
Heliyon 10 (2024) e25468

Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon

Research article

Performance of convolutional neural networks for the 

classification of brain tumors using magnetic resonance imaging

Daniel Reyes a,b, Javier Sánchez b,∗

a Dr. Stetter ITQ S.L.U., Parque Científico Tecnológico, Las Palmas de Gran Canaria, 35017, Spain
b Department of Computer Science, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, 35017, Spain

A R T I C L E I N F O A B S T R A C T

Keywords:

Brain tumor classification
Magnetic resonance imaging
Deep learning
Convolutional neural network
Transfer learning
Data augmentation

Brain tumors are a diverse group of neoplasms that are challenging to detect and classify due 
to their varying characteristics. Deep learning techniques have proven to be effective in tumor 
classification. However, there is a lack of studies that compare these techniques using a common 
methodology. This work aims to analyze the performance of convolutional neural networks in 
the classification of brain tumors. We propose a network consisting of a few convolutional layers, 
batch normalization, and max-pooling. Then, we explore recent deep architectures, such as VGG, 
ResNet, EfficientNet, or ConvNeXt. The study relies on two magnetic resonance imaging datasets 
with over 3000 images of three types of tumors –gliomas, meningiomas, and pituitary tumors–, as 
well as images without tumors. We determine the optimal hyperparameters of the networks using 
the training and validation sets. The training and test sets are used to assess the performance 
of the models from different perspectives, including training from scratch, data augmentation, 
transfer learning, and fine-tuning. The experiments are performed using the TensorFlow and Keras 
libraries in Python. We compare the accuracy of the models and analyze their complexity based 
on the capacity of the networks, their training times, and image throughput. Several networks 
achieve high accuracy rates on both datasets, with the best model achieving 98.7% accuracy, 
which is on par with state-of-the-art methods. The average precision for each type of tumor is 
94.3% for gliomas, 93.8% for meningiomas, 97.9% for pituitary tumors, and 95.3% for images 
without tumors. VGG is the largest model with over 171 million parameters, whereas MobileNet 
and EfficientNetB0 are the smallest ones with 3.2 and 5.9 million parameters, respectively. 
These two neural networks are also the fastest to train with 23.7 and 25.4 seconds per epoch, 
respectively. On the other hand, ConvNext is the slowest model with 58.2 seconds per epoch. Our 
custom model obtained the highest image throughput with 234.37 images per second, followed 
by MobileNet with 226 images per second. ConvNext obtained the smallest throughput with 
97.35 images per second. ResNet, MobileNet, and EfficientNet are the most accurate networks, 
with MobileNet and EfficientNet demonstrating superior performance in terms of complexity. 
Most models achieve the best accuracy using transfer learning followed by a fine-tuning step. 
However, data augmentation does not contribute to increasing the accuracy of the models in 
general.

* Corresponding author.
Available online 2 February 2024
2405-8440/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

E-mail addresses: daniel.reyes107@alu.ulpgc.es (D. Reyes), jsanchez@ulpgc.es (J. Sánchez).

https://doi.org/10.1016/j.heliyon.2024.e25468
Received 13 July 2023; Received in revised form 9 November 2023; Accepted 27 January 2024

http://www.ScienceDirect.com/
http://www.cell.com/heliyon
mailto:daniel.reyes107@alu.ulpgc.es
mailto:jsanchez@ulpgc.es
https://doi.org/10.1016/j.heliyon.2024.e25468
https://doi.org/10.1016/j.heliyon.2024.e25468
http://creativecommons.org/licenses/by/4.0/


Heliyon 10 (2024) e25468D. Reyes and J. Sánchez

1. Introduction

Brain tumors have the lowest survival rate compared to other types of tumors. Unfortunately, less than 7% of patients survive in 
the most severe cases [1]. The complex nature of these bodies and their implications on the affected area, combined with delayed 
or incorrect diagnoses, contribute to this outcome. Misdiagnosis often leads to the rapid progression of cancer cells, making direct 
treatment challenging. In many cases, surgical intervention to remove the tumor becomes unfeasible, leaving chemotherapy as the 
primary treatment option for these patients.

Early detection of tumors is crucial, and specialists rely on different techniques to evaluate the characteristics of the disease. 
These techniques include ultrasound scans, computed tomography (CT), magnetic resonance imaging (MRI), and X-ray. Among these 
techniques, MRI and CT are the most recommended techniques in tumor treatment processes [2]. MRI is the preferred technique 
because it provides clear images of the internal tissue and is not harmful to the patient.

Over the past twenty years, many research works [3], [4] have introduced novel methods for detecting and classifying tumors 
through the use of artificial intelligence and computer vision techniques. The primary goal of these methods is to automatically 
predict pathologies and assist specialists in making informed decisions, ultimately leading to a reduction in costs.

The use of deep neural networks for this task has gained significant attention in recent years. Within a short period of time, 
promising results have been achieved that allow us to glimpse the development of reliable methods in the future. This progress can 
be attributed in part to the appearance of various databases with a large number of samples.

Several works in these fields have proposed new architectures especially designed for these types of tumors, whereas many others 
analyze the benefits of using well-established models. The primary focus is often on optimizing accuracy, while less consideration 
is given to the complexity and overall performance of the models. Comparing actual approaches is challenging due to the use of 
various datasets and methodologies that frequently yield contradictory results. This inconsistency raises uncertainties about whether 
the benefits are derived from the model itself, the dataset configuration, or the methodology employed.

This work aims to present a comprehensive analysis of various convolutional neural networks (CNNs) applied to the classification 
of brain tumors. To assess the performance of the models, we analyze the training process from different perspectives, such as training 
from scratch, using data augmentation, and transfer learning. We also use fine-tuning to further increase the accuracy of the models.

The networks analyzed in this study include the VGG, ResNet, DenseNet, Xception, EfficientNet, MobileNet, DenseNet, and Con-

vNeXt architectures. We also examine a baseline model composed of a few blocks of convolutional layers, max-pooling, and 
batch-normalization. Our objective is to evaluate not only the accuracy obtained with these architectures but also their complexity.

This study is based on two recent MRI datasets with more than 3000 magnetic resonance images. The first dataset is available 
on Figshare and contains 3064 images with three types of tumors: gliomas, meningiomas, and pituitary tumors. The second one 
is available on Kaggle and contains 3264 images, including an additional label for images without tumors. Both datasets provide 
sagittal, coronal, and axial views of the brain. The experimental results show that several models achieve state-of-the-art (SOTA) 
results in both datasets. Among the most accurate networks, we find EfficentNet, MobileNet, and ResNet.

We further investigate the accuracy concerning each type of tumor and find that meningiomas are typically more challenging 
to classify, whereas pituitary tumors exhibit the lowest misclassification rate. In terms of complexity, we evaluate the number of 
parameters, training cost, and image throughput in inference time. This analysis enables us to refine the ranking of our models, 
establishing a trade-off between accuracy and complexity. Interestingly, several low-capacity models rank high in the classification, 
while some recent ones demonstrate poor performance.

The contributions of our work can be summarized as follows: a) we perform a thorough analysis of many relevant CNNs for 
classifying brain tumors using a common methodology; b) we apply the best practices to train the models, such as hyperparameter 
optimization, data augmentation, transfer learning, and fine-tuning; c) we study the complexity of the models based on the capacity 
of the neural networks, the training cost, and the image throughput.

Section 3 describes the datasets and neural networks used in this study. Section 4 presents an analysis of the performance of the 
models, where we compare the accuracy of the most important variants of each network. We estimate the overall accuracy of each 
model and also examine the results for each type of tumor. Additionally, we evaluate the computational complexity of each network 
by comparing the training times and the number of parameters of each model. Sections 5 and 6 discuss the results and present ideas 
for future work.

2. Related work

In recent years, there has been significant progress in the classification of brain tumors, mainly due to the application of machine 
learning techniques, particularly through the use of modern CNNs. Comparative studies have assessed the performance of different 
CNN architectures, such as Xception, ResNet, Inception, VGG, DenseNet, or MobileNet. These models have demonstrated good 
accuracy rates for the Figshare [5] and Kaggle [6] datasets.

Nevertheless, these works are not comparable due to the use of different configurations and the lack of details to reproduce the 
results. In this study, we include most of the models used in these previous works and evaluate their performance on both datasets. 
2

In addition, we also consider other networks such as EfficientNet and ConvNeXt, and explore different versions of each family.



Heliyon 10 (2024) e25468D. Reyes and J. Sánchez

2.1. Traditional techniques

Before the widespread use of neural networks, traditional techniques for tumor classification involved three main steps: image pre-
processing, feature extraction, and image classification, each using different techniques. Typical pre-processing techniques included 
noise removal, contrast enhancement, edge detection [7], or median filtering [8].

Many feature extraction methods were usually combined, such as the image histogram with the gray level co-occurrence matrix 
(GLCM) in [9] and multivariate statistical analysis in [3], or the segmentation of the image with GLCM in [8]. The work in [10] was 
focused on magnetic resonance spectroscopy (MRS) instead of MRI, with features based on frequency alignment, phase correction, 
and filtering of the dominating residual water peak with the Fast Fourier Transform (FFT). Wavelet-based features, on the other 
hand, were also used in [11]. Another example is the work presented in [12], where the authors combined features based on the 
tumor shape, image intensity statistics, and rotation-invariant Gabor texture features.

Several works compared the performance of different machine learning algorithms, such as the comparison of Random Forest, 
k-Nearest Neighbor (KNN), AdaBoost, and RusBoost in [11]. Linear discriminant analysis (LDA) was used in [4] and in [10] for 
classifying MRS. Support vector machines (SVM) were probably the most used techniques for classification, such as in [3], [4], [10], 
or [7]. The work presented in [13] compared SVMs with fuzzy neural networks and found SVM to provide superior performance. 
The method presented in [9], on the other hand, showed that bag-of-words (BoW) provided better results than other classification 
techniques.

This latter method introduced the Figshare dataset [14], which has been used in many subsequent works. BraTS [15] is another 
common dataset that has been used in some previous works [7,8,11], although it is oriented to binary classification. These traditional 
techniques have several limitations. On the one hand, it is difficult to design features that correctly represent the space of the input 
data and, thus, they usually fail in unexpected situations. On the other hand, combining different techniques usually leads to complex 
pipelines that do not adapt well to small variations in the data. This complexity increases with the number of techniques, where it is 
difficult to understand how the parameters of each method affect the final results. For these reasons, traditional strategies have been 
superseded by neural networks, which achieve higher accuracy and are end-to-end trainable.

2.2. Hybrid methods

Many techniques combine neural networks with traditional methods in two typical configurations: using the neural network as a 
backbone for feature extraction or as the final classifier with features generated by traditional techniques. The latter approach allows 
for a smaller training set and the design of models with lower capacity, as they rely on more discriminative features. One of the first 
hybrid methods [16] was based on non-linear least squares features and a probabilistic neural network.

Different neural networks have been used for feature extraction, like a simple convolutional network in [17], GoogLeNet in [18]
or DenseNet201 in [19]. The preferred technique for classification was SVM, although several works have compared SVMs with other 
classifiers, like KNN in [18], XGBoost and Extreme Learning Machine (ELM) in [17], or a combination of a genetic algorithm in [19]. 
The work presented in [20] concatenated the output of three CNNs and analyzed nine different classifiers, obtaining the best results 
with an SVM.

Some of these works attained high accuracy with the Figshare dataset [17,18] and the Kaggle dataset [20], although it is possible 
to obtain similar results using a single neural network.

Several works combined traditional techniques for feature extraction and neural networks for classification, such as in [21], with 
features based on the discrete wavelet transform (DWT), Fuzzy C-means clustering, and principal component analysis (PCA), or 
in [22], with DWT and Gabor filters. In these cases, a multilayer perceptron was used to process the features. The main benefit of 
this approach is that it is possible to train the model with fewer images, like the 66 MR images used in [21].

The work presented in [23] used the neural network in the middle of the pipeline: the images were segmented with Fuzzy 
C-Means Clustering and deformable snakes; then, the features were extracted using a CNN with ensemble classification; finally, 
the classification was carried out with an SVM. A similar work [24] relied on K-Means clustering, edge-based texture histogram 
equalization, and the discrete cosine transform (DCT) to extract features, VGG16 and VGG19 to process the features, and ELM for 
carrying out the final classification.

Although some of these methods achieved high classification ratios, in many cases their performance is not as good as recent 
CNNs. Hybrid methods share limitations with traditional techniques since they are difficult to configure and train. Furthermore, 
the neural networks must be trained, and their hyperparameters have to be tuned, whenever the settings of other techniques in the 
pipeline are modified.

2.3. Neural networks

The use of CNNs has been studied in various works [25,26], obtaining good performance for the Figshare dataset. In the work 
presented in [27], for instance, the authors obtained the best performance using a basic CNN rather than a fully connected neural 
network or Random Forest. In our study, we analyze a similar network in order to verify these results.

Several works have also analyzed the performance of standard architectures, like GoogLeNet [28] and AlexNet [29] in [30], which 
demonstrated the superiority of GoogLeNet using transfer learning. Capsule networks have also been used in several works [31–33], 
3

although their accuracy on the Figshare dataset is far from the best models.



Heliyon 10 (2024) e25468D. Reyes and J. Sánchez

ResNet50 and EfficientNetB0 have shown to provide good accuracy in [34] and [35], respectively. In the first work, the authors 
obtained the best results without data augmentation, which aligns with our results. In the case of EfficientNet, we obtained better 
results with several models of this family using fine-tuning. A recent work [36] obtained high accuracy using various metaheuristic 
methods to optimize the hyperparameters of a ResNet50 model and the method proposed in [37] relies on Particle Swarm Opti-
mization (PSO) to search for the optimal hyperparameters of a simple CNN architecture. The authors obtained good accuracy for the 
binary classification of brain tumors.

More recently, vision transformers (ViT) [38] have been analyzed in [39], obtaining high accuracy, although with an ensemble 
model and larger images. The main drawback of the transformer architecture is that it has many more parameters, requiring higher 
computational costs for training. In this work, several models performed better with fewer parameters, as detailed in Sect. 4.4. 
Generative adversarial networks (GANs) have been used in [40], where a CNN was pre-trained to learn the structure of MR images 
and then fine-tuned to classify the tumors.

There are also various works that combine different architectures, like DenseNet and LSTM in [41], the first one to extract features 
from each slice and the second one to integrate the features of the 3D MRI volume. A similar work combines the Xception network 
with two attention modules [42], the first one to extract spatial features, and the second one, based on a ConvLSTM network, to 
learn dependencies of the spatial features.

Inception ResNet and Xception were combined in [43] using a mechanism to extract the most interesting features of each net-
work. The method proposed in [44] uses a multiscale approach with three scales of different resolutions, each composed of two 
convolutional layers and max-pooling. The outputs were concatenated to feed another convolutional layer with max-pooling. Finally, 
the result was processed through densely connected layers.

More recently, an ensemble of three models was proposed in [45], based on VGG16, Inception, and Xception, obtaining a high 
accuracy with the Kaggle dataset. The authors also studied three different vision transformers, but they did not obtain satisfactory 
results. Another work [46] proposed an ensemble method based on five CNNs using various datasets.

Although the accuracy of these methods is typically above 90%, it is not easy to compare their results because they use different 
datasets and configurations. In this article, we use a common framework to compare the neural networks. The comparison in Sect. 4.4
shows that similar, or even higher, accuracy can be obtained with simpler architectures.

A comparison between some of these works is detailed in Table 9, where we compare our results with those of the SOTA methods. 
More information about the features and limitations of many of these works can be consulted in [37] or [45].

3. Materials and methods

The World Health Organization (WHO) has reported [47] over 120 types of tumors in the central nervous system. Tumors are 
abnormal masses of tissue that cause swelling and distention in the affected area. They can be classified as benign (noncancerous) or 
malignant (cancerous). Malignant tumors can spread to other parts of the body and pose a risk to the patient’s life.

There are three main types of brain tumors: glioma, which is formed from glial cells or cells of the viscous support that surrounds 
nerve cells; meningioma, which is the most common brain tumor and arises from the meninges; and pituitary tumors, which is found 
in the pituitary gland and is responsible for producing hormones related to growth and other glands.

This section provides an overview of the datasets used in our study and how the images are organized into the training, validation, 
and test sets. Then, we explain the architectural details of the neural networks used in this work. Finally, the experimental setup 
deals with the runtime environment, the configuration of the training process, the optimization of hyperparameters, and the metrics 
used to evaluate the methods.

3.1. Datasets

3.1.1. Figshare brain MRI dataset

In this work, we use the Figshare dataset [9], which is composed of 3064 T1-Weighted images with the three types of tumors. Each 
file contains a data structure with the MR image, the tumor type, the coordinates of its contour, and a mask with the segmentation 
of the tumor region. The dataset contains 1426 images of gliomas, 708 images of meningiomas, and 930 images of pituitary tumors. 
The data is stored in Matlab files, so we previously converted them to PNG format on disk. Fig. 1 shows several slices from different 
views.

The images of the dataset were randomly organized in three sets, with 80% for training and 10% for validation and testing. 
Table 1 shows an example of a random split of the dataset. The training set was used for learning the parameters of the models and 
the validation set was used for fine-tuning the hyperparameters. The test set was used for assessing the performance of the models in 
the experiments.

3.1.2. Brain tumor classification (MRI) dataset

The second dataset [48], from Kaggle,1 contains 3264 slices, with 926 gliomas, 937 meningiomas, 901 pituitary tumors, and 500 
no-tumors. This dataset includes images from other sources, especially from the Figshare dataset, where we found more than 2260 
images of coincidence between the two datasets.
4

1 https://www .kaggle .com /datasets /sartajbhuvaji /brain -tumor -classification -mri.

https://www.kaggle.com/datasets/sartajbhuvaji/brain-tumor-classification-mri


Heliyon 10 (2024) e25468D. Reyes and J. Sánchez

Fig. 1. Images from the Figshare dataset: the first row shows three images of gliomas from a sagittal plane on the left, a coronal plane in the center, and an axial plane 
on the right; the second row shows three images of meningiomas from sagittal, coronal and axial planes; and the third row shows images of pituitary tumors from the 
same views.

Table 1

Split of the Figshare dataset into the training, validation, and test sets. 
The training set contains 80% of the images, and the validation and test 
sets contain 10% each. We show the number of images corresponding 
to each type of tumor for a given random split.

Tumor type Training Validation Test Total

Glioma 1142 141 143 1426
Meningioma 572 65 71 708
Pituitary Tumor 737 100 93 930

Total 2451 306 307 3064

Since many images had arbitrary sizes, we scaled the images to 512 × 512 in a pre-processing step: in the first step, we selected 
the largest dimension of the image and scaled it to 512 pixels; then, we centered the image and introduced black regions on both 
5

sides to complete the other dimension to 512 pixels.



Heliyon 10 (2024) e25468D. Reyes and J. Sánchez

Fig. 2. Images from the Kaggle dataset: three images of the no tumor class. The first image on the left corresponds to a sagittal plane, the center image to a coronal 
plane, and the right image to an axial plane. The other classes in this dataset are similar to the Figshare dataset shown in Fig. 1.

Fig. 3. Types of MR images in the Kaggle dataset: a T1-Weighted type image is shown on the left, a T2-Weighted type image in the center, and a Flair-type image on 
the right.

Table 2

Split of the Kaggle dataset into the training, validation, and test sets. 
The training set contains 80% of the images, and the validation and 
test sets contain 10% each. We show the number of images corre-
sponding to each type of tumor for a given random split.

Tumor type Training Validation Test Total

Glioma 752 81 93 926
Meningioma 740 103 94 937
No tumor 398 52 50 500
Pituitary tumor 721 90 90 901

Total 2611 326 327 3264

This database comprises MR images with various types of resonances from axial, sagittal, and coronal planes; see Fig. 2. Addi-
tionally, it encompasses three MRI physics variations: T1-Weighted, T2-Weighted, and Fluid Attenuated Inversion Recovery (Flair); 
see Fig. 3. These resonances are derived from different exposure times.

T1-Weighted images employ the shortest duration of time, predominantly displaying tissue information. Consequently, they 
provide less information about anomalies compared to the other types of resonances. T2-Weighted images utilize longer exposure 
times, allowing for clearer extraction of properties and the visualization of cerebrospinal fluid (CSF) along with tissue details. Flair, 
on the other hand, employs longer exposure times, which darkens the CSF and highlights anomalies.

An example of the split of the database into the training, validation, and test sets is given in Table 2, with 80% for training, 10% 
6

for validation, and 10% for testing.



Heliyon 10 (2024) e25468D. Reyes and J. Sánchez

Fig. 4. Architecture of the Custom neural network: This network contains five blocks of convolutional, max-pooling, and batch-normalization layers, and two fully 
connected layers at the top. The output is a softmax layer with three neurons for the Figshare dataset and four neurons for Kaggle.

3.2. Neural networks

In this study, we consider the following neural networks: VGG, ResNet, Xception, DenseNet, MobileNet, EfficientNet, and ConvNext. 
We explore different models within each architecture.

3.2.1. Custom network

We analyze a custom-designed CNN, called Custom, which is composed of five blocks of convolutional, max-pooling (MP), and 
batch-normalization (BN) layers, as shown in Fig. 4. The first convolutional layer has an output filter of 64, a 3 × 3 kernel size, a 
default stride of 1 × 1, same-type padding, and rectified linear unit (ReLU) activation. The filters of the rest of the convolutional 
layers are 128, 256, 256, and 512, respectively.

We tried several configurations using a range of filters between 64 and 1024 in each layer but we found this setting to be 
appropriate, although some other configurations provided similar results. We also tested with a different number of layers but found 
that five convolutional blocks were typically more precise. We also swapped the order of the layers, putting BN before the other 
layers, and also before the ReLU activation function, but we did not find significant differences.

Each convolutional layer is followed by a 2D max-pooling subsampling layer with a kernel of size 2 × 2. The output of the last 
convolutional layer is flattened and passed through a dense layer of 512 neurons, a dropout of 50%, and an output of three or four 
neurons with softmax activation. This architecture is somehow similar to AlexNet [29], but we use smaller convolutional kernels, BN, 
and dropout. The purpose of this network is to establish a baseline model so we can understand the benefits of using more complex 
architectures.

3.2.2. VGG

The VGG architecture [49] is one of the first neural networks with a large number of layers. It generalizes the use of small filter 
kernels of size 3 × 3 and combines five blocks of several convolutional layers with MP. These blocks reduce the size of the input data 
at the same time that they double the number of filters, from 64 to 512. At the top of the model, there are three fully connected 
layers of 4096, 4096, and 1000 neurons, with two dropout layers, and softmax. In this work, we use the VGG16 and VGG19 models, 
composed of 16 and 19 layers, respectively.

3.2.3. ResNet

Several configurations of ResNet [50] are also studied in this work, characterized by having many convolutional layers, small 
filter kernels, and skip connections. We analyze networks with 50, 101, and 152 layers.

This model is composed of a first convolutional layer with 64 filters, a kernel size of 7 × 7, and MP. Similar to VGG, the rest of 
the convolutions reduce the size of the input and double the number of filters with a constant kernel size of 3 ×3. The main structure 
follows two paths, one for the skip connections, represented as identity mappings, and another for residual functions composed of 
two blocks of convolutional layers, BN, and ReLU activation functions. The architecture is composed of four blocks of convolutional 
layers. The last layers combine average pooling with a fully connected layer and softmax. The different models of this network 
increase the number of convolutions in the two internal blocks.

Additionally, we also studied the second version of ResNet proposed in [51]. The main difference with respect to the first version 
is that it changes the residual functions with full pre-activation residual functions composed of two blocks of BN, ReLU, and convo-
lutional layers. In the experiments, we report the results of this version, as it consistently provides better results than the previous 
one.

3.2.4. Xception

The Xception network [52] relies on depthwise separable convolutions, BN, and residual connections. It is inspired by the VGG16

model, with kernels of size 3 × 3, by the Inception architecture [28], with separate convolutions for the channel and spatial dimen-
sions, and also by the residual connections of ResNet.

This model is composed of 36 convolutional layers in fourteen different modules with linear residual connections. It uses global 
average pooling after the convolutional backbone, and dropout of 50% before the last fully connected layer. The separate convolu-
tions contribute to reducing the number of parameters and speeding up the training process, obtaining better results than Inception 
7

and ResNet in the ImageNet dataset.



Heliyon 10 (2024) e25468D. Reyes and J. Sánchez

3.2.5. DenseNet

DenseNet [53] connects all the layers to each other so that the input of every layer is composed of the outputs of all previous 
layers. Input features are concatenated instead of added as in the ResNet family. The network size is reduced by using a small number 
of filters per layer. This network alleviates the vanishing-gradient problem, strengthens feature propagation and reuse, and reduces 
the number of parameters. It usually provides good results for small datasets.

It relies on bottleneck layers with BN, ReLU, and convolutions with kernels of size 1 × 1 and 3 × 3. It also introduces transition 
layers between blocks with BN, a convolutional layer of 1 ×1, and average pooling. In the original work, the authors studied different 
configurations with 121, 169, and 201 layers. In this work, we use the model with 201 layers.

3.2.6. MobileNet

MobileNet [54] was designed for devices with memory constraints and low computing power. Similar to the Xception network, 
it is based on depthwise separable convolutions and also relies on two hyperparameters for adapting the size of the network and 
reducing the computational cost. These hyperparameters establish a trade-off between latency and accuracy.

The first version of this family has twenty-eight layers. In the second version [55], the basic building block is a bottleneck depth-
separable convolution with residuals and is composed of seventeen residual bottleneck layers and three standard convolutional 
layers. It uses BN after each layer.

The third version [56] employs a platform-aware neural architecture approach to find the global network structures. It defines a 
multi-objective optimization problem, based on the accuracy and latency, to obtain a base architecture. Then it uses the NetAdapt 
algorithm [57] to adapt the size of the network. The experiments on ImageNet show that this version is slightly more accurate than 
the previous ones while reducing latency. In the experiments, we show the results of the first version, since it provided the best 
results for our datasets.

3.2.7. EfficientNet

EfficientNet [58] defines a strategy to scale the size of the network in order to optimize the accuracy and the number of FLOPS. It 
performs a compound scaling of the depth and width of the network and the resolution of the input images to maintain a trade-off 
between accuracy and FLOPS. The first version of this family is composed of eight different models, from B0 to B7, with an increasing 
number of layers and parameters.

This network relies on the MnasNet architecture [59], which uses inverted bottlenecks [55], and squeeze-and-excitation opti-
mization [60].

In our study, we analyze the second version of this architecture [61], which introduces several improvements over the previous 
one. In particular, it introduces progressive learning, where the size of the images and strength of regularization is gradually increased 
during training; it replaces depthwise convolutions in the first layers to increase the training speed; and it gradually scales the 
networks starting from the last stages.

We report the results of the second version, in particular for the B0 and B3 models, since its accuracy is consistently better than 
the first one. The number of parameters is typically lower than other neural networks with similar performance.

3.2.8. ConvNeXt

ConvNeXt [62] is a recent CNN that introduces several improvements taken from vision transformers. The design of this network 
starts from the ResNet model and borrows some ideas from the vision transformer.

It uses the AdamW [63] optimizer for training the neural network, with many epochs, and up-to-date data augmentation and 
regularization strategies. It adopts depthwise convolutions and an inverted bottleneck design. Additionally, it increases the kernel 
size to 7 × 7 and substitutes BN with Layer Normalization.

They take a few more design decisions, like replacing ReLu with GELU activation functions, increasing the width of the network, 
and reducing the number of normalization layers and activation functions.

The authors of this work demonstrate that these improvements allow CNNs to outperform the Swin Transformer [64] and 
DeiT [65] in several tasks, such as image detection, classification, or segmentation.

Our study involves selecting a broad range of CNNs, including multiple models from the same families but with different ca-
pacities. We start with a small neural network that has five convolutional layers and then include deeper neural networks with 
significant architectural differences. For instance, VGG increases the number of layers to 16 and 19 and uses of 3 × 3 kernels ex-
tensively. ResNet introduces residual connections and considerably increases the number of layers to 50, 101, and 152. Xception 
improves the performance of layers with depthwise separable convolutions. DenseNet redefines the concept of skip connections from 
ResNet by concatenating the features of previous layers. MobileNet, on the other hand, relies on bottleneck depth-separable convo-
lutions and optimizes its size based on a balance between accuracy and latency. EfficientNet optimizes the size of the network based 
on both accuracy and the number of FLOPS. Finally, ConvNeXt is founded on ResNet and adopts several design decisions of vision 
8

transformers, such as using layer normalization, GELU activation functions, and some ideas to improve the training process.



Heliyon 10 (2024) e25468D. Reyes and J. Sánchez

3.3. Experimental setup and metrics

For the implementation of the models, we used the TensorFlow and Keras libraries. Part of the evaluation was also carried out 
with the Scikit-learn library. The code is available on GitHub2

The experiments were conducted on Google Colab and on a desktop computer with an Intel Core i9-10940X CPU @3.30GHz 
processor with 32GB RAM, an NVIDIA Geforce RTX 2060 GPU with 8GB RAM, and another NVIDIA Geforce RTX 3060 GPU with 
12GB RAM, under the Windows 10 Operating System.

3.3.1. Data preprocessing

During the experiments, the images of the datasets were previously scaled-down and augmented to three color channels, resulting 
in images of size 256 × 256 × 3. Then, the pixel values were normalized between -1 and 1. The transformations used for data 
augmentation were horizontal flipping, in-plane rotations, and zooming. In the last two cases, the empty regions were filled with a 
constant value of -1, which corresponds to the background color of the MRI slices. The range of random rotations was between -10% 
and 10% of 2𝜋, and the range of zoom transformations was between -20% and 20%.

3.3.2. Hyperparameter optimization

During our research, we conducted an optimization process to find the best hyperparameters for each model, using the val-
idation set. For our custom convolutional network, we experimented with various configurations of convolutional layers, batch-
normalization, and max-pooling, varying the order and number of layers, as well as the number of features. We also tested several 
fully connected layers and dropout on top of the CNN and found that five convolutional blocks with two fully connected layers 
generated the best results. Some configurations provided similar results, especially for different numbers of features in the last con-
volutional blocks, so we chose one of the models with the least number of parameters. The optimization process led us to the neural 
network depicted in Fig. 4.

We also searched for the best hyperparameters of the other CNNs. In these cases, we retained the backbone of the networks 
and introduced several fully connected layers and dropout on top of the models. We conducted extensive experiments, changing the 
number of fully connected layers, the number of neurons in each layer, and the dropout rates from 25% to 70%. We found that two 
fully connected layers produced good results in many cases, but it also led to overfitting. To address this issue, we increased dropout 
and weight decay, but it was challenging to find a configuration that behaved well for all the models. As a result, we tested one fully 
connected layer, which is the default configuration for several standard networks, and found that it produced satisfactory results for 
many models. This setting allowed us to overcome any over- and underfitting problems, as outlined in the results. For simplicity, we 
used this setting for all the models during the experimental results.

Additionally, we optimized the parameters of the networks with the Adam and RMSProp optimizers and did not find significant 
differences. We found that Adam was more stable and slightly more accurate than RMSProp in several cases using default parameters.

3.3.3. Configuration of the training process

The experimental results section below is organized into four principal sections: the first one compares the accuracy of the 
models using the two datasets; the second one studies the performance of the models with respect to each type of tumor; the third 
one analyzes the trade-off between accuracy and model complexity, studying the memory requirements, the training time, and the 
throughput of each model; finally, the fourth section compares our results with SOTA methods based on the datasets used in each 
work.

In the first part, we compare two main scenarios: training the models from scratch and using transfer learning, both with and 
without data augmentation. Then, we explore the benefits of using fine-tuning after transfer learning.

The training and validation sets were organized in batches of size 32, randomly sampled from the datasets. The number of epochs 
was thirty when the models were trained from scratch, or using transfer learning, and forty-five when using data augmentation.

We used the Adam optimizer with a learning rate of 0.001, 𝛽1 = 0.9, and 𝛽2 = 0.999. The learning rate of the Adam optimizer for 
fine-tuning was reduced to 10−4.

The weights used for transfer learning corresponded to the weights obtained with the Imagenet dataset [66]. During the training 
process, the weights of all layers were frozen except the top of the neural network, which was replaced by a fully connected layer. 
In particular, this was composed of a flatten layer to accommodate the output of the CNN, a dropout layer with a rate of 50%, and a 
softmax layer with the corresponding number of classes (three for Figshare and four for Kaggle).

In the fine-tuning step, some layers of the CNN backbone were unfrozen to let their weights adapt to the training data. The models 
were trained for fifteen more epochs using the training and validation sets together. In some cases, all the layers were unfrozen or 
just the last fifteen layers, depending on the improvement in accuracy, as commented in the experimental results. The experiments 
were executed five times with different random seeds and the results are reported in Sect. 4 for the highest accuracy.

3.3.4. Loss function and metrics

We used one-hot encodings for the labels, with glioma represented as (1,0,0), meningioma as (0,1,0), and pituitary tumors as 
(0,0,1). The loss function used during the optimization process was categorical cross-entropy, which is given by:
9

2 https://github .com /jsanchezperez /brain _tumor _classification.

https://github.com/jsanchezperez/brain_tumor_classification


Heliyon 10 (2024) e25468D. Reyes and J. Sánchez

Fig. 5. Diagram with the main steps of the methodology. On the left, we start with the images of the dataset that are resized and normalized after reading from the 
disk. The dataset is then split into the training, validation, and test sets. The training and validation sets are used for finding the optimal hyperparameters, as depicted 
in the top-right corner of the diagram. The training and test sets are used for training and evaluating the models based on the selected hyperparameters. The output of 
the models with the test set is used in the performance assessment process. Each block shows the combinations of data augmentation, training from scratch, transfer 
learning, and fine-tuning used in each setting.

𝑙𝑜𝑠𝑠(𝑦, �̂�) = − 1
𝑁

𝑁∑

𝑛=1

𝐶∑

𝑖=1
(𝑦𝑛

𝑖
log �̂�𝑛

𝑖
) (1)

with 𝑁 the number of images in the batch, 𝐶 the number of labels (three for Figshare and four for Kaggle), 𝑦𝑛
𝑖

the probability of 
label 𝑖 for image 𝑛, and �̂�𝑛

𝑖
the prediction of label 𝑖 for image 𝑛.

We used the 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 metric for studying the performance of the training, validation, and test sets. This measure represents the 
percentage of images that have been correctly classified and is calculated as:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
, (2)

with 𝑇𝑃 the number of true positive classifications, 𝑇𝑁 the true negatives, 𝐹𝑃 the false positives, and 𝐹𝑁 the false negatives.
We used the 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑟𝑒𝑐𝑎𝑙𝑙 metrics to study the performance of the models with respect to each type of tumor. The 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

measures the rate of positive predictions that are correctly classified and is calculated as:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, (3)

and the 𝑟𝑒𝑐𝑎𝑙𝑙 measures the rate of positive predictions that are correctly classified with regard to the true positive labels and is 
given by:

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. (4)

We use the test set of each dataset for calculating these metrics in the experimental results. Fig. 5 depicts the methodology that 
we have followed in this study. The images of the dataset are shown on the left and each block represents a different step of the 
process, as explained in the previous sections. The images are first resized and normalized before splitting the data into the training, 
validation, and test sets. These are used in the hyperparameter optimization and in the training and evaluation processes. The final 
step, performance assessment, relies on the test set and the trained models to evaluate the accuracy and complexity of each network, 
as reported in the next section.

4. Results

4.1. Accuracy of the models

In this section, we compare the accuracy of the models with both datasets using data augmentation and transfer learning. Then 
we study the benefits of using fine-tuning. Tables 3 and 4 show the results for the Figshare and Kaggle datasets, respectively.

The accuracy is in general high, with several models attaining an accuracy above 95%. The results with the Figshare dataset are 
slightly more accurate than with the Kaggle dataset, especially when we train from scratch. This seems reasonable because the latter 
has more samples, one more classification (no tumor), and more variability. The number of methods with an accuracy higher than 
10

95% is seven with Figshare and three with Kaggle.



Heliyon 10 (2024) e25468D. Reyes and J. Sánchez

Table 3

Accuracy of the models with the Figshare dataset. The first col-
umn shows the results when the neural network is trained from 
scratch (SC), the second column shows the results when it is 
trained from scratch and using data augmentation (SC+DA), the 
third one corresponds to the results using transfer learning (TL), 
and the results in the last column use transfer learning and data 
augmentation (TL+DA). Bold letters highlight the best result in 
each column, underlined text is used for the second-best result, 
and italics for the third one.

Model SC SC+DA TL TL+DA

Custom 96.7% 95.4% - -
VGG16 48.0% 49.5% 96.7% 94.1%

VGG19 48.0% 49.5% 95.4% 92.5%
ResNet50 93.1% 41.8% 94.1% 94.5%
ResNet101 78.8% 84.6% 94.4% 94.8%

ResNet152 87.9% 43.3% 93.8% 92.5%
Xception 90.5% 84.0% 92.2% 90.9%
DenseNet 94.1% 96.4% 95.4% 91.9%
MobileNet 93.5% 93.1% 96.1% 94.8%

EfficientNetB0 94.1% 87.6% 96.1% 93.8%
EfficientNetB3 93.1% 93.8% 96.1% 92.8%
ConvNeXt 30.4% 30.1% 94.1% 89.9%

Table 4

Accuracy of the models with the Kaggle dataset. The first col-
umn shows the results when the network is trained from scratch 
(SC), the second column shows the results when it is trained 
from scratch and using data augmentation (SC+DA), the third 
one corresponds to the results using transfer learning (TL), and 
the results in the last column use transfer learning and data aug-
mentation (TL+DA). Bold letters highlight the best result in each 
column, underlined text is used for the second-best result, and 
italics for the third one.

Model SC SC+DA TL TL+DA

Custom 92.7% 87.4% - -
VGG16 30.7% 26.9% 95.1% 89.9%
VGG19 31.6% 26.4% 94.8% 92.5%

ResNet50 91.4% 67.0% 92.7% 91.1%
ResNet101 84.0% 60.4% 94.2% 87.1%
ResNet152 89.6% 48.2% 93.6% 92.8%
Xception 93.0% 91.1% 92.3% 89.9%
DenseNet 91.1% 75.8% 95.7% 88.7%
MobileNet 90.5% 89.0% 93.9% 93.6%

EfficientNetB0 90.5% 93.6% 95.1% 92.0%
EfficientNetB3 91.1% 92.0% 94.5% 88.3%
ConvNeXt 28.4% 33.8% 93.9% 71.1%

We observe that many models do not provide better results with data augmentation. This happens both when we train from 
scratch and when we use transfer learning. This has been pointed out in other works, like in [34], although it has not been previously 
shown. Probably, the reason for this behavior is that there is not an over-fitting problem and more data do not contribute to a better 
generalization. Note that we use dropout and a single fully connected layer, so further regularization can be detrimental. Another 
reason may be due to the controlled position of the patient’s head in this type of image, which is similar in both the training and test 
sets. Rotations of the head position are unlikely to appear in the test set, thus, this transformation may not contribute to improving 
the variability of the training data.

The best results are typically obtained with transfer learning, except for the Custom model, which has not been trained on another 
dataset, and the Xception model with the Kaggle dataset, which obtained a slightly better accuracy when trained from scratch. It 
is noteworthy that we used weights obtained with Imagenet, which contains natural images, quite different from MR images. This 
denotes the generalization capability of these CNNs.

VGG and ConvNeXt are the only models with low accuracy when trained from scratch. In the case of VGG, this problem may be 
caused by the lack of skip connections that mitigate the effect of vanishing gradients. In the case of ConvNeXt, this may be due to 
fewer activation functions and normalization layers, and the substitution of BN with layer normalization.

Looking at the results of the Figshare dataset, we see that many models obtain an accuracy above 90% when trained from scratch, 
with Custom, DenseNet, and EfficientNetB0 obtaining the highest accuracy of 96.7%, 94.1%, and 94.1%, respectively. The results are 
much better when we use transfer learning. Most of the methods obtain an accuracy above 95%, with VGG16, MobileNet, and both 
11

EfficientNet models obtaining an accuracy above 96%. Xception and ResNet152 get the lowest accuracy.



Heliyon 10 (2024) e25468D. Reyes and J. Sánchez

Fig. 6. Accuracy graphics for DenseNet, EfficientNetB3, and VGG16 using the Kaggle dataset with transfer learning. The blue lines show the accuracy of the models 
with respect to the training set in each epoch and the cyan lines depict the accuracy with respect to the validation set.

Table 5

Accuracy of the models using transfer learning and fine-tuning 
(Figshare dataset). The first column shows the results using 
transfer learning and the second column shows the results with 
transfer learning and fine-tuning. Bold letters highlight the best 
result in each column, underlined text is used for the second-
best result, and italics for the third one.

Model Without fine-tuning With fine-tuning

Custom 96.7% 96.7%
VGG16 96.7% 97.4%
VGG19 95.4% 97.4%
ResNet50 94.1% 98.4%
ResNet101 94.4% 98.7%

ResNet152 93.8% 96.7%
Xception 92.2% 96.4%
DenseNet 95.4% 98.0%

MobileNet 96.1% 98.0%

EfficientNetB0 96.1% 98.4%
EfficientNetB3 96.1% 98.7%

ConvNeXt 94.1% 95.4%

The results with the Kaggle dataset follow a similar pattern, although the accuracy is lower than with the previous dataset in 
general. Similarly, the VGG family and ConvNeXt yield poor results when trained from scratch. The best results are obtained with 
transfer learning, especially for DenseNet, EfficientNetB0, and VGG16, with an accuracy of 95.7%, 95.1%, and 95.1%, respectively.

The graphics in Fig. 6 show the evolution of accuracy during the training epochs. We observe that both the training and validation 
curves converge to a high accuracy and there are no overfitting problems with these models. The gap between the training and 
validation curves is small so we may consider that the effect of underfitting is not significant. This behavior is similar in other 
models. Therefore, the hyperparameters that we have chosen seem to be adequate.

These results can be improved if we use fine-tuning, as depicted in Tables 5 and 6. The first table corresponds to the Figshare 
dataset and the second one to the Kaggle dataset.

We duplicate the results of the Custom model for comparison purposes only, since we did not use fine-tuning in this case. 
The improvement in accuracy for the rest of the models is 2.43% and 1.11% on average with the Figshare and Kaggle datasets, 
respectively. The major improvements are due to ResNet50, ResNet101, and Xception in the first case, with an increase of more than 
4%, and to MobileNet and EfficientNetB3, with an increase of about 3%.

Some models provided the best improvement when we unfroze all the layers during training, such as the ResNet, Xception, and 
EfficientNet models, and others provided the best results only unfreezing the last fifteen layers. In the case of MobileNet and DenseNet

the results were similar.
Fig. 7 shows the accuracy graphics for the ResNet50, MobileNet, and EfficientNetB3 models. In this case, the gaps between the 

training and validation curves are further decreased compared to the graphics in Fig. 6. The training accuracy remains high whereas 
the validation accuracy increases. This means that there are no over- or underfitting problems with these models, thus, we may 
conclude that we have chosen adequate hyperparameters. This also highlights the importance of fine-tuning the models in a second 
step.

Fig. 8, on the other hand, shows the corresponding loss graphics, which confirms the convergence of the training and validation 
errors during the optimization process. This also verifies that there are no over- or underfitting problems.

In summary, most of the models present a high accuracy for the two datasets if we use transfer learning and fine-tuning. Data 
augmentation does not contribute to improving the results in general. VGG16, VGG19, and ConvNeXt cannot learn from scratch with 
these datasets, and the performance of ResNet101 and ResNet152 is also poor in this case. Fine-tuning is essential to obtain higher 
accuracy rates, providing very competitive results for several models. Various models offer outstanding performance, like EfficientNet
12

and MobileNet, which provide high accuracy for both datasets.



Heliyon 10 (2024) e25468D. Reyes and J. Sánchez

Table 6

Accuracy of the models using transfer learning and fine-tuning 
(Kaggle dataset). The first column shows the results using trans-
fer learning and the second column shows the results with trans-
fer learning and fine-tuning. Bold letters highlight the best result 
in each column, underlined text is used for the second-best re-
sult, and italics for the third one.

Model Without fine-tuning With fine-tuning

Custom 92.7% 92.7%
VGG16 95.1% 96.3%
VGG19 94.8% 93.9%
ResNet50 92.7% 94.8%
ResNet101 94.2% 93.9%
ResNet152 93.6% 93.9%
Xception 92.3% 94.5%
DenseNet 95.7% 94.8%
MobileNet 93.9% 97.2%
EfficientNetB0 95.1% 96.6%

EfficientNetB3 94.5% 97.5%

ConvNeXt 93.9% 95.7%

Fig. 7. Accuracy graphics for ResNet50, MobileNet, and EfficientNetB3 using the Figshare dataset with transfer learning and fine-tuning. The blue lines show the 
accuracy of the models with respect to the training set in each epoch and the cyan lines depict the accuracy with respect to the validation set.

Fig. 8. Loss graphics for ResNet50, MobileNet, and EfficientNetB3 using the Figshare dataset with transfer learning and fine-tuning. The blue lines show the loss of 
the models with respect to the training set in each epoch and the cyan lines depict the accuracy with respect to the validation set.

Figs. 9 and 10 show the accuracy, precision, and recall of the methods. In this case, we show the results for the Kaggle dataset 
corresponding to the transfer learning and fine-tuning setting, except for the Custom model for which we have taken the results when 
trained from scratch.

The best models are EfficientNetB3 and MobileNet, with the highest precision and recall, followed by EfficientNetB0 and VGG16. 
The precision and recall of the models are similar, except for the VGG16, ResNet50, and VGG19 models, where the precision is 
significantly bigger than their recall. This means that these models have a tendency to classify fewer samples as false positives, which 
indicates that they are more confident about the results.

On the other hand, the recall of the Custom model is higher than its precision, which means that the rate of false negatives is 
smaller in this case, so it tends to detect a larger rate of true positive cases.

4.2. Analysis of tumor classification

Table 7 shows the precision of the models concerning each type of tumor. The pituitary tumor class obtains the highest rates, with 
13

two models attaining an accuracy of 100%. This label has an average precision of 97.9%, with ResNet152 and ResNet50 providing 



Heliyon 10 (2024) e25468D. Reyes and J. Sánchez

Fig. 9. Accuracy, precision, and recall of the methods using the Kaggle dataset with transfer learning and fine-tuning.

Fig. 10. Accuracy, precision, and recall of the methods using the Kaggle dataset with transfer learning and fine-tuning. The metrics of the Custom model correspond 
to the result when training from scratch.

Table 7

Tumor type precision with the Kaggle dataset. This table shows the preci-
sion of the models concerning each type of tumor. The meningioma class is 
the label with the lowest precision in general, whereas the pituitary tumor 
class is the label with the highest precision. Bold letters highlight the best 
result in each column, underlined text is used for the second-best result, 
and italics for the third one.

Model Glioma Meningioma No tumor Pituitary

Custom 93.3% 92.2% 84.5% 97.8%

VGG16 97.8% 91.5% 98.0% 100.0%

VGG19 88.9% 94.3% 100.0% 96.6%
ResNet50 91.5% 95.9% 97.3% 96.5%
ResNet101 96.8% 88.9% 91.8% 97.6%
ResNet152 94.2% 91.3% 96.0% 95.4%
Xception 93.9% 91.8% 95.6% 97.6%
DenseNet 95.1% 91.3% 95.7% 97.8%

MobileNet 94.7% 97.9% 96.2% 100.0%

EfficientNetB0 95.7% 96.0% 95.9% 98.8%
EfficientNetB3 96.7% 97.9% 96.2% 98.8%
ConvNeXt 92.7% 96.8% 96.1% 97.7%

Average 94.3% 93.8% 95.3% 97.9%
14

Std. Deviation 2.38% 2.89% 3.72% 1.31%



Heliyon 10 (2024) e25468D. Reyes and J. Sánchez

Fig. 11. Confusion matrix corresponding to the EfficientNetB3 model using the Kaggle dataset with transfer learning and fine-tuning.

Fig. 12. Confusion matrix corresponding to the DenseNet model using the Kaggle dataset with transfer learning and fine-tuning.

the lowest precision of 95.4% and 96.5%, respectively. This result is reasonable because the location of this type of tumor is limited 
to the pituitary gland. The second-best label is no tumor with a precision of 95.3%, followed by gliomas with 94.3%, and meningiomas

with 93.8%.
The samples of the Kaggle dataset are distributed as follows: gliomas with 28.4%, meningiomas with 28.7%, no tumor with 15.3%, 

and pituitary tumors with 27.6%. In this case, we observe that the no tumor class has fewer samples than the other labels, which may 
affect the performance of the models. Additionally, many images with this label look brighter than the images of other classes; see 
Fig. 2.

There are various models, such as EfficientNetB0 and EfficientNetB3, that provide similar precisions for all the labels, whereas 
other models, such as VGG16 and VGG19, provide higher precisions for no tumor and pituitary tumors.

The most difficult tumors to classify are meningiomas, with only four models—MobileNet, EfficentNetB3, ConvNeXt, and Efficent-
15

NetB0—obtaining an accuracy higher than 96%.



Heliyon 10 (2024) e25468D. Reyes and J. Sánchez

Fig. 13. Confusion matrix corresponding to the ResNet50 model using the Kaggle dataset with transfer learning and fine-tuning.

Fig. 14. Confusion matrix corresponding to the Custom model using the Kaggle dataset.

Figs. 11, 12, 13, and 14 show the confusion matrices of the EfficientNetB3, DenseNet, Resnet50, and Custom models, respectively. 
EfficientNetB3 and Custom provide the best and worst precisions, respectively, and the results of DenseNet and ResNet50 are somewhere 
in the middle.

The prediction of pituitary tumors is robust for all the models. Meningiomas, and to a lesser extent no-tumors, are sometimes 
classified as pituitary tumors. Gliomas, on the other hand, are never confused with pituitary tumors. The precision of the no-tumor

label is also high except for the Custom model. The false positives, in this case, are mainly due to gliomas. Glioma is the class that 
produces the largest number of false positives, and meningiomas are mainly confused with gliomas in all the models.

EfficientNetB3 provides similar results for all the labels. The main misclassifications are produced by gliomas, which is confused 
16

with meningiomas and no-tumors. In the case of DenseNet and ResNet50, the major confusion is between gliomas and meningiomas.



Heliyon 10 (2024) e25468D. Reyes and J. Sánchez

Table 8

Complexity of the models. The first column shows the accuracy of the models with the Kaggle dataset using transfer 
learning and fine-tuning, the second column depicts the number of parameters of each model, the third column 
stands for the training times expressed in seconds per epoch, the fourth column details the time necessary to process 
one image in inference mode, and the last column represents the image throughput. Bold letters are used to highlight 
the best result in each column, underlined text for the second-best result, and italics for the third one.

Model Accuracy #parameters
(Millions)

Training time
(seconds/epoch)

Inference time
(milliseconds/image)

Throughput
(images/second)

Custom 92.7% 10.7M 29.6 s 4.3 ms 234.37

VGG16 96.3% 165.7M 31.0 s 5.8 ms 171.02
VGG19 93.9% 171.0M 36.3 s 6.8 ms 147.16
ResNet50 94.8% 23.6M 26.7 s 4.7 ms 210.93
ResNet101 93.9% 42.6M 36.6 s 6.8 ms 147.16
ResNet152 93.9% 58.3M 51.6 s 9.3 ms 107.25
Xception 94.5% 20.9M 33.4 s 6.0 ms 166.53
DenseNet 94.8% 18.3M 36.1 s 6.6 ms 150.67
MobileNet 97.2% 3.2M 23.7 s 4.4 ms 226.00
EfficientNetB0 96.6% 5.9M 25.4 s 4.5 ms 218.21

EfficientNetB3 97.5% 12.9M 27.0 s 5.2 ms 191.76
ConvNeXt 95.7% 27.8M 58.2 s 10.3 ms 97.35

4.3. Analysis of model complexity

Table 8 shows the complexity of the models in terms of size and running times. It details the accuracy obtained with the Kaggle 
dataset, obtained from Table 6, the number of parameters, and the training and inference times in each case. We also show the 
throughput, which is the inverse of the inference time and represents the number of images that can be processed by the model per 
second. This information is somehow more intuitive than the inference time since a larger value means better performance.

The best-performing methods must present a high accuracy and a large throughput, additionally with a small training time. The 
first two metrics allow us to choose the best model for production, whereas the third one complements this information to understand 
the cost of updating the parameters of the models in the future.

Looking at the table, we observe a large variability in the size of the networks. The smallest ones are MobileNet and EfficientNetB0

with 3.2M and 5.9M parameters, and the biggest ones are VGG19 and VGG16 with 171M and 165.7M parameters, respectively.
Training times are calculated as the average run-time of 10 epochs. These times are calculated with transfer learning, except 

for the Custom model that we used in the SC configuration. The lowest training times are given by MobileNet, EfficientNetB0, and 
ResNet50. The highest ones are given by ConvNeXt and ResNet152.

The size of the networks does not necessarily correlate with training times. This is the case, for instance, of the VGG models, which 
are comparable with smaller networks, such as DenseNet or Xception. In this regard, VGG has the best trade-off between training time 
and number of parameters, whereas the worst is given by ConvNeXt and DenseNet, which have a small size in comparison with their 
training times. EfficientNetB3, on the other hand, is comparatively worse than ResNet50 and Xception in this respect.

The average inference times and throughput are calculated using all the images of the dataset. The best throughputs are typically 
associated with networks with a small number of parameters, with the Custom and MobileNet models having the best rates, followed 
by EfficientNetB0. The Custom network provides the best rate even with many more parameters than MobileNet, which is indicative 
of its simplicity. The VGG architecture has a significant throughput compared to its size. ConvNeXt provides the worst throughput.

Fig. 15 shows the relation between the accuracy, throughput, and size of the methods. This is illustrative of the overall perfor-
mance of the models: the best models for this problem should have high accuracy and large throughput with a relatively small size. 
This is the case, for instance, of the MobileNet, EfficientNetB3, and EfficientNetB0 models. VGG16 has the second largest size, although 
its throughput is in the middle of the ranking and its accuracy is in the top four.

We observe that the best-performing networks have a small number of parameters, especially MobileNet, with only 3.2M. Thus, 
we may conclude that these datasets do not require models with large capacity.

The worst-performing methods are situated in the bottom-left corner of the graphic, such as ResNet152, VGG19, or ConvNeXt. 
ResNet101 and DenseNet are slightly more accurate than VGG19 but are comparable in terms of throughput.

4.4. Comparison with state-of-the-art

Table 9 compares our results with SOTA methods. The table is divided into two blocks, with the upper part showing the SOTA 
results and the lower part showing our results extracted from Tables 3 and 4.

For each method, we summarize the techniques used in the corresponding article, the size of the input image, and the accuracy 
obtained with the Figshare and Kaggle datasets. This latter dataset was released in 2020, thus the number of works is smaller. We do 
not report the size of the images of various works because it is not documented in the corresponding article.

The best methods in the literature for Figshare are based on ResNet50, Vision Transformers, and Xception. Nevertheless, we observe 
that our results for EfficientNetB3, ResNet101, EfficientNetB0, and ResNet50 are in the top of the ranking. Our experiments confirm 
the performance of EfficientNet and ResNet50.

The first method [5], with an accuracy of 99%, obtained the best result with ReNet50 using transfer learning. They included three 
17

fully connected layers on top of the network and used the Adadelta optimizer. In our study, we also tested a similar configuration 



Heliyon 10 (2024) e25468D. Reyes and J. Sánchez

Fig. 15. Accuracy, throughput, and number of parameters of the neural networks. The size of each bubble represents the number of parameters of each model. The 
best models are situated on the top-right position of the graphic, with high accuracy and throughput.

Table 9

Comparison with SOTA methods. At the top, we show the SOTA results and, at the bottom, our results from Tables 3 and 4. The second column 
summarizes the techniques used in each method, the third column shows the image size used in each method when it is available, and the fourth and 
fifth columns show the accuracy with the Figshare and Kaggle datasets, respectively. Bold letters highlight the best result in each column, underlined 
text is used for the second-best result, and italics for the third one.

Method Techniques Image Size Figshare Acc. Kaggle Acc.

Tahir, et al. (2019) [7] 2D DWT, PCA, SVM 512 × 512 86.0% -
Afshar, et al. (2018) [31] Capsule Network 128 × 128 86.6% -
Afshar, et al. (2019) [32] Capsule Network, Segmentation 128 × 128 90.9% -
Cheng, et al. (2015) [9] Intensity Histogram, GLCM, BoW 512 × 512 91.3% -
Ismael et al. (2018) [22] 2D DWT, 2D Gabor filter, MLP - 91.9% -
Zhou, et al. (2018) [41] DenseNet and LSTM - 92.1% -
Pashaei, et al. (2018) [17] Convolut., BN, MaxPool, ELM 28 × 28 93.7% -
Ayadi, et al. (2021) [26] Convolutional, BN, MaxPool 256 × 256 94.7% -
Phaye, et al. (2018) [33] Dense Capsule Network - 95.0% -
Ghassemi, et al. (2020) [40] Generative Adversarial Network 64 × 64 95.6% -
Shaik et al. (2022) [42] Xception, Attention, ConvLSTM - 96.5% -
Badža et al. (2020) [25] Convolutional, Dropout, MaxPool 256 × 256 96.6% -
Kumar, et al. (2021) [34] ResNet50 - 97.1% -
Amin, et al. (2020) [67] GoogLeNet, KNN 224 × 224 98.0% -
Bodapati, et al. (2021) [43] Xception and InceptionResNetV2 - 98.0% -
Tummala, et al. (2022) [39] Vision Transformer 384 × 384 98.2% -
Mehnatkesh et al. (2023) [36] ResNet50, Ant Colony Optim. 224 × 224 98.7% -
Polat et al. (2021) [5] ResNet50 224 × 224 99.0% -
Hossain, et al. (2023) [45] VGG16, Inception, Xception, ViT 224 × 224 - 96.5%
Goutham, et al. (2022) [35] EfficientNetB0 150 × 150 - 96.9%
Saleh, et al. (2020) [6] Xception 256 × 256 - 98.8%

Mishra, et al. (2022) [68] EfficientNetB2 150 × 150 - 98.8%

VGG16 3 × 3 kernels, 16 layers 256 × 256 97.4% 96.3%
DenseNet Dense skip connections, bottleneck layers, 201 

layers
256 × 256 98.0% 94.8%

MobileNet bottleneck depth-separable convolutions with 
residuals,

256 × 256 98.0% 97.2%

ResNet50 Skip connections, pre-activation residual 
functions, 50 layers

256 × 256 98.4% 94.8%

EfficientNetB0 Inverted bottlenecks and squeeze-and-excitation 
optimization

256 × 256 98.4% 96.6%

ResNet101 Skip connections, pre-activation residual 
functions, 101 layers

256 × 256 98.7% 93.9%

EfficientNetB3 Inverted bottlenecks and squeeze-and-excitation 256 × 256 98.7% 97.5%
18

optimization



Heliyon 10 (2024) e25468D. Reyes and J. Sánchez

but did not obtain such results. On the contrary, the training produced overfitting problems that were solved losing some precision. 
The authors did not explain how they addressed these problems. Another drawback of this work is the large number of parameters, 
with 98M.

The second-best result on Figshare [36] also relies on ResNet50. The authors found optimal hyperparameters for the neural 
network using a metaheuristic method based on the ant colony optimization algorithm. We did not search for optimal configurations 
in this study, so it is probable that we may obtain slightly better results with other hyperparameters.

In the case of Kaggle, our result with EfficientNetB3 is close to the first method and our result with MobileNet is also competitive. 
The top methods [68,6] rely on EfficientNetB2 and Xception using transfer learning, with an accuracy of 98.8%. The first one combines 
two different datasets, creating a large training set with many more samples than in the Kaggle dataset. Therefore, it is difficult to 
compare with this work. Nevertheless, they used an EfficientNet model, which is in line with our results. On the other hand, the 
authors do not detail the configuration of the network or the training parameters, so it is difficult to reproduce the results. The second 
work also has the same drawbacks, with many images in the training set not only corresponding to the original Kaggle dataset. It 
does not provide enough details to reproduce the results either.

5. Discussion

This work demonstrates that several standard CNNs can provide high accuracy with brain tumor datasets. This contrasts with 
many previous methods that propose complex architectures or pipelines that cannot usually be trained end-to-end. These neural 
networks extract adequate features from the input images without any pre-processing technique.

The best-performing networks were EfficientNet, and MobileNet, ranking in the top of the SOTA. ResNet and DenseNet performed 
very well with the Figshare dataset but they obtained poor results with the Kaggle dataset. This is probably due to the larger 
variability of images and the additional no-tumor class.

The Custom network provided one of the best results with Figshare, but it performed poorly with Kaggle. When we used fine-
tuning, this network remained in the last positions in both cases. The best networks in the ResNet family were ResNet101 and 
ResNet50, respectively, obtaining a significant improvement using fine-tuning with Figshare. VGG16 was the clear winner in the 
VGG architecture and DenseNet ranked in the middle of the classification with Xception and ResNet50. Although ConvNeXt is a recent 
neural network, it does not perform satisfactorily in this problem.

Many networks yielded good results when trained from scratch; however, VGG and ConvNeXt were the only two networks that 
obtained poor results in this case.

Transfer learning was key to improving the accuracy of the models, especially for VGG and ConvNeXt. Most models improved 
by a significant percentage in this case. Additionally, fine-tuning allowed the models to improve further, obtaining state-of-the-art 
results in various cases. Some models provided the best results by unfreezing all the layers, whereas others hardly improved by 
unfreezing the last layers, like VGG and ConvNeXt. The Xception network was one of the models that obtained the best improvement 
with fine-tuning, but it did not rank at the top of the classification.

Our experiments showed that data augmentation did not contribute to improving the results. This probably means that there was 
not an overfitting problem with these datasets, or that dropout was sufficient to overcome this problem. This is reasonable as we 
only used one fully connected layer on top of the models.

The analysis concerning each type of tumor revealed that pituitary tumor is the easiest label to classify and meningioma is the most 
difficult one. The two labels that are most often confused are meningiomas and gliomas. Gliomas are also confused to a lesser extent 
with the no-tumor class.

The complexity analysis was important to understand other factors involved in network performance. We showed that the best per-
formance corresponds to smaller networks, like MobileNet or EfficientNetB0, which yielded very competitive results in both datasets. 
We note that most of the parameters in these models came from the fully connected layers on top of the networks, which are usually 
the ones that cause overfitting.

We only used one fully connected layer, whereas other works in the literature typically used a few more. This allowed us to 
reduce the size of the networks although still providing competitive results. We saw, in the comparison with SOTA methods, that the 
most accurate ones had many more parameters for slightly better precision. Furthermore, the methods that ranked first were also 
trained with many more images from multiple datasets, and, in some cases, the configuration of the hyperparameters was not clear.

Our results with the Figshare dataset were consistently better than with Kaggle, which is probably due to the variability of the 
images in the latter. There is an important overlap between the two datasets but there are many images from other sources in the 
Kaggle dataset and an additional classification.

5.1. Limitations

It is not possible to test all configurations for all the models and find the best results in each case. Hence, this work has to be 
seen as a thorough study to rank the models using homogeneous conditions. Nevertheless, the best-performing methods are excellent 
candidates for usage in a real scenario.

The results are promising but are linked to the databases we have used. The kind of information in the Figshare dataset is quite 
homogeneous, so we may not expect that the models trained with it will maintain their performance with other types of MR images. 
19

In the case of the Kaggle dataset, since there is more variability, we may expect better behavior in this regard.



Heliyon 10 (2024) e25468D. Reyes and J. Sánchez

According to the World Health Organization (WHO), there are many more types of brain tumors, but current datasets only contain 
a few classes. We cannot ensure that the performance of the models will remain the same using more labels, although it is reasonable 
to think that this should affect all the models similarly. It is an important issue for the future to create datasets with images from 
different MRI scanners and more types of classifications.

Another limitation, especially when comparing with the state of the art, is the lack of a test set for which the labels are unknown. 
It would be interesting to rely on an external evaluation system to assess the performance of the methods so that the comparison can 
be made under the same conditions.

The accuracy of the models can be further improved with other techniques, such as early stopping. During the training process, 
some models provided better results before the end of the last epoch, so the result with the test set would probably have provided 
better results in some cases.

Another conclusion from our study is that data augmentation seems not to improve the results in general, but we have tested 
three types of transformations: rotations, image scaling, and horizontal flipping. We cannot ensure that other data augmentation 
techniques, such as brightness or contrast changes, or even smaller amounts of transformations, may yield better results in this case.

6. Conclusion

In this work, we assessed the performance of the most relevant convolutional neural networks for the classification of brain 
tumors and showed that several networks provided good accuracy.

We used several techniques for training the models, like transfer learning, data augmentation, and fine-tuning. Although some 
models provided good results when trained from scratch, most of the models obtained better performance with transfer learning. 
Fine-tuning was also important to get an additional improvement of up to 4% in some cases, although a few networks did not get 
any improvement. Data augmentation, on the other hand, did not contribute to increasing the accuracy of the models in general.

Our study also evaluated the performance of the models in terms of image throughput and network capacity. We showed that 
various networks with a reduced number of parameters and large throughput, like EfficientNetB3 or MobileNet, offered outstanding 
results.

The performance of the models is high and we should expect a similar behavior for larger datasets. However, in future works, we 
will study the ability of these networks to deal with more labels and images. We will use multiple brain tumor datasets and extend 
the study to more neural networks. In particular, we are interested in analyzing the performance of vision transformers, for which 
we have not obtained satisfactory results yet. We are also interested in applying self-supervised learning techniques and generative 
models for the classification of brain tumors.

Additional information

No additional information is available for this paper.

CRediT authorship contribution statement

Daniel Reyes: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Validation, Writing – 
original draft. Javier Sánchez: Conceptualization, Data curation, Formal analysis, Funding acquisition, Investigation, Methodology, 
Project administration, Software, Supervision, Validation, Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing 
interests: Javier reports financial support was provided by Canary Islands Health Service.

Data availability

Data included in article/supp.material/referenced in article.

Declaration of generative AI and AI-assisted technologies in the writing process

During the preparation of this work the authors used Grammarly, Bing Chat, and ChatGPT in order to improve language and 
readability. After using these tools, the authors reviewed and edited the content as needed and take full responsibility for the content 
of the publication.

Acknowledgements
20

This work was partially supported by the Servicio Canario de Salud, Gobierno de Canarias, Spain [grant number F2022/03].



Heliyon 10 (2024) e25468D. Reyes and J. Sánchez

References

[1] Q.T. Ostrom, G. Cioffi, K. Waite, C. Kruchko, J.S. Barnholtz-Sloan, CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed 
in the United States in 2014–2018, Neuro-Oncol. 23 (Supplement 3) (2021) 105, https://doi .org /10 .1093 /neuonc /noab200.

[2] L.B. Nabors, J. Portnow, M. Ahluwalia, J. Baehring, H. Brem, S. Brem, N. Butowski, J.L. Campian, S.W. Clark, A.J. Fabiano, et al., Central nervous system 
cancers, version 3.2020, NCCN clinical practice guidelines in oncology, J. Natl. Compr. Cancer Netw. 18 (11) (2020) 1537–1570.

[3] S. Herlidou-Même, J. Constans, B. Carsin, D. Olivie, P. Eliat, L. Nadal-Desbarats, C. Gondry, E. Le Rumeur, I. Idy-Peretti, J. de Certaines, MRI texture analysis on 
texture test objects, normal brain and intracranial tumors, Magn. Reson. Imaging 21 (9) (2003) 989–993, https://doi .org /10 .1016 /S0730 -725X(03 )00212 -1.

[4] L. Lukas, A. Devos, J. Suykens, L. Vanhamme, F. Howe, C. Majós, A. Moreno-Torres, M. Van Der Graaf, A. Tate, C. Arús, S. Van Huffel, Brain tumor classification 
based on long echo proton MRS signals, Artif. Intell. Med. 31 (1) (2004) 73–89, https://doi .org /10 .1016 /j .artmed .2004 .01 .001.

[5] Ö. Polat, C. Güngen, Classification of brain tumors from MR images using deep transfer learning, J. Supercomput. 77 (7) (2021) 7236–7252.
[6] A. Saleh, R. Sukaik, S.S. Abu-Naser, Brain tumor classification using deep learning, in: 2020 International Conference on Assistive and Rehabilitation Technologies 

(iCareTech), 2020, pp. 131–136.
[7] B. Tahir, S. Iqbal, M. Usman Ghani Khan, T. Saba, Z. Mehmood, A. Anjum, T. Mahmood, Feature enhancement framework for brain tumor segmentation and 

classification, Microsc. Res. Tech. 82 (6) (2019) 803–811.
[8] C.S. Rao, K. Karunakara, Efficient detection and classification of brain tumor using kernel based SVM for MRI, Multimed. Tools Appl. 81 (5) (2022) 7393–7417.
[9] J. Cheng, W. Huang, S. Cao, R. Yang, W. Yang, Z. Yun, Z. Wang, Q. Feng, Enhanced performance of brain tumor classification via tumor region augmentation 

and partition, PLoS ONE 10 (10) (2015) e0140381.
[10] A. Devos, A. Simonetti, M. van der Graaf, L. Lukas, J. Suykens, L. Vanhamme, L. Buydens, A. Heerschap, S. Van Huffel, The use of multivariate MR imaging 

intensities versus metabolic data from MR spectroscopic imaging for brain tumor classification, J. Magn. Res. 173 (2) (2005) 218–228, https://doi .org /10 .1016 /
j .jmr .2004 .12 .007.

[11] K. Usman, K. Rajpoot, Brain tumor classification from multi-modality MRI using wavelets and machine learning, Pattern Anal. Appl. 20 (3) (2017) 871–881.
[12] E.I. Zacharaki, S. Wang, S. Chawla, D. Soo Yoo, R. Wolf, E.R. Melhem, C. Davatzikos, Classification of brain tumor type and grade using MRI texture and shape 

in a machine learning scheme, Magn. Reson. Med. 62 (6) (2009) 1609–1618.
[13] G.-Z. Li, J. Yang, C.-Z. Ye, D.-Y. Geng, Degree prediction of malignancy in brain glioma using support vector machines, Comput. Biol. Med. 36 (3) (2006) 

313–325, https://doi .org /10 .1016 /j .compbiomed .2004 .11 .003.
[14] J. Cheng, Brain tumor dataset, Figshare, https://doi .org /10 .6084 /m9 .figshare .1512427 .v5, 2017.
[15] B.H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby, Y. Burren, N. Porz, J. Slotboom, R. Wiest, L. Lanczi, E. Gerstner, M.-A. Weber, 

T. Arbel, B.B. Avants, N. Ayache, P. Buendia, D.L. Collins, N. Cordier, J.J. Corso, A. Criminisi, T. Das, H. Delingette, C. Demiralp, C.R. Durst, M. Dojat, S. 
Doyle, J. Festa, F. Forbes, E. Geremia, B. Glocker, P. Golland, X. Guo, A. Hamamci, K.M. Iftekharuddin, R. Jena, N.M. John, E. Konukoglu, D. Lashkari, J.A. 
Mariz, R. Meier, S. Pereira, D. Precup, S.J. Price, T.R. Raviv, S.M.S. Reza, M. Ryan, D. Sarikaya, L. Schwartz, H.-C. Shin, J. Shotton, C.A. Silva, N. Sousa, N.K. 
Subbanna, G. Szekely, T.J. Taylor, O.M. Thomas, N.J. Tustison, G. Unal, F. Vasseur, M. Wintermark, D.H. Ye, L. Zhao, B. Zhao, D. Zikic, M. Prastawa, M. 
Reyes, K. Van Leemput, The multimodal brain tumor image segmentation benchmark (BRATS), IEEE Trans. Med. Imaging 34 (10) (2015) 1993–2024, https://
doi .org /10 .1109 /TMI .2014 .2377694.

[16] P. Georgiadis, D. Cavouras, I. Kalatzis, A. Daskalakis, G.C. Kagadis, K. Sifaki, M. Malamas, G. Nikiforidis, E. Solomou, Improving brain tumor characterization 
on MRI by probabilistic neural networks and non-linear transformation of textural features, Comput. Methods Programs Biomed. 89 (1) (2008) 24–32.

[17] A. Pashaei, H. Sajedi, N. Jazayeri, Brain tumor classification via convolutional neural network and extreme learning machines, in: 2018 8th International 
Conference on Computer and Knowledge Engineering (ICCKE), IEEE, 2018, pp. 314–319.

[18] S. Deepak, P. Ameer, Brain tumor classification using deep CNN features via transfer learning, Comput. Biol. Med. 111 (2019) 103345, https://doi .org /10 .1016 /
j .compbiomed .2019 .103345, https://www .sciencedirect .com /science /article /pii /S0010482519302148.

[19] M.I. Sharif, M.A. Khan, M. Alhussein, K. Aurangzeb, M. Raza, A decision support system for multimodal brain tumor classification using deep learning, Complex 
Intell. Syst. (2021) 1–14.

[20] J. Kang, Z. Ullah, J. Gwak, MRI-based brain tumor classification using ensemble of deep features and machine learning classifiers, Sensors 21 (6) (2021) 2222.
[21] H. Mohsen, E.-S.A. El-Dahshan, E.-S.M. El-Horbaty, A.-B.M. Salem, Classification using deep learning neural networks for brain tumors, Future Comput. Inform. 

J. 3 (1) (2018) 68–71, https://doi .org /10 .1016 /j .fcij .2017 .12 .001.
[22] M.R. Ismael, I. Abdel-Qader, Brain tumor classification via statistical features and back-propagation neural network, in: 2018 IEEE International Conference on 

Electro/Information Technology (EIT), IEEE, 2018, pp. 0252–0257.
[23] M.Y.B. Murthy, A. Koteswararao, M.S. Babu, Adaptive fuzzy deformable fusion and optimized CNN with ensemble classification for automated brain tumor 

diagnosis, Biomed. Eng. Lett. 12 (1) (2022) 37–58.
[24] M.A. Khan, I. Ashraf, M. Alhaisoni, R. Damaševičius, R. Scherer, A. Rehman, S.A.C. Bukhari, Multimodal brain tumor classification using deep learning and 

robust feature selection: a machine learning application for radiologists, Diagnostics 10 (8) (2020), https://doi .org /10 .3390 /diagnostics10080565, https://
www .mdpi .com /2075 -4418 /10 /8 /565.

[25] M.M. Badža, M.Č. Barjaktarović, Classification of brain tumors from MRI images using a convolutional neural network, Appl. Sci. 10 (6) (2020) 1999.
[26] W. Ayadi, W. Elhamzi, I. Charfi, M. Atri, Deep CNN for brain tumor classification, Neural Process. Lett. 53 (1) (2021) 671–700.
[27] J.S. Paul, A.J. Plassard, B.A. Landman, D. Fabbri, Deep Learning for Brain Tumor Classification, in: Medical Imaging 2017: Biomedical Applications in Molecular, 

Structural, and Functional Imaging, vol. 10137, SPIE, 2017, pp. 253–268.
[28] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: 2015 IEEE Conference 

on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1–9.
[29] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks, in: F. Pereira, C. Burges, L. Bottou, K. Weinberger 

(Eds.), Advances in Neural Information Processing Systems, vol. 25, Curran Associates, Inc., 2012, pp. 1–9, https://proceedings .neurips .cc /paper /2012 /file /
c399862d3b9d6b76c8436e924a68c45b -Paper .pdf.

[30] Y. Yang, L.-F. Yan, X. Zhang, Y. Han, H.-Y. Nan, Y.-C. Hu, B. Hu, S.-L. Yan, J. Zhang, D.-L. Cheng, et al., Glioma grading on conventional MR images: a deep 
learning study with transfer learning, Front. Neurosci. 12 (2018) 804.

[31] P. Afshar, A. Mohammadi, K.N. Plataniotis, Brain tumor type classification via Capsule Networks, in: 2018 25th IEEE International Conference on Image 
Processing (ICIP), IEEE, 2018, pp. 3129–3133.

[32] P. Afshar, K.N. Plataniotis, A. Mohammadi, Capsule Networks for brain tumor classification based on MRI images and coarse tumor boundaries, in: ICASSP 
2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2019, pp. 1368–1372.

[33] S.S.R. Phaye, A. Sikka, A. Dhall, D.R. Bathula, Dense and diverse capsule networks: making the capsules learn better, CoRR, arXiv :1805 .04001 [abs], 2018, 
http://arxiv .org /abs /1805 .04001.

[34] R.L. Kumar, J. Kakarla, B.V. Isunuri, M. Singh, Multi-class brain tumor classification using residual network and global average pooling, Multimed. Tools Appl. 
80 (9) (2021) 13429–13438.

[35] V. Goutham, A. Sameerunnisa, S. Babu, T.B. Prakash, Brain tumor classification using Efficientnet-B0 model, in: 2022 2nd International Conference on Advance 
Computing and Innovative Technologies in Engineering (ICACITE), 2022, pp. 2503–2509.

[36] H. Mehnatkesh, S.M.J. Jalali, A. Khosravi, S. Nahavandi, An intelligent driven deep residual learning framework for brain tumor classification using MRI images, 
21

Expert Syst. Appl. 213 (2023) 119087, https://doi .org /10 .1016 /j .eswa .2022 .119087, https://www .sciencedirect .com /science /article /pii /S0957417422021054.

https://doi.org/10.1093/neuonc/noab200
http://refhub.elsevier.com/S2405-8440(24)01499-3/bibDF15E4B966C3A80DC29CC1E494E447EDs1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bibDF15E4B966C3A80DC29CC1E494E447EDs1
https://doi.org/10.1016/S0730-725X(03)00212-1
https://doi.org/10.1016/j.artmed.2004.01.001
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib112AA5FD1A4833C960E6B5F3766C05CBs1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib2DA41B8ADC9D2EC961365A12FF9ADBFCs1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib2DA41B8ADC9D2EC961365A12FF9ADBFCs1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib2F8EA31C8B2365072D89A9B595D8D79Es1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib2F8EA31C8B2365072D89A9B595D8D79Es1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib53D1380F22031DAC77BA3E757AA7F4D6s1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib59AE422A73E5275AB1608CB399D1C3EDs1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib59AE422A73E5275AB1608CB399D1C3EDs1
https://doi.org/10.1016/j.jmr.2004.12.007
https://doi.org/10.1016/j.jmr.2004.12.007
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib33173D224CC56C9BAE50070B9DA5E129s1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bibC592BDC010CD9E10784F339D307C459As1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bibC592BDC010CD9E10784F339D307C459As1
https://doi.org/10.1016/j.compbiomed.2004.11.003
https://doi.org/10.6084/m9.figshare.1512427.v5
https://doi.org/10.1109/TMI.2014.2377694
https://doi.org/10.1109/TMI.2014.2377694
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib51DE6E0027B92FC4DF5118C86A9D0975s1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib51DE6E0027B92FC4DF5118C86A9D0975s1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bibBC5E5AD8583E2A1BF06B282E5C477C95s1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bibBC5E5AD8583E2A1BF06B282E5C477C95s1
https://doi.org/10.1016/j.compbiomed.2019.103345
https://doi.org/10.1016/j.compbiomed.2019.103345
https://www.sciencedirect.com/science/article/pii/S0010482519302148
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib474E69AB13C1C50AC54647F0366DFF43s1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib474E69AB13C1C50AC54647F0366DFF43s1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib75A8D5925FEAC6C7DDD71D45E70AADE8s1
https://doi.org/10.1016/j.fcij.2017.12.001
http://refhub.elsevier.com/S2405-8440(24)01499-3/bibBDB15202DC73D97464E58D4F980E3D74s1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bibBDB15202DC73D97464E58D4F980E3D74s1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib0B91593E4FD997BC76CC93409896BDD1s1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib0B91593E4FD997BC76CC93409896BDD1s1
https://doi.org/10.3390/diagnostics10080565
https://www.mdpi.com/2075-4418/10/8/565
https://www.mdpi.com/2075-4418/10/8/565
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib18D490CD9A3465BD1829154348C54C86s1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bibF018060505170E25C6D6F3829C37038As1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib3AEBF01E9895580FFB79576B3D929CB8s1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib3AEBF01E9895580FFB79576B3D929CB8s1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib79FCC1E018E9BDC23BDE7308D982969Es1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib79FCC1E018E9BDC23BDE7308D982969Es1
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib074CA145AF3FC1708B38FA4E39A15A0Cs1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib074CA145AF3FC1708B38FA4E39A15A0Cs1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib538893DF5F5A697690DCD1B9353DBDE8s1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib538893DF5F5A697690DCD1B9353DBDE8s1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib8AA952085D4ECF30445D2327E0B1DD8Fs1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib8AA952085D4ECF30445D2327E0B1DD8Fs1
http://arxiv.org/abs/1805.04001
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib512440EAA771BAE5F931224F920D671Es1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib512440EAA771BAE5F931224F920D671Es1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib645E8A61532BC37FEA443D01CBC0BCC9s1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib645E8A61532BC37FEA443D01CBC0BCC9s1
https://doi.org/10.1016/j.eswa.2022.119087
https://www.sciencedirect.com/science/article/pii/S0957417422021054


Heliyon 10 (2024) e25468D. Reyes and J. Sánchez

[37] R. Ibrahim, R. Ghnemat, Q. Abu Al-Haija, Improving Alzheimer’s disease and brain tumor detection using deep learning with particle swarm optimization, AI 
4 (3) (2023) 551–573, https://doi .org /10 .3390 /ai4030030, https://www .mdpi .com /2673 -2688 /4 /3 /30.

[38] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, N. Houlsby, An 
image is worth 16x16 words: transformers for image recognition at scale, CoRR, arXiv :2010 .11929 [abs], 2020, https://arxiv .org /abs /2010 .11929.

[39] S. Tummala, S. Kadry, S.A.C. Bukhari, H.T. Rauf, Classification of brain tumor from magnetic resonance imaging using Vision Transformers ensembling, Curr. 
Oncol. 29 (10) (2022) 7498–7511, https://doi .org /10 .3390 /curroncol29100590, https://www .mdpi .com /1718 -7729 /29 /10 /590.

[40] N. Ghassemi, A. Shoeibi, M. Rouhani, Deep neural network with generative adversarial networks pre-training for brain tumor classification based on MR images, 
Biomed. Signal Process. Control 57 (2020) 101678.

[41] Y. Zhou, Z. Li, H. Zhu, C. Chen, M. Gao, K. Xu, J. Xu, Holistic brain tumor screening and classification based on DenseNet and recurrent neural network, in: 
International MICCAI Brainlesion Workshop, Springer, 2018, pp. 208–217.

[42] N.S. Shaik, T.K. Cherukuri, Multi-level attention network: application to brain tumor classification, Signal Image Video Process. 16 (3) (2022) 817–824.
[43] J.D. Bodapati, N.S. Shaik, V. Naralasetti, N.B. Mundukur, Joint training of two-channel deep neural network for brain tumor classification, Signal Image Video 

Process. 15 (4) (2021) 753–760.
[44] F.J. Díaz-Pernas, M. Martínez-Zarzuela, M. Antón-Rodríguez, D. González-Ortega, A deep learning approach for brain tumor classification and segmentation using 

a multiscale convolutional neural network, Healthcare 9 (2) (2021), https://doi .org /10 .3390 /healthcare9020153, https://www .mdpi .com /2227 -9032 /9 /2 /153.
[45] S. Hossain, A. Chakrabarty, T.R. Gadekallu, M. Alazab, M.J. Piran, Vision Transformers, ensemble model, and transfer learning leveraging explainable AI for 

brain tumor detection and classification, IEEE J. Biomed. Health Inform. (2023) 1–14, https://doi .org /10 .1109 /JBHI .2023 .3266614.
[46] G.S. Tandel, A. Tiwari, O.G. Kakde, N. Gupta, L. Saba, J.S. Suri, Role of ensemble deep learning for brain tumor classification in multiple magnetic resonance 

imaging sequence data, Diagnostics 13 (3) (2023), https://doi .org /10 .3390 /diagnostics13030481, https://www .mdpi .com /2075 -4418 /13 /3 /481.
[47] D.N. Louis, A. Perry, G. Reifenberger, A. Von Deimling, D. Figarella-Branger, W.K. Cavenee, H. Ohgaki, O.D. Wiestler, P. Kleihues, D.W. Ellison, The 2016 World 

Health Organization classification of tumors of the central nervous system: a summary, Acta Neuropathol. 131 (6) (2016) 803–820.
[48] S. Bhuvaji, A. Kadam, P. Bhumkar, S. Dedge, S. Kanchan, Brain tumor classification (MRI), Kaggle, https://doi .org /10 .34740 /KAGGLE /DSV /1183165, 2020, 

https://www .kaggle .com /dsv /1183165.
[49] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint, arXiv :1409 .1556, 2014.
[50] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 

(CVPR), 2016, pp. 1770–1778.
[51] K. He, X. Zhang, S. Ren, J. Sun, Identity mappings in deep residual networks, in: B. Leibe, J. Matas, N. Sebe, M. Welling (Eds.), Computer Vision – ECCV 2016, 

Springer International Publishing, Cham, 2016, pp. 630–645.
[52] F. Chollet, Xception: deep learning with depthwise separable convolutions, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 

(CVPR), 2017, pp. 1251–1258.
[53] G. Huang, Z. Liu, L. van der Maaten, K.Q. Weinberger, Densely connected convolutional networks, in: Proceedings of the IEEE Conference on Computer Vision 

and Pattern Recognition (CVPR), 2017, pp. 4700–4708.
[54] A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, MobileNets: efficient convolutional neural networks for mobile 

vision applications, CoRR, arXiv :1704 .04861 [abs], 2017, http://arxiv .org /abs /1704 .04861.
[55] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen, MobileNetV2: inverted residuals and linear bottlenecks, in: Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR), 2018, pp. 4510–4520.
[56] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan, Q.V. Le, H. Adam, Searching for MobileNetV3, in: 

Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2019.
[57] T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go, M. Sandler, V. Sze, H. Adam, NetAdapt: platform-aware neural network adaptation for mobile applications, in: 

V. Ferrari, M. Hebert, C. Sminchisescu, Y. Weiss (Eds.), Proceedings of the European Conference on Computer Vision (ECCV), Springer International Publishing, 
Cham, 2018, pp. 289–304.

[58] M. Tan, Q. Le, EfficientNet: rethinking model scaling for convolutional neural networks, in: K. Chaudhuri, R. Salakhutdinov (Eds.), Proceedings of the 36th 
International Conference on Machine Learning, in: PMLR, vol. 97, 2019, pp. 6105–6114, https://proceedings .mlr .press /v97 /tan19a .html.

[59] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, Q.V. Le MnasNet, Platform-aware neural architecture search for mobile, in: Proceedings of the 
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 2820–2828.

[60] J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, 
pp. 7132–7141.

[61] M. Tan, Q. Le, EfficientNetV2: smaller models and faster training, in: M. Meila, T. Zhang (Eds.), Proceedings of the 38th International Conference on Machine 
Learning, in: PMLR, vol. 139, 2021, pp. 10096–10106, https://proceedings .mlr .press /v139 /tan21a .html.

[62] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, S. Xie, A ConvNet for the 2020s, in: 2022 IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (CVPR), 2022, pp. 11966–11976.

[63] I. Loshchilov, F. Hutter, Decoupled weight decay regularization, in: International Conference on Learning Representations (ICLR), 2019, pp. 1–10.
[64] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, B. Guo, Swin Transformer: hierarchical vision transformer using shifted windows, in: Proceedings of the 

IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp. 10012–10022.
[65] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, H. Jégou, Training data-efficient image transformers & distillation through attention, in: International 

Conference on Machine Learning, in: PMLR, 2021, pp. 10347–10357.
[66] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, ImageNet: a large-scale hierarchical image database, in: 2009 IEEE Conference on Computer Vision and 

Pattern Recognition, 2009, pp. 248–255.
[67] J. Amin, M. Sharif, N. Gul, M. Raza, M.A. Anjum, M.W. Nisar, S.A.C. Bukhari, Brain tumor detection by using stacked autoencoders in deep learning, J. Med. 

Syst. 44 (2) (2020) 1–12.
[68] S. Kumar Mishra, D. Kumar, G. Kumar, S. Kumar, Multi-classification of brain MRI using EfficientNet, in: 2022 International Conference for Advancement in 
22

Technology (ICONAT), 2022, pp. 1–6.

https://doi.org/10.3390/ai4030030
https://www.mdpi.com/2673-2688/4/3/30
https://arxiv.org/abs/2010.11929
https://doi.org/10.3390/curroncol29100590
https://www.mdpi.com/1718-7729/29/10/590
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib996936E84152B14D963AEA8C4DC44212s1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib996936E84152B14D963AEA8C4DC44212s1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib8D2149684B6DF5ED94B9D9410B67356As1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib8D2149684B6DF5ED94B9D9410B67356As1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib67421ED5CC8AA7AC6A601D4AC684EB07s1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib93DFEEE23FA59F6309B41D1B2CEE6004s1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib93DFEEE23FA59F6309B41D1B2CEE6004s1
https://doi.org/10.3390/healthcare9020153
https://www.mdpi.com/2227-9032/9/2/153
https://doi.org/10.1109/JBHI.2023.3266614
https://doi.org/10.3390/diagnostics13030481
https://www.mdpi.com/2075-4418/13/3/481
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib8136DAE40D27BD759F05E4551C8F7C5Fs1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib8136DAE40D27BD759F05E4551C8F7C5Fs1
https://doi.org/10.34740/KAGGLE/DSV/1183165
https://www.kaggle.com/dsv/1183165
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib079CC8DC6C53025E1FC5C703D7EC3B00s1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib23F14E6549054BC06537DE9E59E8EB4Bs1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib23F14E6549054BC06537DE9E59E8EB4Bs1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib59839A7228A5609C97DAD5C05FEC92D2s1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib59839A7228A5609C97DAD5C05FEC92D2s1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib65440B59B44FB60A9B94BE1A23DD2CACs1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib65440B59B44FB60A9B94BE1A23DD2CACs1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib79829DBB9725CAB599C70890BDA4273Ds1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib79829DBB9725CAB599C70890BDA4273Ds1
http://arxiv.org/abs/1704.04861
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib6151E6D7BF9D89A4AAFF27DDC00F0359s1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib6151E6D7BF9D89A4AAFF27DDC00F0359s1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bibCB719C85DD81B6A5906F4E013FB96E5Ds1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bibCB719C85DD81B6A5906F4E013FB96E5Ds1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib8F0E139272FD302609EBD88D7C42DB81s1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib8F0E139272FD302609EBD88D7C42DB81s1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib8F0E139272FD302609EBD88D7C42DB81s1
https://proceedings.mlr.press/v97/tan19a.html
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib63007D0D1E364BEE1F71ECE27209B880s1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib63007D0D1E364BEE1F71ECE27209B880s1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bibD3C81A3934BBA5D37EDCC440A79CFD92s1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bibD3C81A3934BBA5D37EDCC440A79CFD92s1
https://proceedings.mlr.press/v139/tan21a.html
http://refhub.elsevier.com/S2405-8440(24)01499-3/bibFA5888101F6B5304D4EE4CADD3DAFAFFs1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bibFA5888101F6B5304D4EE4CADD3DAFAFFs1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib69D91AE273019353849489A808B289DCs1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib7A0522EAF1078800F25BA23D9159C470s1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib7A0522EAF1078800F25BA23D9159C470s1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bibA10C6868AEF85A8678A652B53F20B649s1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bibA10C6868AEF85A8678A652B53F20B649s1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bibB318879F822314EFE94C2F096D06465Cs1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bibB318879F822314EFE94C2F096D06465Cs1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib519BB890BA859BEE8DFBC1CCC3A56A02s1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib519BB890BA859BEE8DFBC1CCC3A56A02s1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib15C1B4E2BF83D171303BBE7D1600E0A1s1
http://refhub.elsevier.com/S2405-8440(24)01499-3/bib15C1B4E2BF83D171303BBE7D1600E0A1s1

	Performance of convolutional neural networks for the classification of brain tumors using magnetic resonance imaging
	1 Introduction
	2 Related work
	2.1 Traditional techniques
	2.2 Hybrid methods
	2.3 Neural networks

	3 Materials and methods
	3.1 Datasets
	3.1.1 Figshare brain MRI dataset
	3.1.2 Brain tumor classification (MRI) dataset

	3.2 Neural networks
	3.2.1 Custom network
	3.2.2 VGG
	3.2.3 ResNet
	3.2.4 Xception
	3.2.5 DenseNet
	3.2.6 MobileNet
	3.2.7 EfficientNet
	3.2.8 ConvNeXt

	3.3 Experimental setup and metrics
	3.3.1 Data preprocessing
	3.3.2 Hyperparameter optimization
	3.3.3 Configuration of the training process
	3.3.4 Loss function and metrics


	4 Results
	4.1 Accuracy of the models
	4.2 Analysis of tumor classification
	4.3 Analysis of model complexity
	4.4 Comparison with state-of-the-art

	5 Discussion
	5.1 Limitations

	6 Conclusion
	Additional information
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Declaration of generative AI and AI-assisted technologies in the writing process
	Acknowledgements
	References


