Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/jspui/handle/10553/158574
Título: Microwave Antenna Radiometric Temperature Sensing System for Non-Invasive Deep Tissue Thermal Analysis
Autores/as: Ait Ahmed, Badiaa
Cabedo Fabrés, Marta
El Gueri, Jaouad
Aghzout, Otman
Ruiz Alzola, Juan 
Clasificación UNESCO: 33 Ciencias tecnológicas
Palabras clave: Deep Tissue Temperature Modeling
Microwave Patch Antenna
Muscle Phantoms
Non-Invasive Tumor Detection
Radiometer System
Fecha de publicación: 2025
Publicación seriada: E3S Web of Conferences 
Conferencia: 4th International Conference on Energy and Green Computing, ICEGC 2025 
Resumen: This paper investigates the optimal conditions for temperature modeling in deep human tissue, with a focus on non-invasive tumor detection. A custom rectangular microwave patch antenna and an integrated radiometer system are designed and fabricated. The study emphasizes the determination of the optimal resonance frequency and directivity/radiation patterns, employing characteristic modes theory for analysis. This study integrates the antenna developed with realistic muscle phantoms, engineered to replicate human tissue properties, enabling accurate simulations of microwave interactions. Analysis of S parameters and impedance characteristics is conducted to evaluate performance. A radiometer, adapted from astrophysical instrumentation principles, is utilized to improve temperature measurement precision, with key performance metrics assessed for subsequent optimization. Integration of an antenna, phantom models, and a radiometer system enhances diagnostic accuracy and sensitivity, presenting a promising tool for advanced clinical applications. The antenna-radiometer system enables modeling of temperature distribution at a 30 mm depth within a phantom, with potential error effects in temperature estimation analyzed to ensure reliability. Validation is achieved using fabricated phantoms engineered to replicate human tissue properties. Experimental results from muscle phantoms substantiate the systema s efficacy and performance. However, discrepancies in measured outcomes suggest errors, which are systematically investigated and discussed. The study concludes by assessing the technologya s potential to advance medical imaging, particularly for early tumor detection and monitoring, and outlines future research directions to optimize this approach for clinical deployment.
URI: https://accedacris.ulpgc.es/jspui/handle/10553/158574
ISSN: 2555-0403
DOI: 10.1051/e3sconf/202568000006
Fuente: E3S Web of Conferences[ISSN 2555-0403],v. 680, (Diciembre 2025)
Colección:Actas de congresos
Vista completa

Google ScholarTM

Verifica

Altmetric


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.