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A B S T R A C T   

Currently the serious problem of contamination by antibiotics is a reality. The scientific evidence of its negative 
effects on the aquatic environment and human health are numerous and unquestionable. Therefore, it is essential 
to intensify research into effective and efficient processes for removing antibiotics from the aquatic environment. 
In this paper, on the one hand, a review of the concentrations detected in all types of waters of some antibiotics is 
developed. In concrete of Ciprofloxacin (CIP), Erythromycin (ERY), Levofloxacin (LEV), Metronidazole (MET), 
Norfloxacin (NOR), Ofloxacin (OFL), Sulfamethoxazole (SMX) and Trimethoprim (TIM). Of the publications 
consulted, it can be noted that the most detected is SMX, while those with the highest concentrations are CIP, 
SMX and TIM. On the other hand, some of the main methods to eliminate antibiotics from the aquatic envi
ronment are defined and classified. The methods are compared, indicating their advantages and disadvantages. 
Combined processes are also mentioned as a good alternative. Finally, the removal percentages achieved by each 
method in some representative publications are detailed. In this regard, it can be said that the methods with the 
best elimination percentages (range 80–100%) are biological methods (Biological Aerated Filter, Anaerobic 
Digestion & Biological Activated Carbon Filter) and membrane technology (Nanofiltration & Reverse Osmosis). 
While those with the worst results (under 80%) are chemicals (Coagulation-Flocculation) and constructed 
wetlands (Horizontal Subsurface Flow Constructed Wetlands).   

1. Introduction 

Although the use of antibiotics is known to have existed since the 
ancient Egypt and in the Middle Age, and that there were numerous 
contributions from different authors since the 19th century, Alexander 
Fleming can be pointed out as an important figure in the invention of 
them. He was a British scientist who in 1928 accidentally discovered, in 
one of his forgotten colonies of Staphylococcus aureus, that a fungus 
(Penicillium notatum) inhibited its growth. The concerning molecule 
was purified and called penicillin [1]. 

In the modern medicine, the word “antibiotic” initially referred to 
any agent with biological activity against living organisms, while now it 
alludes to substances with antibacterial, antifungal or antiparasitic ac
tivity. One of the possible modern definitions pretends to qualify anti
biotics as chemotherapeutic agents that inhibit or eliminate the growth 
of microorganisms, such as bacteria, fungi, or protozoa [2]. 

There are several different kinds of antibiotics, and they can be 
classified based on their chemical structure, action mechanism, action 
spectrum, and the route of administration. Out of these classifications 
the most popular one is their mechanism of action and based on it the 
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most common groups are: β-lactams, sulfonamides, monobactams, car
bapenems, aminoglycosides, glycopeptides, lincomycin, macrolides, 
polypeptides, polyenes, rifamycin, tetracyclines, chloramphenicol, 
quinolones, and fluoroquinolones [3]. 

Another way is to divide them into the following groups: Beta- 
lactams that include Cephalosporins, Penicillin, Monobactams, Carba
penems; Macrolides; Lincosamines; Tetracyclines; Aminoglycosides; 
Amphenicols; Peptides including Polypeptides, Glucopeptides, Lip
opeptides, Polymyxins; Oxazolidinones; Nitro-derivatives; Fusidanos; 
Phosphonates; Pleuromulins; Quinolones; Sulfonamides; Diaminopyr
idines [4]. 

In Fig. 1 the diagram explains through the human food chain the 
connection between the use of antibiotics and human health. It starts 
with the normal intake of antibiotics, followed by the contamination of 
food and drinking water and finally leading to infections by drug 
resistant bacteria which are more difficult to treat [5]. 

There are other ways to explain the entry routes of antibiotics to the 
environment that have an impact on human health. We can classify them 
in two groups: antibiotics used in human medicine and the antibiotics 
used in veterinary medicine. 

One of the gateways of contamination of waters by human antibiotics 
is the following. Humans take antibiotics and then excrete them. The 
excretions reach the Wastewater Treatment Plant (WWTP), and after 
their treatment they generate biosolids and effluent discharges that 
cause pollution of the soil and the aquatic environment (Surface toilet 
and groundwater). 

Moreover, in veterinary medicine, the antibiotics are given to live
stock and then excreted. Excretions generate manure storage tanks and 
lagoons that cause contamination of the soil and the aquatic environ
ment (Surface water and groundwater). Within this section, an espe
cially representative case that directly causes pollution of the aquatic 
environment (Surface toilet and groundwater) is the use of antibiotics in 
aquaculture [6]. 

There are also unconventional pathways of contamination of envi
ronment, for example due to the lack of recycling of expired drugs. The 
recycling of medicines can be a possibility against this route of entry. For 
this, it is necessary to study different methodologies to recycle active 
drugs from expired pharmaceutical products. Studies admit that when a 
drug expires, it can contain 90% or even more of the active pharma
ceutical ingredients. Therefore, suitable chromatographic methods and 
analytical techniques could be adopted for the isolation and eventual 
quantification of the active ingredients in order to successfully recycle 

them into useful products. This approach would be ecological [7]. 
In all cases, the contamination of the soil and the aquatic environ

ment (Surface water and groundwater) leads to direct and indirect 
routes that then get to human beings. Directly, because the contami
nated waters access the Water Treatment Plant (WTP) where the 
drinking water comes from. Indirectly, because the contaminated waters 
are used for irrigation which drives to the contamination of crops that 
humans and livestock animals then eat. These agents are then dis
charged into the sea, contaminating the fish we eat. This water is also 
used as drinking water for livestock animals which humans then eat too 
[6]. 

In addition to the human consumption of antibiotics, there are many 
other anthropogenic activities such as the use of antibiotics in agricul
ture and aquaculture, and non-human applications of antibiotics and 
waste disposal, which generate large environmental resistance reserves 
[8] and virulence genes with their respective organisms that host them 
[9]. 

Multiple genetic and genomic studies of wastewater treatment plants 
have shown that these are important deposits of resistant genes and 
organisms [10,11]. Frequently these genes are transported as genomic 
islands in transmissible plasmids and represent sources of resistance 
[12]. 

The main entry routes of pharmaceutical residues (including anti
biotics) into the aquatic environment are excretions after use, poor 
disposal of unused medicines and the waste generated after their pro
duction. From the routes of entry, they arrive to the WWTP [13]. 

From an environmental point of view, the incorporation of antibi
otics, metabolites and antibiotic resistance genes into the natural envi
ronment is of great concern. Studies have shown that contaminants 
based on antibiotic residues can influence microbial populations 
through bacteriostatic and bactericidal effects, leading to the disap
pearance of key microbial groups associated with ecological activities or 
affecting their physiological functions. The detection, monitoring and 
characterization of these components in the aquatic environment are 
important to evaluate their toxic, teratogenic and mutagenic effects in 
ecosystems [14]. 

The problem is that these WWTP are not prepared to eliminate these 
type of waste products. In this regard, there are studies whose experi
mental results indicate the limitations of primary treatment methods 
when it comes to breaking down pharmaceutical products [15]. All the 
above suggests the need of new treatments focused on the removal of 
antibiotics from the different waters. 

Fig. 1. Connection between the use of antibiotics and human health: Food chain. Source: Adapted to WHO, 2017.  
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Regarding the high consumption of antibiotics, it is important to 
underline that in Europe, according to data from FEDESA in 1997 
approximately 10,000 t/year of antibiotics were consumed, of which 
half were used in medicine and the other half in animal health [16]. In 
Spain, the consumption of antibiotics has fallen but remains high. In 
1985 the overall consumption of antibiotics was 21.9 DHD (Doses 
defined by 1000 Habitants and Day), while in 2000 it was 20.4 DHD 
[17]. 

Statistics on the use of Anti-infective for systemic use in the primary 
care sector in Europe in 2017 show that the consumption measured in 
DHD in central-southern Europe ranges between 19,317 and 32,148. It 
can be classified into three blocks: In the first range (19,317, 23,594) 
there are countries such as Italy; in the second range (23,594, 27,871) 
we find countries such as Spain or France; in the third range (27,871, 
32,148) we find countries such as Greece or Romania. On the lower end, 
in northern Europe, in countries such as England, Sweden, Norway, 
Denmark or Germany, consumption is fixed in the range: (10,763, 
19,317) [18]. 

The objectives of this bibliographic review are summarized in, on the 
one hand, to determine the concentrations of a series of high- 
consumption antibiotics in developed countries, as well as the analyt
ical techniques used. On the other hand, classify and define some of the 
main antibiotic elimination processes, including single and combined. 
Finally, determine for the antibiotics mentioned, the percentages of 
elimination of some of the main previous processes. Compare and 
discuss these percentages are also included. 

2. Occurrence (in water) 

Regarding analysis techniques, it begins by showing in Table 1 the 
evolution that analysis techniques have followed in the last 50 years. 

Determination of pharmaceuticals in different water samples can be 
performed by various chromatographic techniques, including High 
Performance Liquid Chromatography-Ultraviolet (HPLC-UV) [19], High 
Performance Liquid Chromatography-Diode Array Detection (HPLC- 
DAD) [20,21], Liquid Chromatography-Mass Spectrometry (LC-MS), 
Liquid Chromatography-Mass Spectrometry/Mass Spectrometry (LC- 
MS/MS) [22–24] and Gas Chromatography-Mass Spectrometry 
(GC–MS) [25,26]. 

Currently, due to their high sensitivity and selectivity, methods 
based on mass spectrometry are the most applied approach to determine 
sulfonamides residues at low concentrations (mgkg_1 or mg kg_1). 

Within methods, the use of liquid Chromatography-Electrospray- 
Quadrupole Linear ion trap mass spectrometry (HPLC-ESI-QqLIT-MS/ 
MS) permits analysis with high specificity and adequate limits of 
detection [27–32]. 

High performance liquid chromatography (HPLC) is the most com
mon method used for separation and determination of these compounds 
because most pharmaceuticals are non-volatile [33]. As the residue of 
pharmaceutical compounds is usually present at very low concentra
tions in the environmental water, a sample preparation and pre- 
concentration step are necessary before analysis [34,35]. Several pro
cedures have been reported for the pre-concentration of pharmaceuti
cals from water matrices including Solid Phase Extraction (SPE) [22,36], 
Liquid–Liquid Extraction (LLE) [37], Quick, Easy, Cheap, Effective, 
Rugged & Safe (QuEChERS) method [38], Magnetic Solid Phase 
Extraction (MSPE) [39], Hollow Fiber Liquid Phase Microextraction 
(HFLPM) [40] and salting-out assisted liquid–liquid extraction for Non- 
Steroid Anti-Inflammatory Drugs (NSAIDs) [41–46]. Among those 
commonly used methods, solid-phase extraction (SPE) was the most 
extensively used technique [47–49]. 

As a conclusion to say that the main technique of analysis to detect 
these concentrations is liquid chromatography-tandem mass spectrom
etry [50,51], previously, the samples must be treated to preconcentrate 
them using Solid Phase Extraction (SPE) [30,52]. 

Regarding antibiotics, eight types were selected. This selection is due 
to the search for amply spectrum antibiotics, under the reasoning that 
this should lead to wide use and therefore large discharge to the aquatic 
environment. In addition, we learned from the Spanish Agency for 
Medicines and Health Products that, for example, fluoroquinolones have 
increased their use in Spain by 26% in 12 years (between 1997 and 
2009). 

The selection includes Quinolones (Ciprofloxacin, Levofloxacin, Nor
floxacin and Ofloxacin) were chosen because they are antibiotics that are 
used for the treatment of a wide spectrum of urinary, respiratory, gen
ital, gastrointestinal, skin, bone and joint bacterial infections. Nitro
imidazoles (Metronidazole and Trimethoprim) were selected because they 
are antimicrobials with bactericidal action that present a moderately 
broad antibacterial spectrum. They are used in infections of the urinary 
tract, ears, lungs, intestines and liver. Macrolides (Erythromycin) are 
used to treat infections caused by bacteria in the respiratory and urinary 
tracts, as well as ear, intestinal, gynecological, dermatological, and 
sexually transmitted infections. Sulfonamides (Sulfamethoxazole) is an 
antibiotic that, combined with the Trimethoprim, is used to treat mul
tiple types of bacterial infections: ear, urinary tract, pneumonias and 
intestinal. 

After reviewing the bibliography and limiting the study to the 
analysis of these eight types of antibiotics whose descriptions are shown 

Table 1 
Evolution of analysis techniques. Source: [53].  

Time period Analysis technique Abbreviature 

Before 1970 Thin-Layer Chromatography TLC 
1970–1980 Gas Chromatography - Electron Capture Detector GC-ECD 

High Performance Liquid Chromatography HPLC 
1980–1990 Gas Chromatography - Mass Spectrometry 

(Selected Ion Monitoring) 
GC–MS (SIM) 

High-performance Liquid Chromatography 
(Diode Array Detection - Ultraviolet) 

HPLC (DAD- 
UV) 

1990–2000 Gas Chromatography - Mass Spectrometry 
(Electron Capture Detector.) 

GC–MS (ECD) 

Liquid Chromatography - Mass Spectrometry LC-MS 
Liquid Chromatography - Mass Spectrometry 
(Quadrupole-quadrupole-Quadrupole) 

LC-MS (QqQ) 

Liquid Chromatography - Mass Spectrometry 
(Quadrupole-quadrupole-Linear Ion Trap) 

LC-MS (QqLIT) 

2000–2010 Ultra-Performance Liquid Chromatography UPLC 
Ultra-Performance Liquid Chromatography - 
Time of Flight 

UPLC-TOF 

2010 - 
Present 

Ultra-Performance Liquid Chromatography - 
OROBITRAP 

UPLC- 
ORBITRAP 

Ultra-High-Performance Liquid Chromatography 
- Electro-Spray Ionization - Mass Spectrometry 

UHPLC-ESI- 
MS  

Table 2 
Descriptions of antibiotics selected. Source: own elaboration.  

Name Class Abbreviations Excreted 
unchanged in 
human urine 

Ciprofloxacin Quinolones - 
Fluoroquinolones 

CIP 60%a 

Erythromycin Macrolides ERY 5%a 

Levofloxacin Quinolones - 
Fluoroquinolones 

LEV 85%b 

Metronidazole Nitroimidazoles MET 60–80%c 

Norfloxacin Quinolones - 
Fluoroquinolones 

NOR 30%a 

Ofloxacin Quinolones - 
Fluoroquinolones 

OFL 80%a 

Sulfamethoxazole Sulfonamides SMX 12%a 

Trimethoprim Nitroimidazoles TMP 60%a  

a [54–57]. 
b Medication datasheet: LEVOFLOXACINO STADA 500 mg. 
c Medication datasheet: METRONIDAZOL I.V. BRAUN 5 mg/ml – CIMA. 
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in Table 2, we will highlight part of the most representative information 
in each case: authors; location; water source; maximum concentrations 
detected in ng/l (see Table 3). 

From the total of tests cited in Table 3, two conclusions can be drawn. 
On the one hand, it should be noted that the antibiotics LEV, SMX and 
TMP have the highest concentrations, while MET is the one with the 
least, as can be seen in Fig. 2. 

On the other hand, regarding the percentage of times that each 
antibiotic was studied, it can be seen in Fig. 3 that the antibiotics SMX 
and TMP are detected in more than 80% of the studies. Next are CIP, 
ERY, NOR and OFL, with percentages between 30% and 50%. Finally, 
the least detected is LEV, which does not reach 5%. 

3. Removal 

3.1. Processes 

Some of the single treatment processes for the elimination of 
emerging pollutants in general and antibiotics for different types of 
water can be grouped into six large blocks, and each in turn is divided 
into different elimination techniques as shown in Fig. 4. 

First are the chemical processes, where the Coagulation-Flocculation 
method (C–F) is the most prominent. They can be applied at different 
stages of water treatment: pretreatment of industrial effluents before 
entering municipal sewers [95]; primary treatment of urban wastewater 

Table 3 
Concentrations of antibiotics detected in waters in international studies. Source: Several.  

Localization Water source Maximum concentration detected (ng/l) Reference 

CIP ERY LEV MET NOR OFL SMX TMP  

Brisbane; Australia Wastewater 6900 – – – 210 – 570 930 [58] 
Bosnia and Herzegovina, Croatia & Serbia Sewage 2610 420 – – 2940 – 11600 2550 [59] 
Northwest Ohio; USA Wastewater 377 – – – – – 472 – [60] 
Merthyr Tydfil, 

Pontypridd and Cardiff. 
United Kingdom 

River Taff – 121 – 11 – – 8 120 [61] 
WWTP Cilfynydd, – 6755 – 1583 – – 150 6796 
River Ely – 72 – 24 – – 4 183 
WWTP Coslech – 10025 – 962 – – 274 4673 

Madrid; Spain Sewage 13625 2310 – 165 – 5286 530 197 [62] 
North América Sewage 1100 – – – – – 2800 7900 [63] 
Europe Sewage 3353 – – – – – 794 1264 
Asia and Australia Sewage 720 – – – – – 1400 321 
North América Rivers - canals – – – – – – 211 212 
Europe Rivers - canals – – – – – – 4 78.2 
Asia and Australia Rivers - canals 1300 – – – – – 2000 150 
Ontario, Canada Source water – 145 – – – – 284 25 [64] 

Drinking water – 155 – – – – 2 15 
Rhône-Alpes region; France Surface Water – – – 0.3 – 3.2 1.9 0.9 [65] 

Groundwaters – – – 0 – 0 3.0 1.4 
Drinking water – – – 0.4 – 3.2 11 1.4 

Northeast; Spain Drinking water – 33 – – –  149 22.8 [66] 
USA River – – – – – – 38.1 9.1 [67] 
Ulsan, Korea Wastewater – – – – – – 216 277 [68] 
Madrid, Spain Rivers 224 3847 – 1834 <10 552 952 690 [69] 
Valencia; Spain Wastewater 3850 120 – – 1070 960 640 160 [70] 
Stonecutters; Hong Kong Sewage – 684 – – 861 1263 155 119 [57] 
Tai Po; Hong Kong Sewage – 557 – – 67 336 143 119 
Sha Tin; Hong Kong Sewage – 982 – – 286 742 40 136 
20 states; USA Sewage 320 – – – – 660 2900 370 [71] 
Taiwan Surface Water – – – – – – 60 2.1 [72] 
Gran Canaria; Spain Sewage 20321 – 14154 – 2366 – – – [73,74] 
Gran Canaria; Spain Sewage – 300 – 630 – 140 130 100 [75] 
Manipal STP; India Sewage – – – – – – 2260 2080 [76] 
Portugal Drinking water – 5 – – – – 1.3 – [77] 
Japan DWPP – – – – – – 19 – [78] 
Volos; Greek Sewage 591 – – 35 – – 80 96 [79] 
Malaysia Rivers 299.88 – – – – – 114.24 – [80] 
Canada Wastewater – – – – – – 2750 – [81] 
United Arab Emirates Wastewater 1028 951 – – – 1012 228 – [82] 
Mexico Surface water – – – – – – 1220 395 [83] 

Wastewater – – – – – – 2010 790 
Mexico Wastewater 2570 1140 – – 193 1120 6570 1610 [84] 
Mexico Treated Water 65.8 – – – – 293 1215 395 [83,85] 
Brazil Wastewater 33.7 – – – 37.7 – 376 65.1 [86,87] 
Brazil Rivers – – – – 51 – 106 484 [88] 
Brazil Hospital effluent 119 – – – – – 27800 6650 [89] 
Costa Rica Surface water 740 – – – 1744 335 56 122 [90] 
Ecuador Rivers – – – – – – – 610000 [91] 
Kenya Surface water 1300 – – – 2200 – 49700 – [92] 

Wastewater 3000 – – – 2900 – 49300 5600 
Pakistan Wastewater 32.57 – 6.64 – – 2.56 16.09 – [93] 
Shanghai, China Rivers 34.2 6.9 – – 2.6 28.5 764.9 – [94]  

Total data 24 19 2 11 15 17 49 41   
Maximum 20321 10025 14154 1834 2900 5286 49700 610000   
Minimum 3 5 7 0 3 0 1 1   
Mean 2563 1507 7080 477 989 749 3452 17387  

Script means that the antibiotic was not analyzed in that study or that the result is less than the limit of detection. 
DWPP: Drinking Water Purification Plant. 
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[96]; tertiary urban wastewater treatment [97]; drinking water treat
ment plants. Interesting studies have been published regarding the 
detection of pharmacological products in drinking water plants [98], as 
well as during the primary treatment of municipal wastewater [99]. 
Regarding the removal of antibiotics in wastewater, there are also 
published paper [100]. 

Second group are Adsorption, highlighting Activated Carbon. It is a 
promising advanced treatment process that can remove many of the 
pharmacological products that are usually detected in wastewater 
[101]. There are studies that include the elimination of antibiotics in 
wastewater and hospital wastewater both using the Powdered Activated 
Carbon (PAC) [102] and Granular Activated Carbon (GAC) techniques 
[103]. Another adsorption option is to use cellulose membranes. With 
this method, in a study with CIP, a 27% elimination was obtained [104]. 
There are also studies that used zeolites for the adsorption of cipro
floxacin. With this method, elimination percentages between 90% and 
97% have been obtained. These are shown to be promising for future 

applications for the disposal of this drug in wastewater from the phar
maceutical industry, as well as other drugs with similar structural 
characteristics [105]. 

Third are Physicochemical: AOPs, which include Electrochemical 
Oxidation (EO), technology that produces strong oxidants to degrade 
pollutants through electrode reactions [106]; the Ozonation Process 
(OP), which in turn has two mechanisms for ozone-based antibiotic 
degradation: the direct oxidation of ozone and indirect oxidation 
through the generation of free radicals [107]; the Fenton Process (FP). In 
this process, the reagents (H2O2 and Fe2+) react with each other to 
generate OH radicals, which then oxidize and break down the antibiotics 
[108]; Ultraviolet rays (UV/H2O2). In this method, H2O2 decomposes to 
produce OH with UV irradiation [109]. 

A good alternative is the AOPs based on ultraviolet rays (UV / H2O2), 
but its high costs derived mainly from the need for upstream pretreat
ment and downstream H2O2 cooling are a significant inconvenient 
[110]. On the other hand, ozone is presented as a very interesting 

Fig. 2. Summary of antibiotics concentrations detected from the bibliographic review shown in Table 3. Source: Own elaboration.  

Fig. 3. Percentage of times that each antibiotic was studied out of the total of tests consulted in the bibliographic review shown in Table 3. Source: Own elaboration.  
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alternative because its efficiency is like the previous one, but with lower 
costs due to lower chemical and energy requirements [111]. Antibiotic 
elimination studies using this process have been reviewed, all of them in 
wastewater and commonly in pilot plants, but also in municipal treat
ment plants [110,112]. 

Fourth are the membrane technology. In this process, pollutants are 
intercepted as the wastewater passes through small pores in the mem
brane. They can be divided into Microfiltration (MF), Ultrafiltration 
(UF), Nanofiltration (NF) and Reverse Osmosis (RO). In this regard, it 
should be noted that membrane filtration technologies have been tested 
on a real scale, in pilot plants and at the laboratory level to remove 
pharmaceutical products (including antibiotics) from different types of 
waters [58,113–118]. 

Fifth are biological treatments, which can be classified as aerobic, 
anaerobic, and combined aerobic and anaerobic methods. The main 
aerobic method is the Biological Aerated Filter system (BAF). This is a 
new type of process used for wastewater treatment that combines 
oxidation and filtration by biological contact [119]. Includes a solid 
phase to support microbial growth, a liquid phase to submerge the solid 
material, and a gas phase for air input [120]. 

The main anaerobic methods are the Anaerobic Digestion (AD), 
upflow anaerobic sludge blanket (UASB), anaerobic filter (AF), and 
anaerobic baffled reactor (ABR) processes. In concrete stand out AD that 
includes four stages: hydrolysis, acidification, hydrogen production, and 
acetic acid and methane production [121]. The problem you have is that 
the treated sewage and sludge residue could still cause damage to the 
surrounding environment [122]; The main combined aerobic and 
anaerobic methods are the Sequencing Batch Reactor (SBR) and the 
Membrane Bioreactor (MBR) processes. The SBR is based on one or more 
aeration reaction tanks, and the sewage enters the tank in batches. This 
reactor operates in five sequences: influent feeding, anoxic phase, aer
obic phase, sludge settling, and effluent discharge [123]; The MBR 
processes, which combines modern membrane separation technology 
and biological technology. Its advantages are long sludge retention time, 
flexible operation, low sludge production, and high nitrification 

performance. Its disadvantages are its high energy consumption and 
operating costs [124]. Highlight that they can retain more than 5 and 2 
log units of bacteria and viruses, respectively. Pilot studies have been 
developed in hospital wastewater that demonstrate the efficacy of MBR 
for some pharmacological products, even eliminating more than 95% of 
them [125–127]. 

Within the biological ones there are also the attached growth treat
ment and the suspended growth treatment. In the attached growth 
treatment, there are the processes Biological Activated Carbon filter 
(BAC). This process consists of a fixed bed of granular activated carbon 
that supports the growth of bacteria attached to its surface. They have 
been used for years to treat drinking water, demonstrating their effec
tiveness in eliminating natural organic matter [128]. They can be 
considered an interesting alternative on the one hand, because bio
filtration systems in general tend to be robust, simple to build and 
require little energy [129]. On the other hand, because BAC filtration 
costs can be expected to be in the same range as sand filtration [130]. 

Sixth are Constructed Wetlands. It is an artificial wastewater treat
ment ecosystem, which uses the combined action of soil, plants and 
microorganisms to treat wastewater entering the wetland. Wastewater 
purification is achieved by filtration, adsorption, co-precipitation, ion 
exchange, plant adsorption, and microbial decomposition [131]. This 
treatment can be classified as Free Water Surface flow Constructed 
Wetlands (FWS CWs), Horizontal Subsurface Flow Constructed Wet
lands (HSF CWs), and Vertical Subsurface Flow Constructed Wetlands 
(VSF CWs) according to the direction of water flow [106]. 

3.1.1. Comparative: SWOT analysis 
In this section a comparison of some the antibiotic removal processes 

from Water & wastewater is made. For this, the selected technique is 
SWOT analysis because it is a simple tool for strategic analysis that is 
very widespread in decision-making. It has been decided to carry out a 
SWOT analysis for each elimination method to decide which techniques 
should be used according to the case and the intended objective. 

Fig. 4. Single treatment processes for antibiotic removal in different types of waters. Source: Own elaboration.  
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3.1.2. Removal percentage tests 
Unfortunately, there is no specific type of treatment that manages to 

eliminate several micropollutants due to their different properties. To 
date, there are no reliable processes that allow the elimination of both 
bulk substances and micropollutants [72]. 

A bibliographic review was carried out including some of the main 
studies that have been performed for the elimination of antibiotics from 
different types of water (see Table 4). In each case it is specified: the 
treatment used, the method used if appropriate, the water source 
analyzed, the most representative specifications of the test, the per
centage of elimination obtained and finally the reference of the study. 

From the data expressed in the Table 4, it can be concluded that there 
are multiple techniques that achieve excellent elimination percentages 
(>90%). Therefore, it appears that the decision to use one or the other 
method will depend on the facilities already in place at the site in 
question. In Section 4 we will proceed to discuss the results obtained in 
Table 4. 

3.2. Combined processes 

Currently many combined processes are used to remove all types of 
emerging pollutants, including antibiotics, from waters. Some of the 
most representative are listed below: 

First, nanofiltration combined with ozone-based advanced oxidation 
processes in wastewater. In a study on the elimination of antibiotics in a 
wastewater treatment plant in China, UV254 photolysis, ozonation and 
UV/O3 processes were used to treat the nanofiltration concentrate. The 
conclusions were on the one hand, nanofiltration efficiently removed 
antibiotics from the effluent. On the other hand, UV254 photolysis was 
not effective in degrading antibiotics. Lastly, the UV/O3 process was 
able to further remove the antibiotics in the nanofiltration concentrate 

effectively, in addition, the synergistic effect between O3 and UV in the 
degradation of antibiotics is observed. Results show high antibiotic re
jections (>98%) in all sets of experiments. Thus, zero discharge of 
micropollutants from WWTPs is possible through the proposed scheme 
in the study [139]. 

Second, in a important study of the processes for removing antibi
otics from rearing wastewater, combined treatments were analyzed to 
improve removal efficiency. This study concludes that the combined 
treatments show a high efficiency of elimination of antibiotics. They 
have broad prospects for development and application in the treatment 
of breeding wastewater [106]. This paper quotes some important au
thors in this sense: 

Ben et al. studied on degradation of antibiotics in swine wastewater 
using a combined biological–Fenton process. In this method, the SBR 
was used to perform the biological treatment, and then the Fenton 
process was used for further treatment. The final removal rates of 
macrolides and sulfonamide were as high as 99% and 92%–97%, 
respectively. Therefore, the integration of an AOP and a biological 
method can effectively remove antibiotics from breeding wastewater 
[140]. 

Qian et al. conducted a study in which swine wastewater was pre
treated using an up flow anaerobic sludge layer and SBR process, and 
then the wastewater was treated with the Fenton process to remove 
antibiotics. The average antibiotic removal efficiency was 74% [141]. 

Han et al. showed that the antibiotic removal rate was as high as 92% 
when the SBR and AD methods were combined to treat swine waste
water [142]. 

In addition, promising techniques using microalgae or with biofuel 
cells driven by microalgae bacteria have also been studied [143]. 

Third, Z AL-Qodah et al. has published a series of very interesting 
articles on combined processes that include electrocoagulation. A first 

SWOT Analysis
Coagulation-Flocculation

Weaknesses Threats
It requires the use 
of chemicals.

Toxic compounds
are transferred to the

solid phase so the

sludge must be
treated later.

Strengths Opportunities

Separate many
types of particles

the water which

achieves multiple
objectives.

It is applied at 
different stages of 

water treatment as 

appropriate.

SWOT Analysis
Adsorption: Activated Carbon 

Weaknesses Threats
Compounds with 
low molecular 

weight and high 

solubility are 
difficult to absorb.

The presence of
other compounds

competes for

available adsorption
sites.

Strengths Opportunities

Processes are highly
studied in removing

emerging

contaminants.

Active carbons (PAC
and GAC) do not

generate toxic

products.

SWOT Analysis
OP

Weaknesses Threats
It presents 
limitations in the 

treatment of organic 

compounds in 
highly concentrated 

wastewater.

Performance can be
very diverse in the

treatment of organic

compounds.

Strengths Opportunities

It operates in ranges
where conventional

systems are not

feasible.

Do not generate by-
products that require 

further processing.

SWOT Analysis
RO

Weaknesses Threats
The membranes are 

designed for the 
treatment of salt 

water.

Impossibility of

using the membranes
in all types of waters.

Strengths Opportunities

It is a mature

technology.

It does not require 

adaptation and 
presentation good 

percentages of 

elimination of 
emerging pollutants.

SWOT Analysis
MBR

Weaknesses Threats
High installation 

and maintenance 
costs.7

Fouling by the layer

of sludge that
accumulates on the

surface of the

membrane.

Strengths Opportunities

Increased quality of

the effluent as
compared to

conventional

activated sludge
systems.

Easy adaptation to 

existing active 
sludge plants.

SWOT Analysis
Attached growth treatment processes

Weaknesses Threats
Filters should be

changed regularly.

The pollutants are

separated from the
water but are not

destroyed.

Strengths Opportunities

Efficient in

removing some
organic compounds

from drinking water

and wastewater.

Used materials 

available 
everywhere.
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Table 4 
Percentage of elimination of antibiotics through different single treatments process. Source: Several.  

Treatment Method Water source 
(Country) 

Specification test Antibiotic Removal 
(%) 

Reference 

Chemical C-F Hospital 
wastewater 
(Spain) 

Optimum coagulant dose: 
SMX: 50 ppm FeCl3 

TMP: – 
ERY: – 

SMX 
TMP 
ERY 

6.0 ± 9.5a 

− 32.1 ±
51.1 
− 49.7 ±
27.7 

[100] 

Adsorption. 
activated 
carbon. 

PAC Hospital 
wastewater 
(Switzerland) 

A pilot-scale hospital wastewater treatment plant consisting of 
a primary clarifier, membrane bioreactor, and five post- 
treatment technologies including PAC. 
Dosage: 8; 23; 43 mg/l 

CIP 
ERY 
MET 
NOR 
SMX 
TMP 

100, >99, 
>99 
>95, >88, 
>88 
3, 67, 78 
99, >99, 
>99 
2, 33, 62 
n.a., >83, 
>83b 

[102] 

GAC Wastewater 
(China) 

The percent removal that were detectable in the GAC influent. 
Log Kow values. 
Full scale. 

TMP 
ERY 
CIP 
LEV 

90 
80 
50 
70 

[103] 

Advanced 
oxidation 
processes 
(AOPs) 

OP Water 
reclamation 
facility 
(USA) 

Pilot-scale evaluation. 
Average % removal after O3/H2O2 

5 mg/l of applied ozone O3 and 3.5 mg/l of H2O2 

Contact time: 30 min. 

SMX 
TMP 

98 (±0.2) 
>99 

[110] 

UV/H2O2 Domestic 
wastewater 
(Switzerland) 

Municipal wastewater treatment plan 
UV + H2O2 (50 mg/l) 
First contact time: 10 min. 
Second contact time: 30 min. 

CIP 
MET 
NOR 
OFL 
SMX 
TMP 

69, 100 
52, 100 
100, 100 
100, 100 
98, 100 
66, 100 

[111] 

Membrane 
technology 

UF Wastewater 
(China) 

WWTP with inhabitants served 814 × 103; daily flow 400 ×
103m3; hydraulic retention time 11 h; solids retention time 12- 
15d. 

TMP 50 [132] 

NF 
Membranes: 
NF 90 (Dow/FilmTec) 
HL (Desal, Osmonics, GE 
Infrastructure Water 
Process Techn). 

Synthetic 
wastewater 
(Croatia) 

pH: 7.4–7.5. 
Temperature 25 ◦C. 
Antibiotics solutions: 10 mg/l. 

TMP NF 90: 99.2 
HL: 88.8 

[133] 

Wastewater 
(Croatia) 

pH: 6.29–6.82. 
Temperature: 25–30 ◦C. 
Antibiotic feed: 406 μg/l 

TMP NF 90: 
>99.99 
HL: >99.99 

[134] 

RO Wastewater 
(Israel) 

Combine with other method. 
Membrane: Filmtec TW30 25–40 with 2.7 m2 surface area, and 
a flux range of 22–31 lmh at a pressure range of 9.5–10.2 bar. 

ERY 
SMX 
TMP 
ERY 
SMX 
TMP 

MBR/RO: 
99.3 
MBR/RO: 
97.6 
MBR/RO: 
97.2 
CAS-UF/ 
RO: 99.3 
(c) 
CAS-UF/ 
RO: 97.6 
CAS-UF/ 
RO: 93.2 

[135] 

Synthetic 
wastewater 
(Croatia) 

pH: 7.4–7.5; temperature 25 ◦C; antibiotics solutions: 10 mg/l; 
Membrane: XLE from Dow/FilmTec, Midland MI, and HR95PP 
TFC-S from Koch membrane systems, Wilmington, MA. 

TMP HR95: 98.2 
XLE: 98.6 

[133] 

Biological: aerobic BAF Laboratory 
wastewater 
(China) 

Operation conditions: 
Hydraulic retention time (HRT) = 40–48 h 
Hydraulic loading rate (HLR) = 2.8 cm/h 

TMP 
NOR 
OFL 

98.3 
81.7 
98.6 

[136] 

Biological: 
anaerobic 

AD Wastewater 
(China) 

Operation conditions: 
1.38–2.16 kg chemical oxygen demand (COD)/m3/d, 37 ± 1 C, 
hydraulic retention time (HRT) = 16 d 

CIP 
OFL 

85 [137] 

Biological: aerobic 
+ anaerobic 

MBR Hospital 
Wastewater 
(Switzerland) 

Primary clarifier and an MBR. Submerged ultrafiltration flat 
sheet membrane plates (Huber MembraneClearBox, PP carrier, 
PES membrane, 7 m3, 15–30 l⋅m − 2⋅h− 1, 38 nm pore size, 150 
kDa). The sludge concentration: 2 g/l, the sludge age: 30–50 
days. 

CIP 
ERY 
MET 
NOR 
SMX 
TMP 

51 
<60 
45 
47 
7 
96 

[127] 

Biological: 
attached growth 
treatment 

BAC Wastewater 
(Australia) 

Pilot plant. The columns are 3 m high and 22.5 cm internal 
diameter; they consist of 80 cm filtering bed supported by a 20 
cm layer of gravel at the bottom. 
Contact time: 18 min. 

ERY 
SMX 
TMP 

>90 
90 
>90 

[130] 

Constructed 
wetlands 

HSF CWs Aquaculture 
wastewater 
(China) 

Plant: phragmits communis. 
Fill material: gravel and zeolite 
Hydraulic retention time (HRT) = 1d 
Hydraulic retention time (HRT) = 3d 
Hydraulic loading rate (HLR) = 25.2 cm/d 

SMX 4 
(HRT = 1d)  

59 
(HRT = 3d) 

[138] 
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paper on the performance of electrocoagulation-assisted biological 
treatment processes, determines that the electrocoagulation process is 
simple, cost-effective and efficient when used as a pretreatment prior to 
biological processes. Advantages are the elimination of toxic materials 
that could inhibit biocatalysts in the biological treatment stage, the 
reduction of the high organic load and the reduction of membrane 
fouling in MBR. Finally, he proposes increasing research and expresses 
the possibility of expanding its use to an industrial treatment scale 
[144]. 

A second paper is a review on combined electrocoagulation processes 
as a novel approach for enhanced pollutants removal, including the 
combination of electrocoagulation with chemical coagulation, adsorp
tion, magnetic separation, and reverse osmosis. In this review the author 
detects the following problems that are reproduced in many in
vestigations: On the one hand, in most of the studies carried out, syn
thetic wastewater was used instead of real samples. Consequently, the 
production results may not be representative of the real case systems. On 
the other hand, no attempt has been cited to increase adsorption, 
chemical coagulation, magnetic field, and reverse osmosis assisted 
electrocoagulation systems. Finally, very few studies have considered 
the application of kinetic models to predict these combined systems. In 
addition, it proposes using sustainable energy resources to cover the 
electrical energy required by electrocoagulation processes and thus 
reduce operating costs. He also expresses that more attempts must be 
made in search of more sustainable electrodes, apart from Fe and Al 
[145]. 

In a third paper the author reviews the main results obtained from 
studies on the performance of biological treatment combined with 
electrocoagulation as a post-treatment process. The most representative 
conclusion is the demonstration that electrocoagulation is an efficient 
and promising post-treatment process for biological treatment pro
cesses, especially for anaerobically treated effluents that need more 
chemical oxygen demand and removal of color. Besides, the author in
sists on the need for additional studies that combine biological treatment 
and electrocoagulation as a post-treatment process and to compare them 
to select the most profitable [146]. 

Finally, the author cites some interesting studies regarding using a 
combined process that consists of two subsequent biological and elec
trocoagulation steps [147–150], as well as of process of biological with 
electrocoagulation as a post-treatment process [151,152]. 

4. Discussion 

In this section we proceed to discuss the results obtained in the 
bibliographic review carried out, pointing out the most representative 
aspects of the concentrations of antibiotics detected, the most prominent 
removal methods and the elimination tests consulted. 

Regarding the review of the concentrations of antibiotics detected in 
water in international studies, it should be noted that the most studied 
antibiotic is sulfamethoxazole, appearing in 96% of the analyzes, while 
the least studied is levofloxacin, which only appears in the 4%. Too, the 
antibiotics with the highest concentration are Sulfamethoxazole, 
Trimethoprim and Ciprofloxacin (all>20,000 ng/l), while the lowest 
concentration is Metronidazole (1800 ng/l). Another important issue to 
highlight is that 53% of the studies consulted use wastewater as a source, 
while for example only 18% of the papers use river water as a source. 
Therefore, increasing the water analysis in other water sources is very 
interesting for the scientific community. 

As to the main analysis techniques examined, highlight the great 
variety existing in the physical and chemical foundations on which they 
are based: membrane process, chemicals, absorption, filters, oxidation… 
This allows you to choose between one method or another depending on 

the water source, the infrastructures developed in the place and the 
emerging pollutant that you want to eliminate. 

Respect of removal percentage tests consulted, emphasize that 
among the different methods analyzed, those with the best elimination 
results (Ranges between 80 and 100%) are AOPs: OP; Membrane tech
nology: NF & RO; Biological: BAF, AD & BAC. While the one with the 
worst result are Chemical: C-F; Constructed Wetlands: HSF CWs. 

In general, the following criticisms and evaluations can be made. On 
the one hand, in biological treatments, the elimination of antibiotics is 
affected by factors such as process parameters, water quality conditions 
and environmental factors. This must be considered if this option is 
chosen. On the other hand, AOPs and combined treatments for the 
elimination of antibiotics show high efficiency. They have broad 
development and application prospects in wastewater treatment. Lastly, 
membrane technologies are effective in removing antibiotics, but it is 
true that they are rarely used in wastewater today. Choosing this tech
nology is a viable option [106]. 

Next, the RO will be studied in more detail, not because it is a more 
suitable technique than the others, but because in locations with water 
scarcity where RO desalination plants abound (as is the case of the place 
where this paper is made, Canary Islands, Spain), proving the validity of 
this technology for the elimination of antibiotics is very encouraging. If 
the analysis of membrane processes is investigated to a greater extent, it 
is observed that there are multiple studies that prove the efficacy of RO 
to eliminate antibiotic concentrations in different types of water. 
Following, some of the main successful studies, selected for their rele
vance in terms of rejection of contaminants, are explained in greater 
detail. 

First, the pilot unit of Croatia with wastewaters and an initial con
centration of TIM of 406 μg/l. The operation conditions were 25 ◦C of 
temperature and 5.98 pH. The membranes utilized were XLE of Dow film 
Tec. The results of rejection were >99.99% [134]. 

Second, the theoretical/practical case of Gran Canaria (Spain) with 
synthetic seawater and an initial concentration of CIP of 50, 200 and 
500 μg/l. The membranes used were RE2521 of CSM Toray Chemical 
Korea Inc. The operation conditions were in the initial phase 22–30 ◦C of 
temperature and 7 ± 0.2 pH and in the optimization phase 25 ◦C and 7 
± 0.2 pH. The results of rejection were in the initial phase: 99.72%, 
97.91% and 99.55% respectively for 50, 200 and 500 μg/l and in the 
optimization phase 95.96%, 99.69% and 99.83% respectively 50, 200 
and 500 μg/l [153]. 

The data of the elimination percentages consulted in the interna
tional literature review establish ranges from 93% to 99.99%, repeating 
values higher than 99% regularly. In summary, RO presents magnificent 
percentages of antibiotic removal in different types of water. RO is also 
positioned as a candidate technology, as one of the main allies in the 
purpose of eliminating concentrations of antibiotics in the aquatic 
environment, competing with other techniques such as activated carbon 
adsorption, Ozonation and advanced oxidation processes, attached 
growth treatment processes or other membrane process. 

5. Future perspectives 

The future perspectives go through mitigating, preventing, and 
controlling antibiotic resistance, which is one of the global priorities 
recognized by the competent authorities. Future studies should include 
improvement of wastewater management practices and monitoring of 
environmental water contamination by antibiotics. Multiclass methods 
are required that allow simultaneous analysis of antibiotics and their by- 
products at very low concentrations. All to combat concerns with anti
biotic mixtures and their effects on human health and the environment 
derived from chronic low-level exposure [6]. 

a Mean ± standard deviation. 
b n.a.: value not available. 
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The risk of development and proliferation of resistance to antibiotics 
is critical and adequate methods to assess this risk must be developed in 
future lines of research. Studies carried out in rivers of China revealed 
that the concentration of antibiotics depends on three major condi
tioning factors: First, economic factors, for example population density 
and its corresponding release of antibiotics; Second, geochemical factor, 
for example the texture of the sediments and the content of sedimentary 
organic carbon; Third, geographic and hydrological factors, for example 
rainfall and currents [154]. Consequently, the locations for monitoring 
the concentrations of antibiotics in the aquatic environment cannot be 
chosen arbitrarily. A strategy is needed to determine the strategic points 
where monitoring should be performed. 

Research in southern Lake Michigan concludes that concentrations of 
pharmaceuticals can have potential harmful effects on aquatic organ
isms and humans through exposure to drinking water. This study shows 
that conducting more in-depth research to quantify potential threats is 
critical [155]. 

It is important to emphasize that risk assessments of emerging con
taminants (for example antibiotics) are always helpful, but your results 
should be treated with caution because single compound exposure sce
narios are not realistic. Multiple pollutants are reproduced in combi
nation with effects that are unknown and of considerable ecological 
concern. Therefore, prospects are to carry out more specific analyzes to 
define possible adverse effects on the aquatic environment and whether 
synergistic effects between pollutants can occur [156]. 

As a summary regarding the fight against antibiotic resistance, add 
that there are authors who establish a series of major future lines of 
action: First, carry out prevention and awareness campaigns to reduce 
the consumption of antibiotics, as well as greater control of the elimi
nation of expired drugs; Second, optimize the performance of existing 
WWTPs through the implementation of tertiary treatment techniques; 
Third, increase research on new and more innovative techniques for 
water treatment; Fourth, a strict and uniform regulation on the appli
cation of sludge from urban WWTPs and livestock manure as fertilizers 
in agricultural activities since they are sources of contamination of 
agricultural soils and, in some cases, of harvested crops; Fifth, conduct 
more research focused on the ecotoxicological risks associated with 
pharmaceutical contamination. This would allow deciding which com
pounds represent a threat to the aquatic environment and therefore must 
be monitored and included in the lists of priority substances defined in 
legislative frameworks such as Directive 2013/39/EC [157]. 

Also, in the future it is necessary to globalize studies. There are 
knowledge gaps that must be filled through studies of the fate and 
transport of emerging pollutants in countries located in a wider range of 
climates (from tropical to arctic).Especially there is a significant lack of 
information from countries such as Indonesia, India, Canada, Russia, 
and countries in Africa and South America [63]. 

An interesting line of investigation for the future is to use renewable 
sources for the elimination of antibiotics from the aquatic environment. 
In a study in Almeria (south of Spain), treatment by solar photo-Fenton 
was effectively used to remove antibiotics from real secondary effluents 
from two different wastewater treatment plants. In it, 7 out of 10 anti
biotics detected in the investigated wastewater samples were effectively 
eliminated (60–100%). However, it was also shown that the process was 
ineffective in eliminating antibiotic resistance genes, so it was not 
possible for them to conclude that the process can effectively minimize 
the risk of transfer of antibiotic resistance to the environment. Further 
research on more intensive oxidative conditions is needed [158]. 

Another line of work for the future may be based on advancing and 
refining the methods that make it possible to determine a standardized 
elimination efficiency by compound types (for example, for antibiotics). 
These proceeds because there is scientific evidence that determines 
serious difficulties in comparing the efficacy of the different treatment 
processes because the elimination of organic micropollutants seems to 
be specific to each compound [159,160]. 

The prospects also include reducing the costs of eliminating 

antibiotics from the aquatic environment. For example, there are rela
tively recent studies on hospital effluents that establish that total costs 
range between 4.1 €/m3 and 5.5 €/m3 in the case of incorporating sec
ondary treatment using a membrane biological reactor and advanced 
oxidation processes [161]. 

Finally say that in countries with large coastal areas and especially in 
the ones that have islands with water scarcity, wastewater treatment and 
desalination are essential to meet their water needs. A good example is 
the case of Gran Canaria Island (Spain), where desalination represents 
approximately 45% of the total water produced, being used as follows: 
agricultural (14%), recreational (9%), urban (73%), tourism (73%) and 
industrial (60%). The technology used widely for desalination on the 
island is RO; it is implemented in the 85% of the existing desalination 
plants. Therefore, it can be said that RO in this island is a mature, reli
able, and experienced technology [162]. Taking advantage of this 
experience and these infrastructures of RO for the objective of elimi
nating antibiotics from the aquatic environment is an opportunity in this 
type of location. 

In this sense, to say that RO can also be used as one more treatment 
within a concatenated series of treatments. 

This was done in a study in a WWTP in northern Spain in which the 
concentrations of 77 emerging pollutants (including antibiotics) in raw 
municipal wastewater and secondary treatment effluent in a WWTP 
were monitored for two years. In it, a wastewater treatment scheme was 
used that integrates activated sludge, UF, RO and electro-oxidation to 
eliminate them. Their results dictated that the amount of micro
pollutants removed during secondary treatment varied widely by com
pound. While the UF removal efficiency for the different compounds 
varied significantly, although it was less than 20% for most. Excellent 
removal rates were achieved in the reverse osmosis treatment. They 
rejected more than 99% of all target compounds. Finally, electro
oxidation with boron-doped diamond electrodes removed more than 
95% of most of the compounds studied from the RO effluent [163]. 

6. Conclusions 

The human and animal waste that is produced after the consumption 
of antibiotics causes the contamination of the aquatic environment. This 
ends up harming human health by generating resistance to antibiotics. 
To fight against this problem and protect the Aquatic Environment, 
numerous efforts are being made around the world. The problem is not 
easy because there are multiple routes of entry for antibiotic residues of 
human and animal origin into the aquatic environment and the con
sumption of antibiotics for medical and veterinary use has high levels in 
developed countries. If means for their elimination from the aquatic 
environment are not studied, the problem will worsen over time. 
Because of higher global consumption, large discharges excreted into the 
aquatic environment, which will be added to the existing 
concentrations. 

In this bibliographic review, the study has focused on analyzing the 
concentrations detected and the elimination percentages experienced of 
the following antibiotics: Ciprofloxacin, Erythromycin, Levofloxacin, 
Metronidazole, Norfloxacin, Ofloxacin, Sulfamethoxazole, Trimethoprim. In 
addition, this study includes countries around the world, as well as 
different types of waters: Sewage, wastewater (hospital, domestic, syn
thetic), water reclamation facility, rivers, surface water, drinking water 
and synthetic seawater.  

i. The most studied antibiotic is Sulfamethoxazole, appearing in 96% 
of the analyzes, while the least studied is Levofloxacin, which only 
appears in 4%. Regarding the concentrations detected, the anti
biotics with the highest concentrations are Sulfamethoxazole, 
Trimethoprim and Ciprofloxacin (all >20,000 ng/l), while the one 
with the lowest concentration is Metronidazole (1800 ng/l).  

ii. Multiple techniques have been experimented with to tackle the 
removal of concentrations of these antibiotics from the aquatic 
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environment with different results. Among the different methods 
analyzed, the ones that present the best results of elimination 
(Range 80–100%) are: NF & RO; Biological: BAF, AD & BAC. 
While the one with the worst result (under 60%) are Chemical: C- 
F; Constructed Wetlands: HSF CWs.  

iii. RO is an effective technique with elimination percentages higher 
than 93% in all the analyzes reviewed of Ciprofloxacin, Sulfa
methoxazole, Trimethoprim and Erythromycin in wastewaters (real 
and synthetic) and seawater synthetic. 
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Palacios, S.L. Gelover-Santiago, S. Pérez-Castrejón, L. Cardoso-Vigueros, 
A. Martín-Domínguez, L. García-Sánchez, Assessment of full-scale biological 
nutrient removal systems upgraded with physico-chemical processes for the 
removal of emerging pollutants present in wastewaters from Mexico, Sci. Total 
Environ. 571 (2016) 1172–1182, https://doi.org/10.1016/j. 
scitotenv.2016.07.118. 
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