing to the variable availability of experimental data for each of the systems studied in this work, the results obtained for each binary system are discussed in detail in the following paragraphs.



**Figure 9.** Plots of experimental values and curves obtained in the multiproperty correlation process (—, proposed model; red dashed line, NRTL; —, UNIFAC) of the binary propyl ethanoate (1) + decane (2). (a) iso-*p* VLE, this work:  $\bullet$ , *T* vs  $x_1,y_1$ ;  $\blacktriangle$ , ( $y_1-x_1$ ) vs  $x_1$ . (b) iso-*p* VLE, this work:  $\blacklozenge$ ,  $g^E/RT$  vs  $x_1,y_1$ ;  $\checkmark$ , (c)  $h^E$  vs  $x_1$  this work: at *T* = 291.15 K ( $\blacksquare$ ); at *T* = 298.15 K (×); at *T* = 318.15 K (+). (d)  $c_p^E$ -values ( $\square$ ) at *T* = 298.15 K from ref 9.

Propyl Ethanoate + Pentane, + Hexane, + Octane, + Nonane. For this set of systems  $H_3CCOOC_3H_7(1) + C_nH_{2n+2}(2)$  (n = 5, 6, 8, 9) experimental VLE data iso-p, p = 101.32 kPa, and the  $h^E$ are only available at three temperatures (indicated previously). Correlations for the thermodynamic properties,  $\gamma_i$  and  $g^E$ , for these systems are shown in Figures 4b to 9b, and the quality of fit is acceptable in all cases. The model adequately reproduces the excess enthalpies, even with the inversion that appears with changing temperature, which produces a local minimum for the function  $h^E = \varphi(T)$ . The model was also used to reproduce equilibrium quantities  $(T, x_1, y_1)$  and to validate its use. Almost all representations obtained were good except for the mixture containing nonane, which was considered to be acceptable; for this mixture the mole fractions obtained of the vapor phase  $y_1$  were higher than those obtained in the real experimentation; see Figure 8a.

The NRTL correlation of the four systems considered in this section is acceptable, although quantitatively inferior to that of the proposed model, eqs 8 to 13. The  $h^{E}$  values present an adequate fit, even showing the inversion of the enthalpy with temperature in cases n = 8 and 9. The  $\alpha$ -values were obtained in the same correlation process as an additional parameter to get the

best fit. In some cases the optimium  $\alpha$ -values obtained are very small,  $\ll$ |0.01|, so the exponential of eq 16 has less influence in the model. Hence, eq 15 and its derivates are transformed into polynomial expressions.

For these mixtures, the UNIFAC method slightly overestimates  $g^E$  values, and reproductions of the quantities T,  $x_1$ ,  $y_1$ are similar to those obtained with the correlation model employed, and the previous observations can also apply here. The method determines, at least qualitatively, values of  $h^E$ reasonably close to experimental ones but does not reproduce the real change in this quantity with temperature. In other words, it does not show the  $h^E$  inversion produced for these systems in the interval (291 to 298) K. Quantitatively the average estimation is less than 5 % for that property. The method does not estimate the experimental azeotropic point obtained for the (propyl ethanoate + octane) system.

*Propyl Ethanoate* + *Heptane*. This binary system has been studied by other authors, and the literature provides  $(iso-p)^6$  and  $(iso-T)^{13}$  VLE data at different temperatures, and even values of  $c_p^{\text{E},9}$ . The model proposed, eqs 8 to 13, offers a good correlation of the different properties; see Figure 6a–h. In this case, for the

Table 9. Parameters for eqs 8 and 15 Obtained in the Multiproperty Correlation of Several Properties (iso-*p* and iso-*T* VLE Data,  $10^9 v^{\rm E}(x_1,T)$ ,  $h^{\rm E}(x_1,T)$ ,  $c_p^{\rm E}(x_1)$ , for Propyl Ethanoate (1) + an Alkane (2) Mixtures and Standard Deviations *s* Calculated for Each of the Quantities

| opyl ethanoate +                                                     |                                | eqs 8 to 13                                 |                                 |                                                                                       |               | NRTL                   |                        |
|----------------------------------------------------------------------|--------------------------------|---------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------|---------------|------------------------|------------------------|
| pentane                                                              | <i>i</i> = 0                   | <i>i</i> = 1                                | <i>i</i> = 2                    |                                                                                       | i             | $	au_{12i}$            | $	au_{21i}$            |
| $g_{i1}$                                                             | $-2.362 \cdot 10^5$            | $-4.332 \cdot 10^4$                         | $8.193 \cdot 10^4$              |                                                                                       | 1             | $-5.176 \cdot 10^{1}$  | $2.373 \cdot 10^3$     |
| $g_{i2}$                                                             | $-1.840 \cdot 10^{1}$          | $-4.731 \cdot 10^{1}$                       | $5.341 \cdot 10^{1}$            |                                                                                       | 2             | $4.764 \cdot 10^3$     | $-7.243 \cdot 10^4$    |
| $g_{i3}$                                                             | $1.488 \cdot 10^{1}$           | $1.913 \cdot 10^{1}$                        | $-2.407 \cdot 10^{1}$           |                                                                                       | 3             | $4.257 \cdot 10^{0}$   | $-4.008 \cdot 10^2$    |
| $g_{i4}$                                                             | $4.029 \cdot 10^7$             | 4.770·10 <sup>7</sup>                       | $-5.239 \cdot 10^{7}$           |                                                                                       | 4             | $3.576 \cdot 10^{-2}$  | $5.263 \cdot 10^{-1}$  |
| $g_{i5}$                                                             | $-1.769 \cdot 10^{0}$          | $-2.358 \cdot 10^{0}$                       | $3.088 \cdot 10^{0}$            |                                                                                       | α             | 0.259                  |                        |
| $k_g^{21} \ k_h^{21}$                                                | 0.534                          |                                             | 0.013                           | $\leftarrow s(g^{\rm E}/RT)$                                                          | $\rightarrow$ | 0.013                  |                        |
| $k_{h}^{21}$                                                         | 0.369                          |                                             | 0.177                           | $\leftarrow s(\gamma_i)$                                                              | $\rightarrow$ | 0.251                  |                        |
| $k_{v}^{21}$                                                         |                                |                                             | 26                              | $\leftarrow s(h^{\rm E})$                                                             | $\rightarrow$ | 41                     |                        |
| hexane                                                               | i = 0                          | i = 1                                       | <i>i</i> = 2                    |                                                                                       | i             | $	au_{12i}$            | $	au_{21i}$            |
| $g_{i1}$                                                             | $4.898 \cdot 10^3$             | $-4.538 \cdot 10^{3}$                       | $3.964 \cdot 10^3$              |                                                                                       | 1             | $-1.752 \cdot 10^{2}$  | $1.372 \cdot 10^2$     |
| g <sub>i2</sub>                                                      | $-3.825 \cdot 10^{-5}$         | $7.147 \cdot 10^{-5}$                       | $-7.703 \cdot 10^{-5}$          |                                                                                       | 2             | $6.275 \cdot 10^3$     | $-5.051 \cdot 10^3$    |
| g <sub>i3</sub>                                                      | $3.244 \cdot 10^{-5}$          | $-4.999 \cdot 10^{-5}$                      | 6.109·10 <sup>-5</sup>          |                                                                                       | 3             | $2.864 \cdot 10^{1}$   | $-2.174 \cdot 10^{1}$  |
| $g_{i4}$                                                             | $-4.563 \cdot 10^{5}$          | $1.199 \cdot 10^{6}$                        | $-7.500 \cdot 10^{5}$           |                                                                                       | 4             | $-3.443 \cdot 10^{-2}$ | $1.994 \cdot 10^{-2}$  |
| g <sub>i5</sub>                                                      | $-9.191 \cdot 10^{-3}$         | $-2.881 \cdot 10^{-3}$                      | $-3.238 \cdot 10^{-3}$          |                                                                                       | α             | 0.040                  |                        |
| $k_{-}^{21}$                                                         | 0.978                          |                                             | 0.007                           | $\leftarrow s(g^{\rm E}/RT)$                                                          | $\rightarrow$ | 0.004                  |                        |
| $k_{g}^{21} \ k_{h}^{21} \ k_{h}^{21} \ k_{v}^{21}$                  | 0.706                          |                                             | 0.012                           | $\leftarrow s(\gamma_i)$                                                              | $\rightarrow$ | 0.152                  |                        |
| $k^{21}$                                                             | 0.413                          |                                             | 29                              | $\leftarrow s(h^{\rm E})$                                                             | $\rightarrow$ | 41                     |                        |
| heptane                                                              | i = 0                          | <i>i</i> = 1                                | i = 2                           | 3(11)                                                                                 | i             | $\tau_{12i}$           | $	au_{21i}$            |
|                                                                      | 1 = 0<br>1.921.10 <sup>3</sup> | l = 1<br>3.601·10 <sup>3</sup>              | l = 2<br>-2.914.10 <sup>3</sup> |                                                                                       | 1             | $-4.286 \cdot 10^2$    | $-4.069 \cdot 10^2$    |
| $g_{i1}$                                                             | $-4.502 \cdot 10^{-5}$         | 9.577·10 <sup>-5</sup>                      | $-8.485 \cdot 10^{-5}$          |                                                                                       | 2             | $1.492 \cdot 10^4$     | $5.394 \cdot 10^3$     |
| g <sub>i2</sub>                                                      | $3.873 \cdot 10^{-5}$          | $-6.140 \cdot 10^{-5}$                      | 5.957·10 <sup>-5</sup>          |                                                                                       | 3             | 6.986·10 <sup>1</sup>  | $7.983 \cdot 10^{1}$   |
| <i>g</i> <sub>i3</sub>                                               | $1.341 \cdot 10^5$             | $-4.455 \cdot 10^{5}$                       | $8.004 \cdot 10^5$              |                                                                                       |               | $-5.857 \cdot 10^{-2}$ | $-2.259 \cdot 10^{-1}$ |
| $g_{i4}$                                                             |                                | $-4.455 \cdot 10$<br>$-1.147 \cdot 10^{-2}$ | $4.435 \cdot 10^{-3}$           |                                                                                       | 4             |                        | -2.259.10              |
| gi5                                                                  | $-4.830 \cdot 10^{-3}$         |                                             |                                 | (E/DT)                                                                                | α             | -0.112                 |                        |
| $k_g^{21} \ k_h^{21} \ k_h^{21} \ k_ u^{21}$                         | 0.780                          | $s(g^{\rm E}/RT)$                           | 0.004                           | $\leftarrow s(g^{\rm E}/RT)$                                                          | $\rightarrow$ | 0.010                  |                        |
| $k_h^{21}$                                                           | 0.6200                         |                                             | 0.103                           | $\leftarrow s(\gamma_i)$                                                              | $\rightarrow$ | 0.118                  |                        |
| $k_{\nu}^{21}$                                                       | 0.6570                         |                                             | 55                              | $\leftarrow s(h^{\rm E})$                                                             | $\rightarrow$ | 34                     |                        |
| $k_{c}^{21}$                                                         | 1.9314                         |                                             | 75                              | $\leftarrow s(\nu^{\rm E})$                                                           |               |                        |                        |
|                                                                      |                                |                                             | 0.06                            | $\leftarrow s(c_p^{\text{E}})$                                                        | $\rightarrow$ | 0.11                   |                        |
| octane                                                               | i = 0                          | <i>i</i> = 1                                | i = 2                           |                                                                                       | i             | $	au_{12i}$            | $	au_{21i}$            |
| $g_{i1}$                                                             | $-1.858 \cdot 10^{5}$          | 6.624·10 <sup>4</sup>                       | 1.918.104                       |                                                                                       | 1             | $-4.759 \cdot 10^{2}$  | $-3.451 \cdot 10^{-1}$ |
| $g_{i2}$                                                             | $-4.938 \cdot 10^{0}$          | $1.573 \cdot 10^{1}$                        | $1.631 \cdot 10^{1}$            |                                                                                       | 2             | $-2.962 \cdot 10^4$    | 3.543·10 <sup>1</sup>  |
| $g_{i3}$                                                             | $7.857 \cdot 10^{0}$           | $-7.783 \cdot 10^{0}$                       | $-5.642 \cdot 10^{0}$           |                                                                                       | 3             | 3.802·10 <sup>1</sup>  | $4.251 \cdot 10^4$     |
| $g_{i4}$                                                             | $2.462 \cdot 10^7$             | $-2.317 \cdot 10^{7}$                       | $-1.938 \cdot 10^{7}$           |                                                                                       | 4             | $2.231 \cdot 10^{-1}$  | $3.895 \cdot 10^{1}$   |
| $g_{i5}$                                                             | $-8.911 \cdot 10^{-1}$         | $9.085 \cdot 10^{-1}$                       | $5.871 \cdot 10^{-1}$           |                                                                                       | α             | $1.736 \cdot 10^{-5}$  |                        |
| $\frac{k_g^{21}}{k_h^{21}}$                                          | 0.674                          |                                             | 0.005                           | $\leftarrow s(g^{\rm E}/RT)$                                                          | $\rightarrow$ | 0.006                  |                        |
| $k_{h}^{21}$                                                         | 1.561                          |                                             | 0.029                           | $\leftarrow s(\gamma_i)$                                                              | $\rightarrow$ | 0.071                  |                        |
| $k_{\nu}^{21}$                                                       |                                |                                             | 25                              | $\leftarrow s(h^{\rm E})$                                                             | $\rightarrow$ | 20                     |                        |
| nonane                                                               | i = 0                          | i = 1                                       | <i>i</i> = 2                    |                                                                                       | i             | $	au_{12i}$            | $	au_{21i}$            |
| $g_{i1}$                                                             | $-1.135 \cdot 10^4$            | $-1.081 \cdot 10^{5}$                       | $-4.588 \cdot 10^4$             |                                                                                       | 1             | $-5.010 \cdot 10^2$    | $-3.139 \cdot 10^{-1}$ |
| $g_{i2}$                                                             | $-3.064 \cdot 10^{0}$          | $-4.009 \cdot 10^{0}$                       | $4.626 \cdot 10^{0}$            |                                                                                       | 2             | $-3.400 \cdot 10^4$    | $7.848 \cdot 10^{1}$   |
| $g_{i3}$                                                             | $1.546 \cdot 10^{0}$           | $4.610 \cdot 10^{0}$                        | $9.635 \cdot 10^{-2}$           |                                                                                       | 3             | $3.761 \cdot 10^{1}$   | $4.585 \cdot 10^4$     |
| $g_{i4}$                                                             | $5.190 \cdot 10^{6}$           | 1.436·10 <sup>7</sup>                       | 1.576·10 <sup>5</sup>           |                                                                                       | 4             | $1.929 \cdot 10^{-1}$  | $3.610 \cdot 10^{1}$   |
| $q_{i5}$                                                             | $-1.823 \cdot 10^{-1}$         | $-5.066 \cdot 10^{-1}$                      | $-8.435 \cdot 10^{-3}$          |                                                                                       | α             | $-7.3 \cdot 10^{-7}$   |                        |
| $k_g^{21} k_g^{21} k_h^{21} k_v^{21}$                                | 2.955                          |                                             | 0.008                           | $\leftarrow s(g^{\rm E}/RT)$                                                          | $\rightarrow$ | 0.005                  |                        |
| $k_h^{21}$                                                           | 1.511                          |                                             | 0.095                           | $\leftarrow s(\gamma_i)$                                                              | $\rightarrow$ | 0.552                  |                        |
| $k_{\nu}^{21}$                                                       |                                |                                             | 31                              | $\leftarrow s(h^{\rm E})$                                                             | $\rightarrow$ | 28                     |                        |
| decane                                                               | i = 0                          | i = 1                                       | <i>i</i> = 2                    |                                                                                       | i             | $	au_{12i}$            | $	au_{21i}$            |
| $g_{i1}$                                                             | $2.151 \cdot 10^4$             | $-5.537 \cdot 10^4$                         | $3.504 \cdot 10^4$              |                                                                                       | 1             | $-6.894 \cdot 10^{1}$  | $-1.521 \cdot 10^{2}$  |
| $g_{i2}$                                                             | $-6.574 \cdot 10^{-1}$         | $-3.917 \cdot 10^{0}$                       | $3.151 \cdot 10^{0}$            |                                                                                       | 2             | $1.133 \cdot 10^4$     | $-3.525 \cdot 10^3$    |
| g <sub>i3</sub>                                                      | $-3.889 \cdot 10^{-1}$         | $3.140 \cdot 10^{0}$                        | $-2.245 \cdot 10^{0}$           |                                                                                       | 3             | $-3.051 \cdot 10^{0}$  | $3.957 \cdot 10^{1}$   |
| 813<br><i>g</i> <sub>i4</sub>                                        | $-8.892 \cdot 10^{5}$          | 9.064·10 <sup>6</sup>                       | $-5.880 \cdot 10^{6}$           |                                                                                       | 4             | $1.336 \cdot 10^{-1}$  | -1.760.10-             |
| 814<br><i>g</i> i5                                                   | 5.019·10 <sup>-2</sup>         | $-3.953 \cdot 10^{-1}$                      | $2.693 \cdot 10^{-1}$           |                                                                                       | α             | -0.009                 |                        |
| $k^{21}_{-}$                                                         | 3.238                          |                                             | 0.003                           | $\leftarrow s(g^{\mathbb{E}}/RT)$                                                     | $\rightarrow$ | 0.008                  |                        |
| g<br>1 21                                                            | 0.718                          |                                             | 0.097                           | $\leftarrow s(\gamma_i)$                                                              | $\rightarrow$ | 0.279                  |                        |
| kĩ                                                                   |                                |                                             | 0.077                           |                                                                                       | ,             | 0.277                  |                        |
| $k_{h}^{21}$<br>$k^{21}$                                             |                                |                                             | 59                              | $\leftarrow s(h^{\rm E})$                                                             | $\rightarrow$ | 40                     |                        |
| $k_g^{21} \ k_h^{21} \ k_h^{21} \ k_ u^{21} \ k_ u^{21} \ k_ u^{21}$ | 0.737                          |                                             | 59                              | $ \begin{array}{l} \leftarrow s(h^{\rm E}) \\ \leftarrow s(\nu^{\rm E}) \end{array} $ | $\rightarrow$ | 40                     |                        |

simultaneous correlation of properties, in addition to those indicated here, the ones obtained experimentally for this work at isobaric conditions, VLE,  $h^{\rm E}$  and  $v^{\rm E}$  were also used. In Figure 6b we can observe that the correlation of the quantities of  $g^{E}$  and  $\gamma_{i}$  vs  $x_1$  are acceptable, although the representation gives values of  $\gamma_i$  vs  $x_1$  somewhat lower than those calculated from the experimentation. A difference is also found in the primary equilibrium data estimated  $T - x_1 - y_1$ , but this barely influenced the reproduction of the azeotropic point (Figure 6a). The fit of the  $h^{\rm E}$  values is good and show how the curve changes with temperature (Figure 6c). There is even an adequate representation of the irregular form ( $\omega$ -shaped) of the  $c_p^{E}$  data (Figure 6f). The experimental results generated<sup>13</sup> for the VLE iso-T were introduced in the database used for the correlation process, together with the data of  $(x_1, \nu^E)$  presented in Table 3. Figure 6g shows an acceptable representation of the volumes at different temperatures, being the slope  $(\partial v^{\rm E}/\partial T)_{v} < 0.07 \cdot 10^{-9} \text{ m}^{3} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$ , very similar to that derived from the experimental values, as shown in the inset Figure 6g. After the model has been completely defined for a given binary system, an estimation can be made of the curves corresponding to the VLE, iso-T and iso-p, in the 3D-diagram  $(p-T-x_1,y_1)$  and of p and T in the range available. The capacity of the model to reproduce the equilibrium data and data of the surface generated, and the mixing properties, is adequate (Figure 6h).

The fit with NRTL can be considered to be acceptable, and the observations made in the previous section also apply here. However, to elaborate on the properties only appearing in this system, the VLE-iso-*T* are qualitatively well-reproduced (see Figure 6c,d), but the analysis of the  $g^{\rm E}$  values shows quite a sharp deviation of the maximum toward mixtures with lower ester contents, which implies a curve with asymmetric morphology that does not correspond to the data. The  $c_p^{\rm E}$  are not adequately reproduced with the NRTL model; the difficulty inherent to these data has already been mentioned previously. Moreover, NRTL and UNIFAC do not estimate excess molar volumes.

An acceptable estimation is only made with UNIFAC for the mixture of propyl ethanoate + heptane. The method predicts well the VLE iso-*T* and iso-*p*, although in both cases the values of  $\gamma_i$  and  $g^E/RT$  obtained are slightly higher than experimental ones. The change in  $h^E$  with temperature is not simulated by the model, which also loses the ability to represent the thermal capacities, as can be observed in Figure 6e,f. The UNIFAC model estimates an azeotropic point close to that obtained by experimentation.

**Propyl Ethanoate** + **Decane.** For this binary system, in addition to the data provided by this work,  $c_p^E$  data from the literature<sup>9</sup> have also been used in the multiproperty correlation process. Parameters of the model established by eqs 8 to 13 are shown in Table 9, together with the standard deviations obtained for each property, and on the whole, the results can be considered to be acceptable. Figure 9a-d reproduces the curves obtained in the correlation with a good degree of representation. In this case, a cutoff point for  $c_p^E$  with the abscissa is not observed (Figure 9d), so the minimum of the function  $h^E = h^E(T)$  must occur at temperatures higher than 298.15 K, which is consistent with the data presented in Table 4.

Similar observations to those made about the previous systems can be made about the fit of this system with NRTL. In general, the correlation appears to be acceptable although there are clear deviations in the fit of the VLE. The reproduction of thermal capacity does not produce the  $\omega$ -shaped pattern.

The UNIFAC method behaves in a similar way for this mixture as in previous cases, failing to estimate the function  $h^{E} = h^{E}(T)$ 

and generating an erroneous curve for  $c_{p}^{E}$ , as can be observed in Figure 9d.

#### AUTHOR INFORMATION

#### **Corresponding Author**

\*E-mail: jortega@dip.ulpgc.es.

#### Funding

The authors would like to thank the Ministry of Economy and Competitiveness for funding project CTQ2009-12482.

#### Notes

The authors declare no competing financial interest.

#### REFERENCES

(1) Ortega, J.; Espiau, E.; Dieppa, R.; Tojo, J.; Canosa, J.; Rodriguez, A. Isobaric Vapor-Liquid Equilibria and Excess Properties for the Binary Systems of Methyl Esters + Heptane. *J. Chem. Eng. Data* **2003**, *48*, 1183–1190.

(2) Ortega, J.; Toledo, F. J. Thermodynamic properties of (an ethyl ester + a branched alkane). XV.-  $H^E$  and  $V^E$  values for (an ester + an alkane). J. Chem. Thermodyn. 2002, 34, 1439–1459.

(3) Fernández, L.; Perez, E.; Ortega, J.; Canosa, J.; Wisniak, J. Measurements of the Excess Properties and Vapor-Liquid Equilibria at 101.32 kPa for Mixtures of Ethyl Ethanoate + Alkanes (from  $C_5$  to  $C_{10}$ ). *J. Chem. Eng. Data* **2010**, *55*, 5519–5533.

(4) Ortega, J.; Vidal, M.; Toledo, F. J.; Placido, J. Thermodynamic properties of (a propyl ester + an n-alkane). XII. Excess molar enthalpies and excess molar volumes for  ${xCH_3(CH_2)_{u-1}COO(CH_2)_2CH_3 + (1-x)CH_3(CH_2)_{2v+1}CH_3}$  with u = (1 to 3), and v = (1 to 7). *J. Chem. Thermodyn.* **1999**, *31*, 1025–144.

(5) Ortega, J.; Espiau, F.; Toledo, F. J. Thermodynamic properties of (an ester + an alkane). XVI. Experimental  $H^E$  and  $V^E$  values and a new correlation method for (an alkyl ethanoate + an alkane) at 318.15 K. *J. Chem. Thermodyn* **2004**, *36*, 193–209.

(6) Ortega, J.; Gonzalez, C.; Galvan, S. Vapor-liquid equilibria for binary system composed of a propyl ester (ethanoate, propanoate, butanoate) + an n-alkane  $(C_{77}C_9)$ . *J. Chem. Eng. Data* **2001**, *46*, 904–912.

(7) Lorenzana, M. T.; Jimenez, E.; Legido, J. L.; Fernandez, J.; Paz, M. I. Excess molar volumes of binary mixtures of propyl ethanoate with some n-alkanes at 298.15 and 308.15 K. *Phys. Chem. Liq.* **1991**, *24*, 13–20.

(8) Qin, A.; Hoffman, D. E.; Munk, P. Excess Volumes of Mixtures of Alkanes with Carbonyl Compounds. *J. Chem. Eng. Data* **1992**, 37, 55–61.

(9) Jiménez, E.; Romaní, L.; Wilhelm, E.; Roux-Desgranges, G.; Grolier, J.-P. E. Excess heat capacities and excess volumes of (an nalkylalkanoate+heptane or decane or toluene). *J. Chem. Thermodyn.* **1994**, *26*, 817–827.

(10) Franjo, C.; Segade, L.; Menaut, C. P.; Pico, J. M.; Jiménez, E. Viscosities and Densities of Solutions of n-Decane, or n-Tetradecane with Several Esters at 25 °C. *J. Solution Chem.* **2001**, *30*, 995–1006.

(11) Grolier, J.-P. E.; Ballet, D.; Viallard, A. Thermodynamics of estercontaining mixtures. Excess enthalpies and excess volumes for alkyl acetates and alkyl benzoates + alkanes, + benzene, + toluene, and + ethyl benzene. *J. Chem. Thermodyn.* **1974**, *6*, 895–908.

(12) Navarro, J. M.; Pintos, M.; Bravo, R.; Paz, M. I. Excess enthalpies of (propyl ethanoate or ethyl propanoate+an n-alkane) at 298.15 K. J. Chem. Thermodyn. **1984**, *16*, 105–109.

(13) Negadi, L.; Belabbaci, A.; Kaci, A. A.; Jose, J. Isothermal Vapor-Liquid Equilibria and Excess Enthalpies of (Propyl Ethanoate + Heptane), (Propyl Ethanoate + Cyclohexane), and (Propyl Ethanoate + 1-Hexene). J. Chem. Eng. Data **2007**, *52*, 47–55.

(14) Gao, G.; Liu, Y.; Liu, Q.; Zhou, R.; Sun, X. Investigation of Excess Thermodynamical Functions for Ester-n-alkane Systems. *Qinghua Daxue Xuebao* **1984**, *24*, 87–99.

(15) Ortega, J.; Espiau, F.; Wisniak, J. New Parametric Model to Correlate the Gibbs Excess Function and Other Thermodynamics

Properties of Multicomponent Systems. Application to Binary Systems. *Ind. Eng. Chem. Res.* **2010**, *49*, 406–421.

(16) Espiau, F.; Ortega, J.; Penco, E.; Wisniak, J. Advances in the correlation of thermodynamics properties of binary systems applied to methanol mixtures with butyl esters. *Ind. Eng. Chem. Res.* **2010**, *49*, 9548–9558.

(17) Renon, H.; Prausnitz, J. M. Local compositions in thermodynamic excess functions of liquid mixtures. *AIChE J.* **1968**, *14*, 135–144.

(18) Gmehling, J.; Li, J.; Schiller, M. A Modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties. *Ind. Eng. Chem. Res.* **1993**, *32*, 178–193.

(19) Ortega, J.; Matos, S. Estimation of the isobaric expansivities from several equations of molar refraction for some pure organic compounds. *Mater. Chem. Phys.* **1986**, *15*, 415–426.

(20) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents. Physical Properties and Methods of Purification, 4th ed.; Wiley-Interscience: New York, 1986.

(21) Ortega, J.; Peña, J. A.; de Afonso, C. Isobaric vapor-liquid equilibria of ethyl acetate+ethanol mixtures at 760  $\pm$  0.5 mm Hg. J. Chem. Eng. Data **1986**, 31, 339–342.

(22) Ortega, J.; Ocón, J.; Peña, J. A.; de Alfonso, C.; Paz, M. I.; Fernández, J. Vapor-Liquid Equilibrium of the Binary Mixtures  $C_nH_{2n+1}(OH)$  (n = 2,3,4) + Propyl Ethanoate and + Ethyl Propanoate. *Can. J. Chem. Eng.* **1987**, 65, 982–990.

(23) Susial, P.; Ortega, J.; de Afonso, C.; Alonso, C. Vapor-Liquid Equilibrium Measurements for Methyl Propanoate-Ethanol and Methyl Propanoate-Propan-1-ol at 101.32 kPa. *J. Chem. Eng. Data* **1989**, *34*, 247–250.

(24) Vreekamp, R.; Castellano, D.; Palomar, J.; Ortega, J.; Espiau, F.; Fernández, L.; Penco, E. Thermodynamic Behavior of the Binaries 1-Butylpyridinium Tetrafluoroborate with Water and Alkanols: Their Interpretation Using <sup>1</sup>H-NMR Spectroscopy and Quantum-Chemistry Calculations. J. Phys. Chem. B **2011**, 115, 8763–8774.

(25) Mato, M. M.; Balseiro, J.; Jimenez, E.; Legido, J. L.; Galinanes, A. V.; Paz, M. I. Excess Molar Enthalpies and Excess Molar. Volumes of the Ternary System 1,2-Dichlorobenzene + Benzene + Hexane at 298.15 K. *J. Chem. Eng. Data* **2002**, *47*, 1436–1441.

(26) Chao, J. P.; Dai, M. Studies on thermodynamic properties of binary systems containing alcohols. VII. Temperature dependence of excess enthalpies for n-propanol + benzene and n-butanol + benzene. *Thermochim. Acta* **1988**, *123*, 285–291.

(27) Gonzalez, C.; Ortega, J.; Hernández, P.; Galván, S. Experimental Determination of Densities and Isobaric Vapor-Liquid Equilibria of Binary Mixtures Formed by a Propyl Alkanoate (Methanoate to Butanoate) + An Alkan-2-ol (C3,C4). *J. Chem. Eng. Data* **1999**, *44*, 772–783.

(28) Ortega, J.; Gonzalez, C.; Peña, J. A.; Galván, S. Thermodynamic study on binary mixtures of propyl ethanoate and an alkan-1-ol ( $C_2$ - $C_4$ ). Isobaric vapor-liquid equilibria and excess properties. *Fluid Phase Equilib.* **2000**, *170*, 87–111.

(29) Pitzer, K. S. The Volumetric and Thermoduynamic Properties of Fluids. I. Theoretical Basis and Virial Coeficients. J. Am. Chem. Soc. **1955**, 77, 3427–3433.

(30) Farková, J.; Witcherle, I. Vapour Pressure of Some Ethyl and Propyl Esters of Fatty Acids. *Fluid Phase Equilib.* **1993**, *90*, 143–148.

(31) Lee, B. I.; Kesler, M. G. A generalized thermodynamic correlation based on three-parameter corresponding states. *AIChE J.* **1975**, *21*, 510–527.

(32) Bondi, A. Physical Properties of Molecular Liquids, Cristals and Glasses; Wiley: New York, 1968.

(33) Marsden, R. J. B.; Sutton, L. E. Evidence of wave-mechanical resonance in the carboxylic ester and the lactone group, from electric dipole moments. *J. Chem. Soc.* **1936**, 1383–1390.

(34) Oki, M.; Nakanishi, H. Conformations of the esters. II. The conformation of alkyl acetates. *Bull. Chem. Soc. Jpn.* **1971**, *44*, 3144–3147.

(35) Gmehling, J.; Menke, J.; Krafczyk, J.; Fischer, K. Azeotropic Data, Part I; Wiley VCH: Weinheim, 1994.

(36) Blanco, A. M.; Ortega, J. Experimental study of miscibility, density and isobaric vapor-liquid equilibrium values for mixtures of methanol in hydrocarbons ( $C_{5}$ ,  $C_{6}$ ). *Fluid Phase Equilib*. **1996**, *122*, 207–222.

(37) Spencer, C. F.; Danner, R. P. Improved equation for prediction of saturated liquid density. *J. Chem. Eng. Data* **1972**, *17*, 236–241.

(38) Tsonopoulos, C. Second virial coefficient of water pollutants. *AIChE J.* **1975**, *21*, 510–527.

(39) Fredenslund, A.; Gmehling, J.; Rasmussen, P. Vapor-Liquid Equilibria Using UNIFAC: A Group Contribution Method; Elsevier: Amsterdam, 1977.

(40) Ko, M.; Im, J.; Sung, J. Y.; Kim, H. Liquid-liquid equilibria for the binary systems of sulfolane with alkanes. *J. Chem. Eng. Data* **2007**, *52*, 1464–1467.