ZOOPLANKTC

Dc

PICES M. Gémez!,

ICE International Council for 1 . .
the xploration of the Sea Laboratory of Biological O

UNIVERSIDAD DE LAS PALMAS
DE GRAN CANARIA

E-mail: mgomez@dbio.ulpgc.es

INTRODUCTION

Secondary production is heterotrophic growth, the rate of biomass increase
per time in zooplankton or benthic metazoans. It reflects the net balance
between metabolic gains in biomass and the integral of all metabolic losses. Mother
Then, modeling secondary production rates in the zooplankton is essential for culture
population ecology studies, yet assessing these rates is difficult, indirect, and (201)
poorly known to the general ecology community. Here we test five secondary
production models in cultures of Daphnia magna (Huntley and Lopez, 1992; Hirst
and Sheader, 1997; Hirst and Lampitt, 1998; Stockwell and Johansson, 1997;
Shuter and Ing, 1997).
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Figl. Daphnia magna growth as function of size and dry mass, fed on three different types of food. Indicating the measured values of

global growth rate (g,,,,), maximum weight (W, _,) and conditions factor (CF) of each type of food.

Conclusion 1:
» Althought the highest global growth rates were obtained with yeast (0.295 d!), the highest values of the condition
factor (5.778) and secondary production (643 pug dry mass- d*) as well as the maximum weight were found in Daphnia fed
on phytoplankton (Figl and Table 2). A mixture yeast and phytoplankton should be the optimal food for culturing
Daphnia magna.
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Table 2. Secondary production values obtained with several models in pg dry mass-d™
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