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Abstract

Rigorous Mathematical Analysis in the Cauchy style was not accepted in a straight-
forward manner by the European mathematical community of the central years of
the 19th Century. In average, only around forty years after the 1821 Cours d’Analyse
did Cauchy’s treatment become a standard in the more mathematically advanced
countries, as a paradigm that remained in use until the arithmetisation of Analysis
by Weierstrass replaced it before the end of the century. In this paper the authors
show how rigorous Mathematical Analysis à la Cauchy was adopted in Spain quite
late -around 1880- and how in some more forty years, the Weierstrassian formulation
became the usual presentation in Spanish texts.

1 Introduction

It is known that the definitive introduction of rigorous Mathematical Analysis
in Spain was achieved by Julio Rey Pastor (1888-1962) when he gave to print
his two basic books Elementos de Análisis Algebraico (Rey Pastor, 1917) and
Teoría de las Funciones Reales (Rey Pastor, 1918) after two stages in Ger-
many: with Fröbenius, Schottky and Schwartz in Berlin, 1911-12, and with
Caratheodory, Courant, Hölder and Koebe in Göttingen, 1913-1914. Inspired
on the original theories by Cauchy, Weierstrass, Cantor, and Dedekind, these
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two books incorporated to Spanish Mathematics the most rigorous standards
of the German mathematical schools.

Nevertheless, several attempts had been made in the presentation of Mathe-
matical Analysis in Spain to introduce rigour before Rey’s books: The aim of
this paper is to provide a critical description of these mathematical activities.

According to Belhoste (Belhoste, 1991), Cauchy’s viewpoints on Mathemati-
cal Analysis were not accepted in a straightforward manner, neither in France
nor elsewhere. When Cauchy fled into exile the year 1830, his followers Navier,
Sturm, Liouville and Duhamel maintained his ideas and used them in teaching
and in mathematical writing, as a rule in a less accurate way and even mixing
them with other mathematical traditions (Grattan-Guinness, 2000, p.67). It
was Duhamel who became one of the forerunners of the introduction of the
Cauchy style in Spain around 1880 through his Cours d’Analyse, a very pop-
ular book in this country. The second step towards rigour, the Weierstrassian
revolution, was accepted in France when Camille Jordan (1838-1922) pub-
lished his own Cours d’Analyse de l’École Polytechnique (Jordan, 1893-96)
and adopted the ε− δ style. In spite of it, the older Cauchy presentation was
still in use for several years: Jesper Lützen points out that Sturm’s text was
used in Copenhagen as late as 1915 (Lützen, 2003).

Around 1840, the Spanish educational system was gradually recovering from
the long reign of Fernando VII, where most universities and higher education
centres were either closed or dismantled. Soon the basic works of the math-
ematical scene were translated and/or adapted into Spanish and the newer
ideas of Gauss, Cauchy, and Abel on Mathematical Analysis, as well as the
birth of non-euclidean geometries, the development of projective geometry,
and the modern Funktionentheorie according to Riemann became available to
the small Spanish mathematical community, although in those days the books
selected for translation or adaptation did not yet include the ideas by Cauchy.
In a previous paper (Pacheco Castelao et al., 2007) the authors have shown
how notions such as limits, functions, infinitesimals, etc. were introduced in
texts by authors like Vallejo and Feliu, but those terms and techniques were
not used in their proofs or would-be proofs.

As Grabiner points out, insistence in proof is a characteristic feature of the
development and foundations of Analysis according to the Cauchy style (Gra-
biner, 1981), and 1880 was the year when the older pre-Cauchy Analysis really
disappeared from Spanish higher education and proofs actually entered the
Spanish mathematical literature. The mathematician Simón Archilla and the
civil engineer Antonio Portuondo wrote the books where Cauchy’s vision of
Analysis was presented in Spanish words for the first time. They elaborated
on the new ideas, but through Duhamel’s books rather than by studying the
original work by Cauchy, even though these last ones were available at some
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learned libraries, like the one at the Real Observatorio de la Armada (Royal
Navy Observatory) in San Fernando, close to Cádiz. This paper does not con-
sider Portuondo’s contribution (Portuondo, 1880), essentially the small book
Tratado sobre el infinito, which is the object of another forthcoming paper by
the same authors (Pacheco Castelao et al., 2006b).

2 Archilla’s Principios del Cálculo Diferencial

Simón Archilla (1836-1890) taught Mathematics at the Universities of Barcelona
and Madrid. His courses comprised Higher Algebra, Analytic Geometry, and
Differential and Integral Calculus. In order to cater for these last topics, he
published in 1880 the fundamental book Principios del Cálculo Diferencial
(The Principles of Differential Calculus, Principios from now on). For avail-
ability reasons, in this paper the second edition of 1894 compiled by his son
Faustino Archilla will be used as the standard reference (Archilla y Espejo,
1894). The authors also checked the first edition and realised that the only
difference between them are the page numbers: Not a single change was intro-
duced in the second edition which strictly speaking was only a second printing.

Principios, 1880.

Archilla was elected to the Real Academia de Ciencias Exactas, Físicas y
Naturales, (Royal Academy for the Exact, Physical, and Natural Sciences),
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and he read his inaugural dissertation on June 10th 1888 with the title Sobre el
concepto y principios fundamentales del Cálculo Infinitesimal (On the concept
and fundamental principles of Infinitesimal Calculus) (Archilla y Espejo and
Vicuña y Lazcano, 1888) where he made a most interesting historical report
on the idea of infinity, ranging from Archimedes to the date the discourse was
delivered. In page 61 of this report, Archilla acknowledges the role of Cauchy:

(. . . ) there was a need to achieve what seemed so difficult from the very beginning:
To force the notion of infinity to serve the needs of Analysis. Opposing to this
aim were not only the special status of infinite quantities when considered as tools
in mathematical applications to number and distance, but also the philosophical
criteria upon which the legitimate intervention of infinity in Analysis would be
based 1.

Moreover, he points out how

(. . . ) under the light of the new doctrine, it has become common knowledge that
the ratio of certain infinitesimally small, although it is always finite quantity,
does not tend to any limit whatsoever; it is plain to see that the continuity of a
function does not imply that the orders of its increment and that of the variable
be the same; and it is possible to conceive and to determine, as Weierstrass has
shown, continuous functions without a derivative at any point: Such things, if not
unconceivable, were difficult to understand and to explain with the old ideas 2.

In the foreword to Principios the author presents the basics of the discourse
in his book through a quotation from the preface of Hoüel’s Cours de Calcul
Infinitésimal, a book translated into Spanish in 1878:

(. . . ) There is only one rigorous method to present Infinitesimal Calculus: It is
the method of the infinitely small, or of the limits, the method of Cauchy and
Duhamel . . .

This opinion is clearly detailed in the introduction to Principios :

(. . . ) Our aim in this book is to summarise the most important principles of In-
finitesimal Calculus, trying to explain their natural interrelations, and to study
the intimate relationships between the fundamental notions upon which they are
based and those that are legitimately obtained from them, according to the doc-
trine first expounded by Cauchy and then developed by Duhamel . . . 3.

The difference between this text and its predecessors is finally featured in the
treatment given to the ideas of continuity and differentiability in the light of
infinitesimals (Introduction, page VI):

(. . . ) In the study of functions we have focused on the notion of continuity, by
showing the difficulties of directly studying it, and by relating it indirectly with
the idea of infinitesimal quantities through the limit notion . . .
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2.1 Archilla on infinitesimals

Archilla takes infinitesimals as the fundamental notion in his book, and he
introduces the concept of a variable in page 1: A variable quantity, or simply
a variable, is a quantity that can take a series of succesive values according to
any prescribed law. He goes on by explaining how to operate with variables
according to the succesive values that determine them, and he defines infinitely
small and infinitely large quantities in page 4:

A variable quantity that can take values smaller than any given quantity and
can indefinitely satisfy this condition is an infinitely small quantity, or simply an
infinitely small. On the other hand, if a variable quantity can take values larger
than any given quantity and can indefinitely satisfy this condition is an infinitely
large quantity, or simply an infinitely large. Finally, quantities that are constant
or are neither infinitely small nor infinitely large are called finite quantities.

Limits are presented in a way that directly matches the definition of an in-
finitesimally small, the limit of a variable quantity being a constant quantity
such that the varying one approaches it in the following sense: The difference
between the constant and the successive values of the variable becomes smaller
than any given quantity, but never equals zero. Therefore, from this definition
it follows that:

(1) (1) The difference between a variable and its limit is an infinitesimally
small quantity.

(2) (2) Infinitesimally small quantities have zero as their limit.
(3) (3) Infinitely large quantities have no limit.
(4) (4) The limit of a variable is a constant that can not be found among the

successive values of the variable.

This last observation is directly inherited from Cauchy and introduces a cer-
tain lack of generality, for sequences tending to zero like 1, 0, 1

2
, 0, 1

3
, 0, 1

4
, . . .

would not comply with such a definition. Nevertheless, this observation can
be considered a minor flaw. More interesting is the idea of an extended real
line expounded in this paragraph, obtained from page 6:

Our aim has been to give more generality to this doctrine by encompassing in a
common classification finite quantities, infinitely small and infinitely large ones,
thus establishing a general theory of the orders of quantity.

Then Archilla proceeds to the definition of infinitely small, or large, or constant
quantities via the ratios between two quantities:

When the ratio x
y is an infinitely small α, then x is said to be infinitely small

with respect to y. When the ratio x
y is an infinitely large A, then x is said to be

infinitely large with respect to y. Finally, hen the ratio x
y is some constant a, then
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x is said to be of the same order of y.

And he goes on by specifying a comparison unit:

Once a fundamental infinitesimally small quantity α has been arbitrarily chosen,
we shall deem every infinitesimal of the same order as first-order infinitesimals.

Thus, if β is any other first order infinitesimal, then some finite quantity a
will exist such that β

α
= a+ω, where ω is an infinitesimally small, from where

β = α(a + ω) . In the same way the definition of an n-th order infinitesimal
with respect to the basic one is obtained as

βn = αn(a + ω).

Moreover, acknowledging that A = 1
α
is an infinitely large quantity, the orders

for infinities are likewise defined through the following equalities:

Bn = An(a + ω) =
(

1

α

)n

(a + ω) = α−n(a + ω),

and a whole scale of infinitesimals, ranging from the infinitely small to the
infinitely large through finite quantities, is obtained by allowing the exponent
n to run over the real numbers. In the above computations there is the implicit
assumption that the product of an infinitely small ω and a finite quantity a
is, again, an infinitely small. The proof of this fact is found in page 15: In
order to prove it, it suffices to show that αω < 1

δ
, where 1

δ
is an arbitrarily

small quantity. But this inequality can be also written in the form αδ < 1
ω

and since ω is an infinitesimally small, its inverse is larger than any given
number. Therefore aω is an infinitely small quantity. With the above remarks,
Archilla presents the usual algebraic rules for infinitesimals and establishes the
relationships between limits and infinitesimals by noticing in page 20 that:

If the difference between a variable x and a constant a is infinitely small, then this
constant is the limit of the variable. Therefore, the equation x = a+ω necessarily
implies lim x = a.

2.2 Archilla on continuous functions

The notion of continuity is presented by Archilla in two stages. First, a general
idea of continuity for any variable quantity, is introduced (page 56):

A variable quantity x varies in a continuous manner if it necessarily takes every
intermediate value when going from a to b, and, moreover, the same property
holds for any subinterval [a1, b1] ⊆ [a, b].

6



This definition has a geometric flavour, and the precision about the restriction
to any subinterval is a most interesting one. In a second stage the notion of
continuous function is introduced (page 57):

A function f(x) of a variable x is said to be continuous between the values x = a
and x = b when x varies in a continuous way between these values, if the function
values can not pass from some value m to any other one n 6= m , both between
f(a) and f(b), without taking all intermediate values between m and n.

This is Medvedev’s “continuity in the sense of Dirichlet-Lobachevskii” (Medvedev,
1991, p. 60-62), and it obviously needs one more condition, i.e. monotonicity
of the function, which is implicitly assumed as shown by the definition of dis-
continuity explained by the figure in page 58. Nevertheless, when coming to
practical questions, Archilla does not forget his programme on infinitesimals:
In the same page 58 he recalls that

(. . . ) a function is continuous on a given interval if, to any infinitely small incre-
ment of the variable in that interval, there exists an associated infinitely small
increment of the function.

Next let us observe how the continuity of the logarithm is assessed: Let the
increment of the logarithm be log(x + h) − log(x) = log x+h

x
= log

(
1 + h

x

)
.

Now it is known -because it had been proved earlier in the book- that for any
fixed x, log

(
1 + h

x

)
and h

x
differ in an infinitely small ω of order larger than

h
x
, namely log(x + h) − log(x) = h

x
+ ω. Therefore it is plain that Archilla

considers that both the Cauchy and the Dirichlet-Lobachevskii viewpoints on
continuous functions one are equivalent ones, without taking care of proving
it: To him, that was simply true.

2.3 Archilla on derivable functions and on differentials

Differential calculus deals on how to establish infinitesimal relationships be-
tween the increments of the independent variable(s) and that of the dependent
variable or function. Archilla denotes those increments by ∆x and ∆ϕ(x), and
he writes (pages 65-66):

Direct consideration of the limit of ∆ϕ(x)
∆x when ∆x → 0 greatly simplifies the

research whose aim is to determine the infinitesimal relationships between ∆x and
∆ϕ(x), and it introduces one of its most important objects in the Mathematical
Analysis. The limit is called the derivative or derived function, of ϕ(x).

To show how Principios is still a mixture of old and new ideas, it is enough
to notice that Archilla sticks to the old idea that the variable can not take
the value of the limit when approaching it and, moreover, he insists on a
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function being continuous for it to be differentiable, even acknowledging that
this condition is not sufficient. He explains it by considering the infinitesimal
orders of the two increments.

As a remark, the authors realise that there is no reference in Principios either
to Weierstrass or to the existence of continuous functions without a derivative
at any point. Nevertheless, Archilla might have known about these functions
after the first 1880 edition of Principios, since he spoke about them in his
1888 discourse for the Academia. It has been impossible to know whether he
thought of including such a topic in a possible second edition, as the 1894 one
is simply a reprint, most possibly prepared by his son for monetary reasons.

The treatment of the mean value theorems shows clearly the influence of
Cauchy. In a rather complicated paragraph (see note 4) in page 76, the au-
thor explains that if the derivative ϕ′(x) is a continuous function for all x
between x0 and x, then it will take finite values, their mean value µ(ϕ′(x)) be-
ing somewhere between the maximum and the minimum of the derivative on
that interval. Therefore, due to the assumed continuity of the derivative there,
exists a value xd such that ϕ′(xd) = µ(ϕ′(xd)) and the equation he obtained
previously as an “interesting property” of the derivative:

ϕ(x0 + h)− ϕ(x0) = hϕ′(xh),

can be rewritten as:

ϕ(x0 + h)− ϕ(x0) = hϕ′(xh) = hϕ′(x + θh),

from which a completely modern version of Rolle’s Theorem follows.

It must be noticed that the “interesting property” is simply an integral-free
version of the mean value for integrals as applied to the continuous derivative:

ϕ(x0 + h)− ϕ(x0) = hϕ′(xh) =
∫ x0+h

x0

ϕ′(s)ds

obtained by the author through a rather obscure argument in pages 74 and
75.

The largest part of Principios extends from page 115 until the end of the
treatise, under the title “Book III: Differential Calculus”, and it starts with
the concept of the differential of a function. Thus:

When studying the form and general properties of the infinitely small increment of
functions of one or several variables, we realised that among the infinite number
of quantities differing infinitely little from the increment of the function, there
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existed one simpler than any other quantity, and it was expressed through the
derivative or partial derivatives of the function; moreover, we saw that this unique
form, in the case of a function of a single variable y = ϕ(x), was ϕ′(x)∆x . This
infinitely small quantity, which is unique by his form among all quantities that
differ infinitely little from ∆y, will be called the differential of y = ϕ(x), and will
be represented by the special notation or dy or dϕ(x)...

This surprisingly modern definition lacks only the words “linear function” to
be a fully current one. Nevertheless, Archilla is well aware of the linearity of
the differential as a function of the increment of the independent variable:

The values of the differential dϕ(x) for some definite x are proportional to those
of ∆x = dx and this is a property exclusive to the differential among all quantities
infinitely close to the increment ∆y .

Principios finishes without consideration of the Integral Calculus. The authors
do not know whether the author intended to publish a sequel on this topic,
but the fact is that no evidence has been found to support this view.

3 Clariana and his lecture notes on Mathematical Analysis: Com-
plex Analysis

Lauro Clariana Ricart (1842-1916) spent his life in Catalonia, mostly in Barcelona
and Tarragona, the capital city of the neighbouring province of the same name.
He studied in Barcelona the courses needed to become Licenciado (1872) in
the so called Ciencias Exactas, the name given in Spain to Mathematics for
more than a century. One year later he obtained the Doctorate in the exact
Sciences at the same university. Clariana was, for a long period beween 1865
and 1916, a prolific writer on many topics ranging from Mathematical Analysis
and Rational Mechanics to Music and the construction of several machines. A
detailed biographical account and a complete list of Clariana’s writings -some
of them unpublished- can be found in (Clariana-Clarós, 1993).

Clariana taught Integral and Differential Calculus, and Rational Mechan-
ics, and was one of the few Spaniards who participated in several Interna-
tional Congresses and Meetings. He travelled to Paris, Brussels, München,
and Freiburg between 1888 and 1900, and in 1888 he was awarded in Paris
a prize for his Memoir “On the spirit of Mathematics in the modern times”.
Clariana was the author of two books on Mathematical Analysis for the use
of students at the Escuela Superior de Ingeniería Industrial in Barcelona.
They were published in 1892 and 1893 under the titles Resumen de las lec-
ciones de Cálculo Diferencial e Integral (Clariana Ricart, 1892b) (Resumen
from now on), and Complemento a los elementos de los Cálculos (Clariana Ri-
cart, 1892a) (Complemento in what follows). They appeared as lithographed
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handwritten lecture notes, and a joint edition under the title Conceptos fun-
damentales de Análisis Matemático appeared in a more normal printing style
the year 1903 (Clariana Ricart, 1903). A small favourable review of this last
book appeared in the Bulletin of the American Mathematical Society the year
1904 (McFarlane, 1904).

Resumen is a general introduction to Analysis, and at the very beginning, in
page 5, Clariana makes his position clear 5:

Because the infinitely small and the infinitely large are the only elements that can
become the basis of quantity in Mathematics, synthesised in the finite ones, we
shall admit three categories of quantity under the following forms:
(1) That of the infinitely small.
(2) That of the finite.
(3) That of the infinitely large.
And these are the only true concepts of quantity that are directly connected to
the Leibnizian idea of a differential

A very long introduction (Prolegómenos) of 45 pages is offered on the vari-
ous classes of numbers and functions, as well as on the foundations and the
history of the infinitesimal method, where the author summons Descartes, Jo-
hann Bernouilli and Cournot, and indeed Newton, Leibniz, and D’Alembert.
The rest of the book is a classical treatise on the usual topics on Differen-
tial and Integral Calculus presented in a straightforward way. Theorems are
not highlighted and proofs are not distinctly offered. The emphasis is on the
succession of useful and applicable formulas, with a few examples spread over
the text. This makes the book very readable and surprisingly modern even to
today’s standards. Complemento has a different flavour: It is a compilation of
loosely knit topics in higher Analysis. Clariana declares in a brief introduction:

The aim of this book is to present what we should call ’modern theories of the
infinitesimal and integral calculus’, not because some of them are recent ones, but
because they have not yet been presented in the Spanish education.

The first two chapters are devoted to “Infinitesimally Small Triangles” and
“Orders of Comparison for Curves”, where the fundamental Leibnizian trian-
gle is explained and applied in depth, as well as the idea of the order of an
infinitesimal is deeply applied to the study of different elements of curves.

With this equipment, the book follows with a study of Classical Differential
Geometry. On the remaining chapters, a variety of topics is included. There
are the Euler-McLaurin summation formula, special functions and elliptic in-
tegrals... To summarise; it is a simplified version of the usual second volume in
the classical French treatises that clearly inspired the author, and the style is
the same of Resumen. In basic questions, Clariana holds the same opinions of
Archilla. As an example, the definition of a continuous function on an interval
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reads:

The function y = F (x) is continuous between the values a and b attributed to
x if its values pass from one value to another through values that differ between
them as little as desired.

But the main feature in Clariana’s work is that he is the first author to intro-
duce in print Complex Analysis in Spain. He plainly states that “a complex
quantity has the form x + yi , where x and y are real quantities” and goes
on by explaining that Gauss was the first to speak of yi as imaginary and
that Cauchy denoted as imaginary the whole complex quantity. Of course he
points out that when x and y are variable quantities, then x+ yi is a complex
variable and that a complex quantity is infinitesimally small (large) if the real
part x and the imaginary part y are infinitesimally small (large) quantities.
Continuity of a complex quantity is, of course, assessed form the continuity of
its component real variables. Then, a standard theory follows.

It must be noted that before Clariana no Spanish mathematician had stud-
ied complex quantities as the object of Analysis. Only algebraic, geometric or
arithmetic considerations had been made in Spain on these numbers, and for
nearly forty years the source book was the rather obscure Teoría transcen-
dental de las cantidades imaginarias, the posthumously edited work (1865) of
José María Rey Heredia (1818-1861) who inspired several developments, espe-
cially in the presentation of Analytic Geometry. The work of Rey Heredia and
some of his followers has been extensively studied elsewhere by the authors
(Pacheco Castelao et al., 2006a).

4 Villafañe and the Tratado de Análisis Matemático

José María Villafañe Viñals (1830-1915) was of Cuban origin and taught Math-
ematics at different Universities: Barcelona, Valencia, and Madrid. His only
academic degree was obtained at a very early age from a secondary school in his
native Santiago de Cuba, and once in metropolitan Spain he took advantage
of various legal shortcuts and academic tricks until he became a Catedrático
(full professor) at the University of Valencia, where he was a friend of the
Spanish Nobel Prize winner for Medicine (1906) Santiago Ramón y Cajal. A
most complete biography of Villafañe can be found in (Llombart, 2001).

In 1892 Villafañe published a treatise on Mathematical Analysis (Villafañe y
Viñals, 1892) in three parts, which he afterwards enlarged to four. The first
one deals with the basic techniques of Analysis: Functions, continued fractions,
numerical congruencies, complex numbers... The second and most interesting
part of the book contains the Infinitesimal Analysis: limits, infinitesimals, con-
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tinuous functions, derivatives, integrals, and infinite series. Equation solving
and algebraic forms conform the respective contents of the third and fourth
parts. Although Villafañe’s book studies the same topics presented in the
above analysed books, it must be noted that its presentation is much more
formal and rigorous. The authors shall dwell only in some remarkable differ-
ences. A first one is observed in the definition of a limit 6:

A fixed quantity will be called the limit of a variable quantity if this last one
indefinitely approaches the first one until the difference between them is smaller
than any arbitrarily small chosen quantity.

Indeed this formulation is much closer to the familiar ε−δ definition, although
the absolute value is not employed. Nevertheless, a few pages onwards the
absolute value is used when trying to prove that A

0
is larger than any finite

quantity. In Part II, Chapter III, this definition of continuity is found 7:

A function is continuous if (infinitely) small increments of the variable there yield
(infinitely) small increments -in absolute value- of the function.

Villafañe does not make the distinction between continuity and uniform con-
tinuity, established by Heinrich Heine (1821-1881) (Heine, 1872), and already
dealt with by Dirichlet as early as 1854. What Villafañe really tried to do was
to prove the equivalence between the continuity definitions of Cauchy and of
Dirichlet-Lobachevskii. Complex Analysis is also considered in this treatise,
as in the books by Clariana. But Villafañe goes further by offering for the first
time in a Spanish text a fairly good approximation to the correct definition of
continuity of a function of a complex variable, when he writes:

(. . . )the function u = f(z) of the imaginary variable z is continuous on the (plane)
surface limited by a closed contour if for each value of z within these bounds the
modulus of the functional increment ∆u = f(z + ∆z)− f(z) tends to zero if the
modulus of ∆z tends to zero.

Moreover, holomorphic functions are defined, in page 194 of Part II, before
the derivative of a complex function as continuous, monotropic and monogenic
functions, or equivalently admitting a well determined derivative. Some bulk
errors are found in Villafañe’s treatise, and here two of them are considered.
When dealing with derivatives (Part II, page 211) this paragraph is found:

There exists a finite limit for the ratio of the infinitely small increments k and h
of a continuous variable and its independent variable, and only some exceptional
values of the variable can make the ratio grow indefinitely towards infinity or
indefinitely decrease towards zero.

This is obviously wrong; since the statement affirms that every continuous
function is differentiable but for a set of exceptional points, and it contradicts
the condensation principle introduced by Hermann Hankel (1839-1873). With
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this method Hankel managed to present in 1870 a construction of a contin-
uous function without a derivative at any rational point. Strangely enough,
Villafañe knew, if not this construction, at least the 1872 example by Weier-
strass of a continuous function without a derivative at any point. Nevertheless,
Part II, page 216 it reads:

We do not deem it necessary to take into account the theorem of Weierstrass
where he affirms the existence of continuous functions without a derivative at
any point, a matter still under discussion. Even if we admitted the existence of
such functions, it would not interfere with what we are going to expound on the
derivatives of continuous functions.

The calculus of complex functions is found from page 391 onwards, and the
first result is the assertion that the Cauchy conditions are necessary and suffi-
cient conditions for a function to have a correctly determined derivative with
respect to the complex variable z, i.e. to be a monogenic function. The proof
is essentially the same given by Cauchy (Cauchy, 1882-1974, Sér. 1, Tome I, p.
330) and continuity of the partial derivatives is used without postulating it be-
forehand. Indeed, with this addition, the Cauchy conditions become sufficient
ones.

5 Pérez de Muñoz and his Elementos de Cálculo Infinitesimal

Ramón Pérez de Muñoz was a professor of Mathematics at the Escuela Su-
perior de Ingenieros de Minas (School of Mining Engineers) in Madrid. This
Pérez de Muñoz should not be mistaken with his brother Francisco, a civil
engineer who promoted the study of quaternions in Spain and was a Professor
at the University of Manila in the Philippines.

Pérez de Muñoz taught Calculus and Mechanics, and was the author of a
book published in 1914 entitled Elementos de Cálculo Infinitesimal (Pérez de
Muñoz, 1914). According to the author’s foreword, the book is inspired in the
works of Archilla, Villafañe, La Vallée-Poussin, Duhamel, Cantor and others.
In addition, he explains that his aim is to present a rigorous and scientifically
clear exposition, even at the cost of overflowing the usual contents of books for
engineers. Both Pérez de Muñoz and Rey Pastor were members of the steering
committee for the year 1912 of the newly founded Sociedad de Matemáticas,
as shown in the February 1912 number of the Revista of the Society (pp.
223-233), when Rey Pastor was about to come back to Spain after his first
German period. Although the authors have not found documentary evidence
of any written mathematical collaboration between them, they hypothesise
that the influence of Rey Pastor was determinant in Pérez de Muñoz writing
in the new mathematical style in Spain. A comparison with (Rey Pastor, 1918)
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clearly points out in that direction.

In his text several novelties are found. The first chapters deal with number
systems, being this book the first Spanish one to offer a construction of the
real field following Cantor and Dedekind. It starts with the notions of a set
and its cardinality, and it is proved that between any two (rational) numbers
there are infinitely many ones. After considering these “cuts” in the sense of
Dedekind, the continuity and non denumerability of the real line are estab-
lished, though in a rather rhetoric manner. The theorem on the existence of
a least upper bound for any bounded set is also presented. Limits are defined
in a modern way, although inaccessibility of the limit is still preserved. Never-
theless, the proof that a monotonic and bounded sequence has a unique limit
is a completely rigorous one based on the previous ideas on real numbers. For
the first time, the theorem asserting that any function having a derivative at
some point is also continuous at that point is proved, although the hypothesis
of continuity in some neighbourhood of the point is not stated.

To summarise, most possibly due to the influential ideas brought from Ger-
many by Rey Pastor, there is a large qualitative leap forward in this book
when compared with its predecessors by Archilla, Clariana or Villafañe, thus
paving the way to the mathematical 20th Century in Spain.

6 Conclusions and views

In this paper the authors show that the work of several mathematicians and
engineers must be acknowledged in the enterprise of introducing rigour in the
teaching and spreading of Mathematical Analysis in Spanish universities and
engineering schools. The most representative four personalities and books have
been dealt with, highlighting their achievements:

(1) Archilla is the first Spanish mathematician to introduce the Cauchy style
in his book Principios de Cálculo Diferencial.

(2) Clariana was the first to present complex analysis, as well as the definition
of continuity of a complex function.

(3) Villafañe made a most interesting effort when he presented
• The total derivative of a complex function.
• Several definitions related with complex functions, among them that of

a holomorphic function.
• The relationship between the existence of a derivative and the Cauchy-

Riemann conditions for continuous functions.
• Absolute values as a tool in proofs and definitions.

(4) Pérez de Muñoz presented for the first time in Spanish a construction of
the real field and the proof of the continuity of a derivable function.
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Indeed, the texts by these authors are not milestones in the road to Mathe-
matical knowledge, but they must be acknowledged since they represent the
steps towards introducing Spain in the mainstream of Mathematical Analysis
during the first decades of the 20th century, in particular between the years
1915 and 1935.

Notes

1(. . . ) era necesario conseguir lo que desde un principio tan difícil aparecía: había
necesidad de obligar la noción del infinito a someterse dócil y servir de instrumento
a las necesidades del análisis; y a esto se oponía no sólo el carácter y sello especial
con que la noción del infinito se mostraba a la consideración matemática, cuando se
aplicaba al número y a la distancia, sino también el criterio filosófico que había de
servir de fundamento a la legítima intervención del infinito en el análisis.

2(. . . ) a la luz de la nueva doctrina, es ya noción vulgar la de la razón de ciertos
infinitamente pequeños, que, aunque siempre finita, no tiende a límite alguno; se
ve claramente que la continuidad de una función no implica que los incrementos de
ésta y de su variable hayan de ser del mismo orden; y se conciben y determinan,
como lo ha hecho Weierstrass, funciones continuas que no tienen derivada: cosas, si
no inconcebibles, difíciles de entender y de explicar en el antiguo orden de ideas.

3Nos proponemos resumir en este libro los principios más importantes del Cál-
culo Diferencial, procurando establecer su natural subordinación y dependencia, y
estudiar las íntimas relaciones quo existen entre las nociones fundamentales que les
sirven de base y las que de éstas legítimamente se derivan, conforme a la doctrina
propuesta primero por Cauchy, y desarrollada después por Duhamel.

4Si la derivada ϕ′(x) de la función de que se trata es también continua para todos
los valores de x comprendidos entre x0 y x, los valores de la derivada serán finitos
en este intervalo, y su media µ(ϕ′(x)) tendrá siempre un valor comprendido entre el
mayor y menor de dichos valores de la derivada; por consiguiente, hay un valor xd

de la variable para el cual la derivada ϕ′(xd) es igual a dicha media, y la ecuación
ϕ(x0 + h)− ϕ(x0) = hµ(ϕ′(x)), puede escribirse con otra forma

(B) ϕ(x0 + h)− ϕ(x0) = hµ′(xd),

y como xd es uno de los valores de la variable comprendidos entre x0 y x0 + h,
sera xd = x0+θh, en cuya expresión es θ un número positivo, en general comprendido
entre cero y la unidad, que también en casos particulares podrá tomar uno de estos
dos valores. La ecuación (B) puede, por lo tanto, escribirse como sigue:

15



(C) ϕ(x0 + h)− ϕ(x0) = hϕ′(x0 + θh)

5Siendo los indefinidamente pequeños, así como los indefinidamente grandes, los
únicos elementos que pueden constituir la base de la cantidad en matemáticas, sin-
tetizados en lo finito, admitiremos en esta ciencia tres categorías de cantidad, bajo
la forma siguiente:

(1) Correspondiente a los indefinidamente pequeños.

(2) Correspondiente a lo finito.

(3) Correspondiente a los indefinidamente grandes.

Estos son los únicos y verdaderos conceptos de cantidad que se enlazan directamente
con la diferencial de Leibniz.

6Se llama límite de una variable la cantidad fija, a que esta variable se aproxima
indefinidamente hasta poder ser la diferencia entre la variable y la cantidad fija
menor que toda magnitud tan pequeña como se quiera.

7Una función es continua, cuando para incrementos pequeños de la variable, los
incrementos correspondientes de de la función son también infinitamente pequeños
en valor absoluto.
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