Identificador persistente para citar o vincular este elemento: https://accedacris.ulpgc.es/handle/10553/143027
Campo DC Valoridioma
dc.contributor.authorQuevedo-Reina, Románen
dc.contributor.authorÁlamo, Guillermoen
dc.contributor.authorAznárez, Juan Joséen
dc.date.accessioned2025-07-19T19:30:21Z-
dc.date.available2025-07-19T19:30:21Z-
dc.date.issued2025en
dc.identifierhttps://doi.org/10.5281/zenodo.15132546-
dc.identifieroai:zenodo.org:15132546-
dc.identifier.urihttps://accedacris.ulpgc.es/handle/10553/143027-
dc.description<p>This repository contains the best of the models developed in the scientific article "Estimation of pile stiffness in non-homogeneous soils through Artificial Neural Networks" by Román Quevedo-Reina, Guillermo M. Álamo, Juan J. Aznárez. (https://doi.org/10.1016/j.engstruct.2024.117999)</p> <p>This is an enssemble model of 20 artificial neural networks with 7 neurons in the input layer, 3 hidden layers with 145 neurons per hidden layer, and 4 neuron in the output layer.</p>-
dc.description<p><strong>Included in this upload are the following files:</strong></p> <p>APP-VERSION of the surrogate model.</p> <ul> <li>Soil_Impedance_Calculation_Model_Instaler: executable for installing the app (MATLAB Runtime is downloaded and installed automatically). Matlab license is not required.</li> <li>Soil_Impedance_Calculation_Model: file for installing the app inside Matlab. Matlab license is required with "Statistics and Machine Learning" and "Deep Learning" Toolboxes.</li> </ul> <p>CODE-VERSION of the surrogate model. Matlab license required with "Statistics and Machine Learning" and "Deep Learning" Toolboxes.</p> <ul> <li>class_model_pile: Matlab class that defines the surrogate model</li> <li>model_monopile: developed surrogate model</li> <li>User_manual: document explaining the use of these files</li> </ul>-
dc.publisherZenodo-
dc.rightsinfo:eu-repo/semantics/openAccess-
dc.rightsCreative Commons Attribution 4.0 International-
dc.rightshttps://creativecommons.org/licenses/by/4.0/legalcode-
dc.titleANN model presented in "Estimation of pile stiffness in non-homogeneous soils through Artificial Neural Networks"-
dc.typeinfo:eu-repo/semantics/other-
item.grantfulltextnone-
item.fulltextSin texto completo-
Colección:Datasets ULPGC
Vista resumida

Google ScholarTM

Verifica


Comparte



Exporta metadatos



Los elementos en ULPGC accedaCRIS están protegidos por derechos de autor con todos los derechos reservados, a menos que se indique lo contrario.