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ABSTRACT Anomaly detection in network traffic is one of the key techniques to ensure security in future
networks. Today, the importance of this topic is even higher, since the network traffic is growing and there
is a need to have smart algorithms, which can automatically adapt to new network conditions, detect threats
and recognize the type of the possible network attack. Nowadays, there are a lot of different approaches,
some of them have reached relatively sufficient accuracy. However, the majority of works are being tested
on old datasets, which do not reflect current network conditions and it leads to overfitted results. This is
caused by high redundancy of the data and because they fail to reflect the performance of the latest methods
in the real-world anomaly detection applications. In this work, we applied a couple of new methods based on
convolutional neural networks: U-Net based and Temporal convolutional network based for network attack
classification. We trained and evaluated methods on the old dataset KDD99 and the modern large-scale
one CSE-CIC-IDS2018. According to results, Temporal convolutional network with LSTM has achieved
accuracy 92% and 97% on the KDD99 and the CSE-CIC-IDS2018 respectively, the U-Net model has
accuracy 93% and 94% on the KDD99 and the CSE-CIC-IDS2018 respectively. Additionally, we utilized the
focal loss function in the Temporal convolutional network with Long Short-Term Memory model, which has
positive effect on class imbalance in time-series data. We showed, that the Temporal convolutional network in
combination with Long Short-Term Memory network and U-Net model can give higher accuracy compared
to other network architectures for network traffic classification. In this work we also proved, that methods
trained on the old dataset can easily overfit during training and achieve relatively good results on the testing
set, but at the same time, these methods are not so successful on more complex and actual data.

INDEX TERMS Convolutional neural network, deep learning, intrusion detection system, multi-class

classification, security, imbalanced dataset.

I. INTRODUCTION

Information technologies are rapidly spreading throughout
the world. Unfortunately, together with this, also the number
of cyber-attacks grows. Information security is critical for
ensuring the safety of data in networks, identification of
malicious communication and protection of their users. It is
a quite challenging task since the attacks differ significantly
and new kinds of attacks never been before appear each
month. This is the reason why classical supervised machine
learning methods like classification or regression often fail.
In coming years, it is expected that due to the growing net-
work traffic and increased number of attacks, the importance
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of attack detection methods will grow. Qualified estimates
predict global cyber-security market growth between 2020 to
2026 by approximately 14% each year [1].

Intrusion Detection Systems (IDS) are commonly used to
monitor the traffic and detect possible threats in network
systems. A possible position of the IDS in the network archi-
tecture is shown in fig. 1. As can be seen from the scheme,
the IDS is placed after the firewall to monitor Internet traffic
further. Although the firewall first filters the traffic, it can
never filter every malicious traffic. There is still a significant
risk of some abnormal connections by which the possible
attacker can cause damages in a local network. Unfortunately,
it is impossible to predict all possible attack scenarios and to
define them in an internal firewall rules manually, because
the attack types differ significantly. For example, the attacker
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FIGURE 1. Overview of network with IDS.

can perform a brute force attack against POP3 to guess the
password, if an administrator has not set up the security
system properly.

Another effective method for attack detection is focused
on detection of unusual behaviour in the network. For this
purpose an existing signature database is being used. How-
ever, it is costly to keep it up-to-date with the latest attacks,
but there will always be some delay. Because of the grow-
ing amount of network traffic and increasing value of data
transmitted over the network, it is essential to have systems,
which adapt to a concrete network and detect the suspicious
behaviour, even without preexisting signature database of
known attacks.

This is the reason why there is a big demand for tech-
nologies that can process massive volumes of data and detect
anomalies in them. In particular, more attention is given
to supervised learning: adaptive methods based on machine
learning approaches. There are many works in this field and
many of them also report relatively high accuracy. However,
the main problem is lack of data in general, and many works
refer to relatively old datasets, which unfortunately don’t
reflect the characteristics of network communication in 2021.
Consequently, the performance is significantly lower, when
models are trained on old datasets and deployed on new
networks. The best known and frequently used datasets are
KDD99! or NSL-KDD [2]. These datasets are more than
20 years old. Even if the intrusion detection systems prove
their performance on those data, in real scenarios they can
fail. That is why methods trained on these data can fail when
deployed to real-world networks.

Recently, a relatively new dataset CSE-CIC-IDS2018 [3]
was released. This dataset contains network communication

1 http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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data with traffic adapted to current network style and current
attack types. The dataset contains a various range of differ-
ent attacks which are labelled. It allows not only to detect
but also to recognize different types of attacks (multi-class
classification). Moreover, this dataset contains data from real
network traffic. That fact allows to evaluate the capability of
algorithms to work in real network communication.

In this work we did the study on current state of the problem
of network anomaly detection and provided an overview
regarding latest works. We selected, tested and compared four
classifiers on KDD99 and CSE-CIC-IDS2018: convolutional
neural network, autoencoder, fully connected network and
recurrent neural network. We examined these two datasets
to determine if the old dataset is still actual for this field
of research and how the results of training and testing will
differ. Moreover, we proposed two models of multi-class
classification for the problem of anomaly detection: the first
one is based on U-Net, which was adapted for processing
time-series to perform a classification task and the second
one is based on Temporal Convolutional Network and Long
Short-Term Memory, which is also adapted for classification
tasks. Moreover, taking into account the imbalance problem
of datasets, we utilized the focal loss function, which is able
to deal with imbalanced datasets.

Main contributions of this paper can be summed up in
the next points. First of all, we designed a new architecture
which provides more accurate network attacks classification.
This architecture is based on Temporal Convolutional Net-
work [4] and Long Short-Term Memory with focal loss func-
tion, which was not applied for this task before. The method
was validated and tested on one of the largest public available
datasets (CSE-CIC-IDS2018) for intrusion detection system
and compared to the four classical architectures. We proved,
that the proposed architecture is able to provide better results
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on time-series tasks, including anomaly detection of network
attacks, and achieve accuracy 97%.

Secondly, we adapted the U-Net [5] model for anomaly
detection tasks, which was not applied for these tasks before,
at least at the moment of writing of this paper. It also out-
performs classical architectures and achieved accuracy 94%.
Additionally, we have shown, that this model is effective
in prediction of attack classes, which have relatively small
number of training and testing samples.

Thirdly, we compared results on two datasets, KDD99 and
CSE-CIC-IDS2018 and proved, that nowadays the applica-
tion of old datasets is not the best choice for evaluation of
methods, because of their limitations and out-dating. The
results of the evaluation of the methods on these two datasets
are different, which is why it is necessary to pay attention to
used data for training some models in real application.

The rest of this paper is structured as follows. Firstly,
related works are described. This paper focuses on
approaches based on neural networks, which are divided
by the type of architecture. The next section introduces
the experiment, including how the data were pre-processed
together with proposed architectures, and shows the results
of the experiment. The last section concludes the paper.

Il. RELATED WORK

Nowadays, many different approaches exist for network
anomaly detection, processing of time-series and classifica-
tion of attacks. The works can be basically divided accord-
ing to their functionality into methods for attack detection
(i.e. binary), which classify whether the network behaviour is
normal or malicious, and attack recognition (i.e. multi-class
classification), which determine the concrete type of attack.
Another criterion for dividing the algorithms is according to
the type of training data - i.e. supervised or unsupervised. The
unsupervised methods have the advantage of availability of
huge amount of data and there is no need for labelled data.
On the other hand, the supervised methods have better control
over their evaluation and can reach higher accuracy.

The supervised methods require huge training datasets,
which usually must be manually annotated by experts and
updated in time. This is often very costly and also time-
consuming. Their advantage is usually accuracy and ability
to objectively estimate their performance. On the other hand,
it is not easy to obtain large labelled datasets which contain
all the possible types of attacks and keep them up-to-date.
The well-known approaches are Support Vector Machine
(SVM) [6], Random Forests (RF) [7], K-Nearest Neighbours
(KNN) [8], Naive Bayes (NB) [9], etc.

An alternative to supervised algorithms are unsupervised
methods. These methods have the advantage of being trained
from data that contains no labels, which allows utilization
of huge amounts of data and allows real time data update.
This type of algorithms aims to find the hidden patterns
in unlabelled data [10]. The common algorithms used in
unsupervised learning are one-class support vector machines,
k-means clustering algorithm, etc.
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In recent years, deep learning methods have shown promis-
ing results in different fields, including anomaly detection.
There are two main fields, which researchers investigate for
intrusion detection: dimensionality reduction and classifica-
tion of network traffic. The first one addresses to the problem
of high dimensionality. Since the data is getting more com-
plex and its dimensionality increases, it is more challenging
to find any abnormal characteristics in a high-dimensional
space. For that reason, it is required to apply dimensionality
reduction. For example, in work [11] the authors proposed a
method, which reduces the number of features from 81 to 10
on the CIC-IDS2017 dataset and has achieved high accu-
racy for binary and multi-class classification. Sometimes,
the authors combine these two field of research to achieve
better results. In [12] the authors proposed an approach,
which based on a novel dimensionality reduction, which
combines feature selection and extraction techniques as the
first step, and the second step is an application of different
classifiers on extracted features. This approach was tested on
such datasets as ISCX 2012, NSL-KDD, and Kyoto 2006+
and has achieved accuracy 98-99%.

The main focus of this work is the problem of attack clas-
sification: more detailed description of existing deep learning
approaches is introduced below and the summary of them is
shown in table 1. For some methods, accuracy is not provided
in the original paper, that is why some values are missing.

TABLE 1. Summary of recent approaches.

Paper | Year | Method Dataset Accuracy, %

[13] 2020 Autoencoder CSE-CIC-IDS2018 | 96.20 (averaged)
CIC-IDS2017 96.02 (averaged)

[14] 2019 | Autoencoder KDD99 99.996
UNSW-NB15 89.134

[15] 2020 | CNN KDD99 99.98
CSE-CIC-IDS2018 | 91.5

[16] 2020 | CNN NSL-KDD 88.82

[17] 2019 | CNN CSE-CIC-IDS2018 | —

[19] 2019 | Residual learning | NSL-KDD 87.28

[20] 2020 | Residual learning | NSL-KDD 99.21
UNSW-NBI15 86.64

21] 2019 | RNN NSL-KDD 92
ISCX 97.5

[22] 2019 | RNN CIC-IDS2017 99.1
NSL-KDD 99.4

[27] 2019 | RL NSL-KDD 80.16
AWID 95.90

[28] 2020 | RL NSL-KDD 89.78
AWID 95.70

[23] 2019 | GAN SWaT -
WADI -
KDD99 -

[24] 2019 | GAN KDD99 -

A. AUTOENCODERS

One of the recent works which utilized and autoencoder is
described in [13]. The authors proposed new approaches for
anomaly detection. The first one is based on training a model
on non-malicious traffic and detection of anomalous and nor-
mal inputs based on suitable threshold reconstruction error
value. The second approach is based on double-loop learning,
which focuses on the minimization of the number of false
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positives and reduction of the number of false negatives. The
authors made a conclusion, that the application of the double
learning approach can lead to improvement in performance:
the detection time for a single flow is 1 microsecond. The
main disadvantage of this work is a lack of comparison with
others.

Another encoder-based approach, called two-stage deep
learning (TSDL) [14], was introduced in 2019. The authors
process network traffic in two steps. The first one is used to
classify between the normal and abnormal states of network
communication. The second step is used to determine also the
class of attack, with an input vector of features together with
the output of the first step. This method allows to classify
various types of attacks efficiently. However, the authors
achieved accuracy 99.98% for the KDD99 and only §9.13%
for the UNSW-NB15. A possible reason for that difference
in accuracy values is overfitting of the model, when it was
trained by the KDD99. This dataset suffers from redundancy
of samples. However, dataset UNSW-NB15 provides more
realistic validation, because it is more complex when com-
pared to KDD99.

B. CONVOLUTIONAL NEURAL NETWORK (CNN)
Convolutional neural networks are often used in image pro-
cessing and have been defined to solve image tasks. They
have a special layer - convolutional layer, which allows to
extract the important features from the input data. CNN was
also applied to anomaly detection, for example, in work [15].
The authors transformed a feature vector into an image and
applied a 2D CNN on it. It allows to utilize the effective-
ness of CNN in image processing. The authors trained and
tested their proposed model on the KDD99 and the CSE-CIC-
IDS2018. In spite of high accuracy on KDD99, the accuracy
on testing on the CSE-CIC-IDS2018 is 91.5%. An interest-
ing point in this work is the accuracy of benign traffic is
only 73.5%, but samples for benign label take the biggest
part of the dataset. In spite of that, the proposed method is
successful for DoS attack detection. The similar way of data
processing was used in [16] and [17]. In work [16] CNN was
applied for packet preprocessing and the performance was
improved by more than 10%.

In another work, the authors experimented with different
depths of the CNN network to see the impact on perfor-
mance. They used 1D convolutional and max-pooling layers
instead of a transformation of the input vector into 2D matrix/
image [18]. They proposed three architectures: shallow CNN,
moderate CNN and deep CNN. According to their results for
binary classification, adding more layers does not give better
results.

C. RESIDUAL LEARNING

The main advantage of residual learning is the utilization
of skip connections, which allow training deep neural net-
works without saturation of accuracy. This method found
application in different tasks, including anomaly detection.
For example, in approach [19] the authors proposed a new
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Residual Learning and split-transform-merge based CNN
architectural block, which was applied in one class CNN
classifier. Modelling of normal network traffic distribution
is done with Stacked Autoencoders. The proposed method
was evaluated on the NSL-KDD dataset and the best achieved
accuracy 89.41%.

One of the latest approaches, which is called Pelican [20],
also utilizes the residual learning to solve the performance
degradation, since it is the usual problem in deep neural net-
works. Authors combined CNN and RNN in the sub residual
network. It allows to effectively capture both spatial and tem-
poral features in the input data. The proposed framework was
tested on the NSL-KDD and the UNSW-NB15 and achieved
99.21% and 86.64% accuracy.

D. RECURRENT NEURAL NETWORK (RNN)

Recurrent neural networks are primarily used to process texts
and time-series thanks to utilization of previous state outputs
as inputs for the next state. For that reason, the RNNs are
often applied in anomaly detection.

One of the recent works consists of the following steps:
preprocessing of the original dataset, generation of feature
subsets, measurement of a loss score and an accuracy of
subsets with decision tree and selection of the best fea-
ture set, application of classifiers - RNN, Long Short-Term
Memory (LSTM), Gated Recurrent Unit (GRU) models and
the final step is the evaluation of various IDS RNNs mod-
els [21]. As the result, thanks to feature selection, com-
putation time and memory usage were reduced, and the
GRU model achieved also a better accuracy — 92% on the
NSL-KDD dataset and 97.5% on the ISCX dataset. Also,
an RNN is utilized in work [22]. The authors proposed a
system, which uses the misuse detection approach and the
anomaly-based detection approach. This system consists of
a Misuse Detection Engine, Anomaly Detection Engine and
Signature Generation Engine, which filters known attacks,
detects malicious packets, generates signatures and updates
the signature repository of IDS respectively. Authors used the
CIC-IDS2017 and NSL-KDD datasets and achieved accuracy
approximately 99% for binary and multi-class classification.

E. GENERATIVE ADVERSARIAL NETWORKS (GAN)

In recent years, Generative Adversarial Networks are becom-
ing very popular and have been applied in different fields
of research, including anomaly detection. This architecture
usually has two parts: generator and discriminator. The gen-
erator tries to create data, which would be very similar to real
data. The input to the discriminator can be the output from
the generator or the real data. The aim of the discriminator is
to determine if the input is real or produced by the generator.
This concept forces neural networks to be trained on larger
datasets than it is available.

One of these works is MAD-GAN [23]. This model
consists of a generator and a discriminator, which are
two Long-Short-Term-Memory Recurrent Neural Networks
(LSTM-RNN). The discriminator is trained to correctly

143611



IEEE Access

A. Mezina et al.: Network Anomaly Detection With Temporal Convolutional Network and U-Net Model

classify both real and fake sequences, and the generator is
trained to fool the discriminator. The model was tested and
compared on three datasets: SWaT, WADI and KDD99. They
choose metrics such as Precision, Recall and F1 and the best
values MAD-GAN achieved on the SWaT dataset. The results
were 0.9999 precision, 0.9998 recall and 0.77 F1 score.
On the WADI dataset with 0.4698 precision, 0.99 recall and
0.37 F1 score. On the KDD99 dataset the best results were
0.9492 precision, 0.9633 recall and 0.94 F1 score. In spite of
good results, the disadvantage of this approach is the potential
instability of the GANS in real production.

Another GAN-based model, Fence GAN [24], has a gen-
erator and a discriminator, which are fully connected net-
works. Authors modified loss functions to adapt the model
for anomaly detection: encirclement and dispersion losses
are used for the generator, and weighted discriminator loss
is used for the discriminator. The disadvantage of modi-
fication of loss function is that the generated samples lie
close to the boundaries of the real data distribution and the
model does not succeed to detect anomalies near discon-
tinious boundaries [25]. This model was tested on different
datasets: MNIST, CIFAR10 and KDD99 and showed the
best anomaly classification accuracy. On KDD99 it achieved
results: 0.9546 accuracy, 0.9697 recall and 0.9553 F1 score.

F. REINFORCEMENT LEARNING (RL)

Reinforcement learning which stands between supervised
and unsupervised learning, has succeeded in couple of works.
The main goal is to map situations to actions — using max-
imization of a numerical reward of the signal [26]. RL is
primarily used in the field of game playing. However, it also
found application in anomaly detection. For example, in [27]
the authors created a classifier based on RL: the environ-
ment sends information about its state to an agent, and the
agent responds with action. In this framework, the agent is
a classifier, which tries to predict the label from a given
state of the environment. The agent and environment use the
fully-connected neural network to train a model. The main
advantage of this approach is that it requires less time for
training and testing. The accuracy of classification is similar
to the state-of-the-art and achieved 95.90% on the AWID
dataset and 80.16% on the NSL-KDD dataset.

In another paper [28], the authors also applied the
RL method for anomaly detection. They modified the clas-
sical concept of deep reinforcement learning by replacing the
environment with a sampling function of recorded training
intrusions. It allows to generate rewards based on detec-
tion errors found during training. Moreover, they compared
different deep reinforcement learning models with this new
technique and showed that RL can improve results and works
faster than alternative models.

G. SUMMARY OF EXISTING APPROACHES

Based on the above mentioned literature research, neu-
ral network architectures were one of the most successful
approaches to the problem of anomaly detection and traffic
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classification. It should be emphasized, that many studies
use relatively old datasets for their evaluation. Those stud-
ies which evaluated their methods on both datasets showed
significantly worse results on the new dataset (see table 1)
which indicates, that new architectures reflecting especially
new data are needed. The datasets have also some limitations
which are described in more detail below. As well, not many
works are addressing to the imbalance problem of datasets.

H. DATASETS

There are several public datasets, which allow to test and to
evaluate algorithms for network anomaly detection or clas-
sification of network traffic. The most significant and most
frequently used ones are described below.

KDD99 dataset was created in 1999 as a filtered version
of the DARPA98 dataset. This dataset is still widely used
in many research works as a benchmark dataset. It contains
approximately 4,900,000 samples, each with 41 features.
The attacks are classified into four classes: DoS (Denial of
Service), U2R (User to Root), R2L (Remote to Local) and
Probe (Probing Attack). Also a normal traffic category is
provided [29]. In spite of the huge number of records, there
are a lot of duplicates, so there are in fact approximately
only 1,400,000 unique data samples for training, and test-
ing [30]. The NSL-KDD dataset was introduced to solve
the problem of the duplicated samples in the KDD99. It has
only about 126,000 and 22,000 training and testing samples,
respectively.

Another dataset, the ISCX-IDS-2012, contains
2,381,532 normal samples and 68,792 malicious traffic of
seven days [31]. The authors prepared 4 scenarios of attacks:
infiltrating the network from the inside, HTTP denial of
service, distributed denial of service using an IRC Botnet and
brute force SSH.

UNSW-NBIS5 [32] was created in the Cyber Range Lab of
the Australian Centre for Cyber Security (ACCS) in 2015.
The dataset contains labelled samples with 49 attributes
and nine types of attacks, namely, Fuzzers, Analysis, Back-
doors, DoS, Exploits, Generic, Reconnaissance, Shellcode
and Worms. The dataset consists of four CSV files with the
total of 2,540,044 labelled records.

One of the modern datasets is CIC-IDS2017 [3], which
was developed by the Canadian Institute of Cyber Security.
This dataset is getting attractive for researchers, who want to
implement and test algorithms, for example, for the classi-
fication of attacks. This dataset includes collected data from
five days and contains the following attacks: Brute Force FTP,
Brute Force SSH, DoS, Heartbleed, Web Attack, Infiltration,
Botnet and DDoS. The dataset contains full packet payloads
in PCAPs and processed data in CSV format for machine
learning [3].

The updated version of CIC-IDS2017 was released
in 2018. CSE-CIC-IDS2018 is a collaborative project
between the Canada’s Communications Security Establish-
ment (CSE) and the Canadian Institute for Cybersecurity
(CIC). This dataset has a class imbalance and is similar
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to CIC-IDS2017. It contains about 16,000,000 instances
in 10 files collected from 10 days of network traffic. Nine
files have samples with 79 attributes and one file has records
with 83 attributes. The full list of features can be found on the
official page of the dataset. The total number of label classes
is 15. They can be grouped into DDoS, DoS, Brute force,
Botnet, Infiltration, Web attack and Benign [33].

Also, there are some other datasets, which are used for
evaluation of anomaly detection: Aegean WiFi Intrusion
Dataset (AWID), which contains real flows of normal and
intrusive 802.11 traffic [34], Secure Water Treatment (SWaT)
dataset [35], Water Distribution (WADI) [36], which are
testbeds for security research and training.

I. LIMITATIONS OF OLD DATASETS

The main problem of the outdated datasets is that they do
not represent the modern attack scenarios [37]. Since the
behavioural patterns of network attacks have changed, it is
necessary to have up-to-date datasets for research. This prob-
lem was already mentioned in some papers as one of the
challenges, for example, in [38] and [39]. The next problem
is the difference of distribution of the testing set and training
set because of the appearing of new attack vectors in the test-
ing set. Moreover, the well-known problem of old datasets,
is overfitting. According to provided experiment results in
paper [40], it is obvious that it is not difficult to achieve
high results. Additionally, it can be seen from table 1 that
methods tested on the KDD99 or the NSL-KDD achieved
accuracy 99%, but on latest datasets, such as UNSW-NB15 or
CIC-IDS2017, the achieved less accuracy than on the older
datasets. This fact supports the necessity of utilization of
modern datasets for evaluation of proposed methods and it
proves, that it is necessary to improve algorithms and that
there is a space for increase of accuracy.

lll. METHODOLOGY

One of the goals of this work is to compare existing meth-
ods for network attacks classification and to propose new
methods for this task, which perform better, especially on the
newest datasets. For this purpose we proposed methods using
the U-Net model and Temporal Convolutional Network. The
U-Net model had been already applied for processing time
series [41], however, it has not been applied for anomaly
detection in networks yet. TCNs were also applied for time
series and were more successful than LSTM and GRU [42].
Moreover, in contrast to the most existing methods, the mod-
ern dataset (CSE-CIC-IDS2018) is used for evaluation. Also,
the KDD99 dataset was used for training and testing models
to compare results with the CSE-CIC-IDS2018 to evaluate
robustness of the methods with other data and compare results
with other works.

A. DATA PROCESSING

The first step is data preprocessing. For this experiment
we selected two datasets: KDD99 and CSE-CIC-IDS2018,
which were already described in section II-H. We choose
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these two datasets to compare the results of training and
testing on the old dataset and the modern one to see how the
results will be different, since the KDD99 has limitations and
the CSE-CIC-IDS2018 is more complex and corresponds to
current network traffic.

KDD99 has been already divided into train and test
sets and the number of training and testing samples for
each kind of attacks is shown in table 2. The training set
contains 4,898,431 samples, and the testing set consists
of 311,029 samples. The total number of features is 41. The
types of attacks were grouped into 4 sets: Denial of Service,
User to Root, Remote to Local and Probing Attack. Features,
like services, flags, and protocol types were also encoded with
numbers since they had the dataset’s string values. After that,
the prepared dataset was normalized. The labels were one-hot
encoded: the output of this method is a vector of ““0” and *““1”’,
where the position of ““1”” indicates the correct label of the
input sample.

TABLE 2. Used attack types from KDD99 dataset.

Label Training set Testing set
Total Percentage, % | Total Percentage, %
Normal | 972,781 19.859 60,593 19.481
DOS 3,883,370 | 79.278 229,853 | 73.901
Probe 41,102 0.839 4,166 1.339
R2L 1,126 0.023 16,347 5.256
U2R 52 0.001 70 0.023

CSE-CIC-IDS2018 contains 10 CSV files. For this exper-
iment only 9 of the 10 CSV files were used. They contain
the total of 79 attributes, where only 78 features are applied:
timestamp has been removed, since it has no impact on attack
classification of network traffic. The used attack types and
numbers of samples are shown in table 3. The next step is
cleaning data from null and infinite values. The samples with
these values were removed. Also, the data were normalized
in the range 0 to 1. The one-hot encoding method is used to
encode the labels. The final number of data samples for train-
ing, validation and testing is 8,247,888. The cross-validation
with k£ = 5 was used for training and evaluation of the perfor-
mance of the neural network models. For training (including
validation) is used 90%, for testing 10% of whole the dataset.
Since 5-fold cross validation is used, 20% of the training set
is used for validation. The final split of the whole dataset is:
training set — 72%, validation set — 18% and testing set 10%.

B. EXPERIMENTAL SETUP

For the experiment, totally 6 neural networks are used. The
hyperparameters of the training have been: the number of
epochs 10, the batch size 512 for training and validation steps.
The scheme of the utilization of CSE-CIC-IDS2018 dataset
using cross-validation is shown in fig. 2. Cross-validation is
also applied for training KDD99, as it is shown in fig. 3.
Since this dataset contains training and testing parts, 20% of
the training dataset is used for validation in each iteration.
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FIGURE 3. Cross-validation for KDD99.
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TABLE 3. Used attack types from CSE-CIC-IDS2018 dataset.

Label Total Percentage, %
Benign 6,112,151 | 73.781
DDoS attack-HOIC 686,012 8.281
DoS attacks-Hulk 461,912 5.576
Bot 286,191 3.455
FTP-BruteForce 193,360 2.334
SSH-Bruteforce 187,589 2.264
Infiltration 161,934 1.955
DoS attacks-SlowHTTPTest 139,890 1.689
DoS attacks-GoldenEye 41,508 0.501
DoS attacks-Slowloris 10,990 0.133
DDOS attack-LOIC-UDP 1,730 0.021
Brute Force-Web 611 0.007
Brute Force-XSS 230 0.003
SQL Injection 87 0.001

The framework used for the implementation of models is

Tensorflow.?

2https://Www.tensorflow.org/
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The hardware used for training is the Graphical Process-
ing Unit (GPU) NVidia GeForce RTX 2080 Ti with CUDA
acceleration technology. First of all, the existing models were
trained and tested on the mentioned datasets to create a base-
line, which is described below, and to compare the proposed
methods.

C. BASELINE

For the experiment, several modern architectures were
used: convolutional neural network, fully-connected net-
work (FCN), autoencoder and recurrent neural network. The
detailed description of them can be found in [43]. These mod-
els use categorical cross-entropy as the loss function, except
RNN, which uses Mean Square Error (MSE), and Adam
as the optimizer with learning rate 0.001 for CNN, FCN,
RNN and 0.00001 for the autoencoder. These parameters are
usually applied for processing time-series tasks and for this
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FIGURE 4. Used U-Net model.

experiment, we used the same parameters as it was proposed
in original implementations. The last layer in models has the
softmax activation layer since it is usually used for multi-class
classification.

1) CONVOLUTIONAL NEURAL NETWORK

The used CNN contains 6 layers: two convolutional layers,
two average pooling layers, the flatten layer and the fully
connected layer. Convolutional layers have kernel size 7,
6 and 12 filters respectively, the activation function is sig-
moid, which is formulated as [44]:

1
14+e*

The average pooling layer has the pool size 3. The last layer
has the number of neurons equal to the number of classes.

ey

sigmoid =

2) FULLY CONNECTED NETWORK
FCN consists of three blocks of layers, the global average
pooling layer, and the dense layer. Each block contains a con-

volutional layer, a batch normalization layer and an activation
function ReLU, which is defined as [44]:

f(x) = max(0, x) @)

The convolutional layer in the first block has 128 filters
and kernel size 8, the second block has 256 filters and kernel
size 5, the third block has 128 filters and kernel size 3. The last
layer is the fully connected layer and has the same number of
neurons as the number of classes.

3) AUTOENCODER

Autoencoder has three blocks and an attention mechanism.
The first and second blocks have the convolutional layer
with stride 1, instance normalization, layer with activation
function PreLU, dropout layer with rate 0.2 and max-pooling
layer with pool size 2. The convolutional layer in the first
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block has 128 filters and kernel size 5, in the second block it
has 256 filters and kernel size 11.

The third block has a convolutional layer with stride 1,
512 filters, kernel size 21, instance normalization, layer with
activation function PreLU and dropout layer with rate 0.2.
After that, the attention mechanism is applied. It allows
to learn which parts of input are important for a certain
classification.

The last part is the softmax layer, which is a fully connected
layer with number of neurons equal to the number of classes
needed to be classified.

4) RECURRENT NEURAL NETWORK

RNN network has two repeated pairs of layers: recurrent layer
with 64 units and dropout layer with rate 0.2. After that the
fully connected layer follows with units, whose number is
equal to the number of classes.

D. U-Net

In this work, the U-Net architecture is proposed for the clas-
sification of network traffic. This model is primarily used
for segmentation of biomedical images [5]. It consists of
two branches: encoder (left side) and decoder (right side)
part, see fig. 4. The left part contains repeated blocks with
convolutional layers with kernel size 3 and activation function
ReLU and max pooling layers with stride 2 for downsam-
pling. The right part consists of blocks with convolutional
layers and upsampling layers which are concatenated with
corresponding blocks from left side. These concatenations
help to utilize the extracted features from the encoder and to
improve the learning process.

We decided to do an experiment with this model, because it
is able to efficiently extract general and detailed features and
this model has achieved good results in other research areas.
Since the data from network traffic are complex, there is a
need to apply architecture, which is able to find patterns by
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taking into account global and detailed features. The principle
of this problem is familiar with the segmentation task, that
is why successful model in segmentation problem can be
adapted to a problem of processing network traffic. Another
main point is that this model is able to efficiently extract
features in the encoder and to connect them in the decoder
part, which allows to transfer information from the encoder.
Moreover, this model is easy to understand and implement,
consequently, it can be easily modified and adapted for other
fields of research.

In our experiment the input vector has the size 41 for the
KDD?99 dataset and 78 for the CSE-CIC-IDS2018, but for this
architecture it is required to pad input data with some zeros
to allow the model to process the data: correctly perform max
pooling and upsampling operations and to perform concate-
nation of the left and right side of the model.

The proposed model is the modification of the original
U-Net architecture. Since the input data is a vector of features,
it is necessary to use layers for 1D: convolutional, max pool-
ing, and upsampling layers. The activation function is ReLU
in convolutional layers, and in the last fully connected layer
it is the softmax activation function, which is usually used for
multi-class classification. The softmax function is defined as
below:

ev
X )
D ek

k=1

3

0(2)j =

where

o 7z — feature vector,

o j—index of class,

o K —number of the classes.

The kernel size of the convolutional layers is 3. The
dropout layers have the rate of 0.5. The overall scheme of
the architecture is shown in fig. 4, where s is the size of the
layer and # is the number of feature maps.

To adapt this architecture to the classification task, fully
connected layers are appended. For multi-class classification
a vector of 5 for the KDD99 and for the CSE-CIC-IDS2018 a
vector of 14 are the outputs. Thanks to the softmax function in
the last layer, this vector has normalized values and contains
the probabilities how an input vector relates to the classes.

The used optimizer is Adam with learning rate 0.0001. The
batch size for training and validation is 512. The loss function
is the categorical cross-entropy, which is formulated as [45]:

H(p,q)=—) pilogq @
where

e p; — true distribution,
o g; — predicted probability distribution.

E. TEMPORAL CONVOLUTIONAL NETWORK AND LSTM
The second proposed neural network, which is eval-
uvated for anomaly detection, is a Temporal Convolu-
tional Network (TCN) combined with Long Short-Term-
Memory (LSTM).
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FIGURE 5. Dilated convolution operation.

There are two branches with different architectures to clas-
sify network traffic. A similar way for time series classifi-
cation was already described in [46]. However, instead of
the utilization of a fully connected network, the temporal
convolutional network is used. The architecture is shown
in fig. 6, where s is a size of the layer and »n is the number
of feature maps.

The first branch consists of the TCN and the FCN.
Originally, TCN was proposed for action segmentation [48].
However, it is possible to utilize this model for time-series
processing. This model can capture long-range patterns using
a hierarchy of temporal convolutional filters. The original
paper describes two types of the model: the encoder-decoder
TCN, which utilizes only a hierarchy of temporal convolu-
tions, pooling and upsampling, and the Dilated TCN, which
contains skip connections and uses dilated convolutional lay-
ers instead of upsampling and pooling layers.

Additionally, the effectiveness of this model was compared
with RNN as an alternative model for sequence modeling.
The TCN model has some properties, which would make this
model more effective [47]:

« Application of convolutional layers with the same filter
allows to perform computations in parallel.

o The number of dilated convolutional layers, dilation
factors and the filter size can be set up manually, that
makes the TCN a very flexible model and can be adapted
for different fields of applications.

« In opposite to RNNs, which store the partial results,
the filters in the TCN are shared across a layers, con-
sequently, it leads to lower memory usage.

The branch with the TCN has two blocks in the encoder and
two blocks in the decoder. Each block has 4 layers: Convo-
lutional layer with the dilated convolution, Spatial Dropout,
ReLU activation and Normalization. Convolutional layers in
Block 1 and Block 4 have dilated rate 1 and number of
features is 64 (in fig. 6 it is shown as variable n), and in
Block 2 and Block 3 the dilated rate is 2 and the number of
features is 96. The dilated convolution operation allows ana-
lyzing a wider field of view, because it has “holes” between
kernel elements. The principle of the dilated convolution is
shown in fig. 5 and formally defined as [47]:

k—1
F(s) = (x#a £)(s) = Y _f(0) - Xs—d ©)
i=0
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FIGURE 6. Proposed TCN+LSTM model.

where d is the dilation factor, k is the filter size and s — d - i
are accounts for the direction of the past.

Spatial dropout layers have the rate 0.3 and perform
the dropout on full convolutional filters to improve perfor-
mance [48]. The channel normalization layer normalizes val-
ues by the highest number from the previous ReLU activation
layer. All used parameters are left the same, as in the original
implementation.

After extracting features by the TCN, the fully connected
network is used for classification. It contains blocks of dense
layers with the Leaky ReL.U activation function and dropout
layers with rate 0.5. Another branch in this architecture has
only two layers: LSTM with 8 units and Dropout. This branch
allows to achieve more accurate results. The final step is con-
catenation of outputs from those two branches and processing
it with fully connected layer with softmax activation function.

The used optimizer is Adam with learning rate 0.00001.
The batch size for training and validation is 512. The loss is
computed by the focal loss function [49]. This loss function
was originally used for object detection to solve the problem
of imbalance between foreground and background classes,
however, it was also used for classification tasks for the class
imbalance problem [50]. The general definition of the focal
loss is:

FL(p;) = —o;(1 — p1)” log(py), (6)

where

p: — the model’s estimated probability for the class with
label y =1,

o; — balancing factor,

y — modulating factor.

IV. RESULTS AND EVALUATION

All models were evaluated on a testing dataset of the
CSE-CIC-IDS2018, which is 10% of the total number of
samples, and on already prepared testing dataset of KDD99.
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Since the cross-validation method is used for training,
the testing is done for each iteration. As a result, there are
five results of testing for each method, which were averaged.

A. METRICS

The used metrics are: accuracy, precision, recall and F-score,
which are usually used in evaluation of methods for anomaly
detection. The definitions of mentioned metrics are shown

below [51]:
Accuracy describes how the trained model is right.
IN +TP
Accuracy = ) (7N
TP+ TN + FP + FN

where TN — True Negatives, TP — True Positives, FP — False
Positives, FN — False Negatives.

Precision is the ratio of right positive predictions over all
positive predicted labels.

. TP
Precision = —— ®)
TP + FP

Recall is the number of right positive predictions over the

total count of all relevant samples.

P
Recall = —— ©)]
TP + FN

F-score is the harmonic mean of precision and recall, which
is used to a measure model trained from the imbalanced
dataset.

Precision - Recall
F-score =2 - — (10)
Precision + Recall

B. RESULTS

In this experiment, in total 6 different neural network models:
CNN, autoencoder, FCN, RNN, U-Net and TCN+LSTM,
were evaluated. To prove that the LSTM branch has
a positive effect on prediction accuracy, the results of
testing the TCN model without the LSTM branch are
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TABLE 4. Averaged evaluation of methods for multi-class classification on KDD99.

Methods Accuracy | Precision | Recall | F-Score | Time for one epoch | Trainable parameters
CNN 0.9174 0.9176 0.9173 | 09175 1.5 min 809

Autoencoder 0.9213 0.9215 0.9212 | 0.9214 2.5 min 3,196,293

FCN 0.9243 0.9244 0.9242 | 0.9243 1.5 min 266,373

RNN 0.9016 0.9020 0.9015 | 0.9018 3.5 min 12,805

U-Net (Our) 0.9303 0.9305 0.9302 | 0.9304 5 min 11,209,925

TCN (our) 0.9204 0.9243 0.9187 | 0.9215 3 min 278,149

TCN + LSTM (our) | 0.9205 0.9245 0.9187 | 0.9216 17 min 278,539

TABLE 5. Results of testing U-Net for each class of KDD99.

Class Precision | Recall | F-Score | Total number
Normal | 0.74 1.00 0.85 60,593

Probe 0.87 0.70 0.77 4,166

DoS 1.00 0.97 0.99 229,853

U2R 0.94 0.10 0.19 70

R2L 0.99 0.15 0.25 16,347

also provided. The CSE-CIC-IDS2018 dataset and the clas-
sical dataset KDD99 were used for evaluation. The last two
mentioned models were newly proposed for this task. Details
about the experiment results are provided in the following
subsections.

1) RESULTS FOR THE KDD99

Quantitative results of testing on the KDD99 show, that the
best model in the baseline is the FCN with 0.9243 accu-
racy, 0.9244 precision, 0.9242 recall and 0.9243 F-Score.
On the other side, the proposed method based on the U-Net
outperforms FCN with 0.9303 accuracy, 0.9305 precision,
0.9302 recall and 0.9304 F-Score. In spite of reported
results in other works, which achieved higher accuracy on
this dataset, the new methods outperform on the CSE-CIC-
IDS2018, that will be presented in the next subsection. The
averaged results are shown in table 4 and detailed results for
each group of attacks are presented in table 5 and table 6.
According to the results, the TCN+LSTM model is able to
recognize normal traffic, DoS attacks and Probing attacks.
The U-Net model also succeeded in classification of these
attacks. The worst results were with R2L and U2R classes:
the U-Net model has low values for recall and F-score, but
the TCN+LSTM model was not able to correctly classify
these attacks at all. The possible reason for this is the small
number of samples, which were given in the training set.
In spite of that, the U-Net model outperforms the FCN clas-
sifier. Another important point is that it is time consuming to
train TCN+-LSTM: it takes 17 min for one epoch. It is caused
by the LSTM branch, because without it the time of training
of one epoch is 3 min.

2) RESULTS FOR CSE-CIC-IDS2018

According to the results of testing on the CSE-CIC-IDS2018,
which are shown in table 7, the worst model is the FCN, which
achieved only 0.6943 accuracy, precision is 0.6965, recall
is 0.6943 and F-score is 0.6954. The best one from the
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TABLE 6. Results of testing TCN+LSTM for each class of KDD99.

Class Precision | Recall | F-Score | Total number
Normal | 0.72 0.98 0.83 60,593

Probe 0.82 0.72 0.72 4,166

DoS 1.00 0.97 0.98 229,853

U2R 0.00 0.00 0.00 70

R2L 0.00 0.00 0.00 16,347

baseline is the autoencoder with 0.9303 accuracy, 0.9236 recall,
0.9285 F-score and 0.9337 precision.

As it can be seen, the autoencoder is able to extract features
better from given data and achieves good objective results.
On the other side, it takes more time for training when com-
pared to CNN, FCN and RNN.

The U-Net and the TCN+LSTM outperform the baseline
methods. The TCN+LSTM shows the best results and has
the accuracy 0.9777, so it is more accurate by 4% than the
autoencoder. The precision is 0.9794, that is by 0.0457 better
than the autoencoder. Recall is 0.9753, thatis by 0.0517 better
than autoencoder and F-score is 0.9773.

Application of the LSTM branch helps to improve metrics.
The results without the LSTM branch are: accuracy 0.9761,
precision 0.9789, recall 0.9725, and the training takes 5 min.

The proposed U-Net architecture also outperforms
well-known architectures. However, the difference from the
best baseline methods is not as big as the TCN+LSTM has:
accuracy is 0.9465, precision is 0.9488, recall is 0.9455 and
F-score is 0.9471.

More detailed results for the proposed models are shown
in table 8 and table 9. The values from each iteration of the
k-folder are also averaged. According to the results, there is
a problem of detection of such attacks as Brute Force - Web,
Brute Force - XSS, SQL Injection and Infiltration. A possible
reason for this is a small number of testing samples. However,
the accuracy of detection of the other attack types is relatively
high.

V. DISCUSSION

From the presented results it can be seen that the pro-
posed models are successful in experiments on both datasets.
The U-Net achieved the best results on the KDD99 dataset
among the selected architectures, the TCN+-LSTM is the best
for the CSE-CIC-IDS2018 dataset. In spite of good results,
it is time consuming to train the proposed methods: it takes
5-17 min. In the case of the U-Net model, it can be described
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TABLE 7. Averaged evaluation of methods for multi-class classification on CSE-CIC-1DS2018.

Methods Accuracy | Precision | Recall | F-Score | Time for one epoch | Trainable parameters
CNN 0.8635 0.8907 0.8627 | 0.8764 2 min 1,418

Autoencoder 0.9303 0.9337 0.9236 | 0.9285 5 min 3,251,598

FCN 0.6943 0.6965 0.6943 | 0.6954 3 min 266,510

RNN 0.9166 0.9245 0.9034 | 0.9137 2.5 min 18,190

U-Net (Our) 0.9465 0.9488 0.9455 | 0.9471 10 min 11,472,366

TCN (our) 0.9753 0.9789 0.9725 | 0.9722 5 min 433,950

TCN + LSTM (our) | 0.9777 0.9794 0.9753 | 0.9773 11 min 434,592

TABLE 8. Results of testing TCN+LSTM for each class of CSE-CIC-IDS2018.

Class Precision | Recall | F-Score | Total number
Benign 0.97 1 0.988 607,551
Bot 1 0.988 0.994 28,577
Brute Force - Web 0 0 0 61
Brute Force - XSS 0 0 0 25
DDOS attack - HOIC 1 0.998 1 68,696
DDOS attack-LOIC-UDP 0.6 0.588 0.594 182
DoS attacks-GoldenEye 0.982 0.77 0.862 4,153
DoS attacks-Hulk 1 1 1 46,021
DosS attacks-SlowHTTPTest | 1 1 1 13,910
DoS attacks-Slowloris 0.78 0.596 0.672 1,105
FTP-BruteForce 1 1 1 19,428
Infiltration 0.022 0 0 16,151
SQL Injection 0 0 0 6
SSH-Bruteforce 0.998 1 1 18,922

TABLE 9. Results of testing U-Net for each class of CSE-CIC-1DS2018.

Class Precision | Recall | F-Score | Total number
Benign 1 0.328 0.466 607,551
Bot 1 0.888 0.934 28,577
Brute Force -Web 0.956 0.256 0.392 61
Brute Force -XSS 1 0.328 0.466 25
DDOS attack-HOIC 1 1 1 68,696
DDOS attack-LOIC-UDP 1 1 1 182
DoS attacks-GoldenEye 1 0.79 0.874 4,153
DoS attacks-Hulk 1 0.982 0.99 46,021
DoS attacks-SlowHTTPTest | 1 0.748 0.774 13,910
DoS attacks-Slowloris 1 0.756 0.842 1,105
FTP-BruteForce 1 1 1 19,428
Infiltration 0.2 0 0 16,151
SQL Injection 0.634 0.202 0.296 6
SSH-Bruteforce 1 1 1 18,922

by a huge number of trainable parameters (11,472,366).
TCN+LSTM takes time for training because of the second
branch with LSTM as it can be seen from Table 4 and Table 7.
On the other side, thanks to training architectures in inde-
pendent branches and concatenation of outputs of them, it is
possible to achieve better results.

Additionally, utilization of the focal loss function in the
TCN-+LSTM model helps to get more accurate results,
because this loss function was originally proposed to train
architectures on class imbalanced data. It was shown in prac-
tice, that the focal loss function can be effectively used for
time series classification. This experiment has shown, that
there is still a space for improvements of existing methods
for anomaly detection and classification. There were a lot
of approaches, which have achieved high accuracy values.
However, they were trained on old datasets, which suffer from
redundancy samples and old data. We used a modern dataset
additionally to old datasets, because it has samples from
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actual network behaviour and allows us to test the models
whether they are really able to provide a correct classification.

Moreover, we applied two different architectures, which
has not been applied for the task of anomaly detection on the
CSE-CIC-IDS2018 dataset. Additionally, according to charts
infig. 7, where the validation accuracy from training is drawn,
it can be concluded, that for KDD99 the values are always
around 0.99-1.00. However, results of testing show accu-
racy around 0.90-0.92. Obviously, the models are overfitted.
On the other hand, the validation accuracy on CSE-CIC-
IDS2018 grows gradually and the testing results correspond
with the validation accuracy. The possible reasons for such
different testing results are: the CSE-CIC-IDS2018 dataset
is really huge and contains much more information, from
which the model can learn, the KDD99 contains a lot of
redundant information, so the models are not able to get
enough information to be trained well. An interesting thing
is that FCN is successful on the KDD99, but has worse
results on the CSE-CIC-IDS2018. This fact can signalize
that methods, which were evaluated on old datasets can fail
on newer and more complex ones and different complexity
should be used. Consequently, these methods would fail in
real network applications. This difference in results on old
and new datasets is also proved by some works, which we
introduced in Table 1.

VI. CONCLUSION

The problem of anomaly detection and network traffic classi-
fication is challenging, because of the lack of actual datasets.
Most approaches are trained and tested on old datasets, such
as KDD99 or NSL-KDD. Since technology is developing
rapidly, the amount of data also increases and the behaviour
of network communication is also changing. Consequently,
the network attacks are also improved: their behaviour is
more complex than it was some years ago, new types have
also appeared.

For security reasons, it is necessary to have systems and
algorithms, which are able to detect these attacks and to
classify them correctly. The old datasets are not suitable for
these goals, because the proposed methods can achieve good
results on a relatively simple dataset, but they can fail on
something more complex. This is our motivation to utilize the
dataset from 2018, which covers the modern attacks and has
been created from real network traffic. The second reason to
pay attention to new datasets is to avoid overfitting, because
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the known problem of KDD99 is suffering from the redundant
data.

The first step was to test on KDD99 and CSE-CIC-
IDS2018 existing classifiers: CNN, Encoder, FCN and RNN,
to create the baseline. The results have shown, that they are
not so accurate and there is a space for improvements.

As an attempt to get more accurate results, the two models
were proposed: the first one is based on U-Net and the second
one is based on Temporal Convolutional Network and Long
Short-Time Memory. Both models were adapted for the clas-
sification task. Taking into account, that the used dataset is
imbalanced, the focal loss function was used in the second
model. According to results, both architectures outperform
existing models on the CSE-CIC-IDS2018, and the U-Net
model gives better results on the KDD99. The achieved accu-
racy is very promising: the U-Net model has accuracy 93%
and 94% on KDD99 and CSE-CIC-IDS2018 respectively,
TCN-+LSTM has 92% and 97%. Moreover, U-Net model
is more able to classify attacks, in spite of the fact, that
there were small numbers of samples in training and testing
sets.

We compared the training and testing results and proved,
that models trained on the KDD99 have the tendency to
overfit, however, models trained on CSE-CIC-IDS2018 have
almost the same results for training and testing sets. The next
point we noticed, that the model, which is successful on the
old dataset can easily fail on a modern dataset. It means,
that for real-world applications it is necessary to evaluate
the developed algorithms on more complex and modern data,
than it was 20 years ago.

The future work in this field of research are improve-
ments of methods used for attack classification, for exam-
ple, experimenting with hyperparameters, loss functions and
architectures. For sure, it is necessary to utilize modern
datasets, which allow to evaluate algorithms on complex data,
so the methods can be useful for real-world applications.
We believe, that our conclusions and proposed methods
would be helpful for other researches in this field of study.
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