EVALUACIÓN DE LA TRANSMISIÓN DE ENERGÍA DEL OLEAJE A TRAVÉS DE UN ROMPEOLAS FLOTANTE UTILIZANDO UN MÉTODO DE SPH

Directores: Ph.D G. Rodriguez Ph.D S. Lonin Ph.D I. Alonso

Alejandro Rueda Duran Marzo 14 de 2003

Agenda

1. Descripción del Problema de Estudio

- a. Área de estudio
- b. Generalidades de los Rompeolas Flotantes -ROF
- 2. Smoothed Particle Hydrodynamics SPH
- 3. Metodología para abordar el problema
 - a. Diseño del Box Model
 - b. Diseño del Rompeolas de estudio
- 4. Resultados y Discusión
- 5. Conclusiones
- 6. Preguntas

Descripción del Problema de Estudio b. Generalidades de los ROF

Descripción del Problema de Estudio b. Generalidades de los ROF

Descripción del Problema de Estudio b. Generalidades de los ROF

- Astrofísica y Cosmología, Gingold y Monaghan (1977) y Lucy (1977)
- SPHysics (2006) y DualSPHysics (2010)
 - Universidad Johns Hopkins (Estados Unidos),
 - Universidad de Vigo (España) y la
 - Universidad de Manchester (Reino Unido)
- Código libre <u>www.dual.sphysics.org</u>
 - Fortran95
 - C++

- Reproduce la realidad (fluido) y (objetos): Partículas
 - Propiedades (vel, posición, masa y ρ)
 - Para representar el paso de un medio continuo, (un fluido), a un medio discreto, (partículas) se emplea la función kernel

$$A(\mathbf{r}) = \int_{\Omega} A(\mathbf{r}') W(\mathbf{r} - \mathbf{r}', h) d\mathbf{r}' \qquad (1)$$

$$W_{ab} = W(r_a - r_b, h) \tag{2}$$

 donde *r* es el vector de posición; a y b son las partículas vecinas, *W* es la función de peso o kernel; *h* es la distancia de interacción y Ω es dominio

- 1. Controla la interacción de cada partícula
- 2. Reduce gasto computacional – solo calcula donde hay fluido
- 3. Es mas lento al tener que propagar "muchas" partículas

• Ecuación de Momento. Monaghan (1992)

•
$$\frac{d\mathbf{v}_a}{dt} = -\sum_b m_b \left(\frac{P_a}{\rho_a^2} + \frac{P_b}{\rho_b^2}\right) \nabla_a W_{ab} + \mathbf{g}$$
 (3)

• Ecuación de Viscosidad Artificial. Monaghan (1992)

•
$$\frac{d\mathbf{v}_a}{dt} = -\sum_b m_b \left(\frac{P_a}{\rho_a^2} + \frac{P_b}{\rho_b^2} + \Pi_{ab}\right) \nabla_a W_{ab} + \mathbf{g}$$
 (4)

- Ecuación de Continuidad
 - $\frac{d\rho_a}{dt} = \sum_b m_b \mathbf{v}_{ab} \boldsymbol{\nabla}_a \boldsymbol{W}_{ab}$
- Ecuación de Estado y Compresibilidad . Tait . Monaghan (1994)

(5)

•
$$P = B\left[\left(\frac{\rho}{\rho_0}\right)^{\gamma} - 1\right]$$
 (6)

Metodología para abordar el problema a. Diseño del Box Model

Se emplearon las siguientes dimensiones:

- separación entre partículas de 0.25m.
- Para las modelaciones en 2D se emplearon 121.812 partículas.
- Batimetría cuasi real dibujada

Metodología para abordar el problema a. Diseño del ROF

- Se empleo el caso propuesto por Bruce (1985) Bahía Friday (Washington).
- Se aplico la metodología desarrollado por las autores a partir de la relación dimensional de los principales parámetros:
 - Ancho (w)
 - Altura (Z_R)
 - Calado (Dr)
 - Profundidad (h)
 - Longitud de onda (λ)
 - Periodo (T)

Metodología para abordar el problema a. Diseño del ROF

Altura / Calado Z <mark>R/dr</mark>	Ancho / Calado W/dr	Altura de ola/ Profundidad H/h	Profundidad /Longitud de onda h/L	Ancho del ROF/ Longitud de onda W/L	Calado / Profundidad dr/h	Altura de ola/ Longitud de onda Hi/L	Profundidad dimensional 2πh/L
1,57142857	6	0,156	0,195853108	0,164516611	0,14	0,03055308	1,230581372
Dimensiones del ROF para las Condiciones de Santa Marta Empleando relaciones Bruce (1985)							
Altura de	Altura de						
ola	ola	Longitud de	Profundidad	Periodo	Calado ROF	Altura ROF	Ancho ROF
incidente	Transmitida	Onda <mark>L</mark>	hR	т	dr	ZR	W
Hi	Ht						
2		70,98298807	20	7	2,8	4,4	16,8
real		A. interm.	real	real	dr/h	D/dr	W/dr

- ROF sin movimiento en ningún eje
- Fluido ideal, compresible, irrotacional y T.O.L.
- Oleaje paralelo al muelle
- Todas simulaciones se corrieron : 160s , T= 8,7, y 6s y Xr=50, 75, 100 y 150m

Metodología para abordar el problema a. Diseño del ROF

- Para realizar la validación del modelo se corrieron 90 simulaciones y se evaluaron 630 olas.
- Todas las simulaciones se corrieron empleando dos (o2) GPU (Graphics Processing Units) con el apoyo del Environmental Physics Laboratory de la Universidad de Vigo.
- El tiempo de calculo de las simulaciones oscila entre 100 y 220 minutos.

Metodología para abordar el problema a. Diseño del ROF

• Box model se comporta como una caja cerrada....Resonacia????

• Fenómeno que describa el proceso.....Seiches!!!!!

"Oscilaciones de largo periodo que ocurren en cuencas cerradas o semi cerradas, que al generar resonancia, incrementan la altura de ola en su interior"

• *Merian (1828)*

$$T_n = \frac{2L}{n\sqrt{gh}} \tag{6}$$

- Donde T_n es el periodo natural de oscilación, L es la longitud del dominio, n el número de nodo.
- Criterio de Sorensen (1993) que relaciona L/λ y cuando puede presentarse resonancia.

 Si en todos los casos hay +/- resonancia..... Tendremos resultados ficticios???

- En 2D se presenta reflexión y resonancia
- Buena correlación entre la mejor condición y modelada y el caso de estudio
- El box model se comporta como cuenca cerrada y semi cerrada dependiendo la distancia entre el ROF y el muelle
- En general Validación del modelo!!!!!!!

5. Conclusiones

- En el 97% de las condiciones simuladas hay reducción del oleaje en valores de Kt entre 0,80 0,10.
- La resonancia presente en el modelo no altera ficticiamente los resultados obtenidos para el caso de estudio.
- El modelo reproduce adecuadamente los efectos de reflexión, asomeramiento, fricción con el fondo y atenuación, siendo en 2D el fenómeno gobernante la reflexión.
- En la realidad no se presenta la resonancia observada por no ser 2D.

6. Conclusiones

- Hales, Z.L., Floating Breakwaters: State of the Art, U.S Army Corps of Engineers. Technical Report No 81-1 Cap. 1. pp. 23-45, 1981.
- Bruce, L., Floating Breakwater Design, J. Waterway, Port, Coastal, Ocean Eng. 111, pp. 304-318, 1985.
- Williams A.N., and Abul-Azm A.G., Dual pontoon floating breakwater. Ocean Engineering. 24(5), pp. 465–78, 1997.
- Williams, A., N., Lee, H.S., and Huang, Z., Floating pontoon breakwaters. Ocean Engineering. 27, pp. 221–240, 2000.
- Gómez-Gesteira, M., D. Cerqueiro, A.J.C. Crespo and R.A. Dalrymple. Green water overtopping analyzed with a SPH model. *Ocean Engineering*, **32**, pp. 223-238, 2005.
- Dalrymple, R. A., Rogers, B., Numerical modeling of water waves with the SPH method. *Coastal Engineering*, **53**, pp. 141-147, 2006.
- Crespo, A.J.C., Gómez-Gesteira, M., Dalrymple, R.A., Modeling Dam Break Behavior over a Wet Bed by a SPH Technique. *Journal of Waterway, Port, Coastal, and Ocean Engineering*, **134**(6), pp. 313-320, 2008.
- Gómez-Gesteira, M., Dalrymple, R.A., Using a three-dimensional smoothed particle hydrodynamics method for wave impact on a tall structure, *Journal of. Waterway, Port, Coastal and Ocean Eng*ineering, **130**(2), pp. 63–69, 2004.
- Shao, S., SPH simulation of a solitary wave interaction with a curtain-type breakwater. *Journal of Hydraulic research*, **43** (4), pp. 366-375, 2005.
- Tadayon, N., Effect of geometric dimensions on the transmission coefficient of floating breakwaters. *International Journal of Civil and Structural Engineering*, 1(3), pp. 775-781, 2010.
- Crespo, A.J.C., Gómez-Gesteira, M. y Dalrymple, R.A., 3D SPH simulation of large waves mitigation with a dike. *Journal of Hydraulic Research*, **45**(5), pp. 631- 642, 2007a.
- Peña, E., Ferreras, J., and Sanchez-Tembleque, F., Experimental study on wave transmission coefficient, mooring lines and module connector forces with different designs of floating breakwaters. *Ocean Engineering*, **38**, pp.1150–1160, 2011.
- Martinelli, Luca., Piero, Ruol., Zanuttigh, Barbara., Wave basin experiments on floating breakwaters with different layouts. *Applied Ocean research*, **30**, pp. 199-207, 2008.
- Torum, A., Stansberg, C.T., Otterá, G.O., Sláttelid, O.H., Model tests on the CERC full scales test floating breakwater, final report, AD-A204 145. United States Army. 1987.
- Permanent International Association of navigation Congress PIANC, Floating Breakwaters: A Practical Guide for Design and Construction. Report of working group No 13 of the permanent technical committee II, 1994.
- Monaghan, J. J., Smoothed Particle Hydrodynamics. Annual Rev. Astron. Appl., 30, pp. 543-574, 1992.
- Monaghan, J. J., Simulating free surface flows with SPH. Journal Computational Physics, 110, pp. 399- 406, 1994.
- Dalrymple, R.A., and Dean, R.G., The spiral wavemaker for littoral drift studies, Proc. 13th conf. coastal Eng. ASCE, 1972.
- Chen, k., Wiegel, R.L., Floating breakwater for reservoir marines. Proc. Of the twelfth Coastal Engineer. Pp. 487-506, 1970.

Agradecimientos

- Armada República de Colombia
- Fundación carolina
- Universidad de las Palmas de Gran Canaria......
- Environmental Physics Laboratory de la Universidad de Vigo
- Centro de Investigaciones Oceanográficas e Hidrográficas
- A mi esposa!!!!!!!! Y mi Familia....

Videos

