Identificador persistente para citar o vincular este elemento:
https://accedacris.ulpgc.es/handle/10553/143027
Campo DC | Valor | idioma |
---|---|---|
dc.contributor.author | Quevedo-Reina, Román | en |
dc.contributor.author | Álamo, Guillermo | en |
dc.contributor.author | Aznárez, Juan José | en |
dc.date.accessioned | 2025-07-19T19:30:21Z | - |
dc.date.available | 2025-07-19T19:30:21Z | - |
dc.date.issued | 2025 | en |
dc.identifier | https://doi.org/10.5281/zenodo.15132546 | - |
dc.identifier | oai:zenodo.org:15132546 | - |
dc.identifier.uri | https://accedacris.ulpgc.es/handle/10553/143027 | - |
dc.description | <p>This repository contains the best of the models developed in the scientific article "Estimation of pile stiffness in non-homogeneous soils through Artificial Neural Networks" by Román Quevedo-Reina, Guillermo M. Álamo, Juan J. Aznárez. (https://doi.org/10.1016/j.engstruct.2024.117999)</p> <p>This is an enssemble model of 20 artificial neural networks with 7 neurons in the input layer, 3 hidden layers with 145 neurons per hidden layer, and 4 neuron in the output layer.</p> | - |
dc.description | <p><strong>Included in this upload are the following files:</strong></p> <p>APP-VERSION of the surrogate model.</p> <ul> <li>Soil_Impedance_Calculation_Model_Instaler: executable for installing the app (MATLAB Runtime is downloaded and installed automatically). Matlab license is not required.</li> <li>Soil_Impedance_Calculation_Model: file for installing the app inside Matlab. Matlab license is required with "Statistics and Machine Learning" and "Deep Learning" Toolboxes.</li> </ul> <p>CODE-VERSION of the surrogate model. Matlab license required with "Statistics and Machine Learning" and "Deep Learning" Toolboxes.</p> <ul> <li>class_model_pile: Matlab class that defines the surrogate model</li> <li>model_monopile: developed surrogate model</li> <li>User_manual: document explaining the use of these files</li> </ul> | - |
dc.publisher | Zenodo | - |
dc.rights | info:eu-repo/semantics/openAccess | - |
dc.rights | Creative Commons Attribution 4.0 International | - |
dc.rights | https://creativecommons.org/licenses/by/4.0/legalcode | - |
dc.title | ANN model presented in "Estimation of pile stiffness in non-homogeneous soils through Artificial Neural Networks" | - |
dc.type | info:eu-repo/semantics/other | - |
item.grantfulltext | none | - |
item.fulltext | Sin texto completo | - |
Colección: | Datasets ULPGC |
Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.