CONTRIBUCIÓN DE LA ESPECTROSCOPÍA INFRARROJA AL DESARROLLO DE LA FOTOCATÁLISIS APLICADA

Departamento de Química, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira, E-35017 Las Palmas de Gran Canaria, España. e-mail: jaranaespa@hotmail.com

En el presente trabajo se exponen algunos de los últimos trabajos realizados por nuestro grupo de investigación en los que el uso de la espectroscopia infrarroja (FTIR) ha sido un instrumento indispensable para entender y desarrollar algunos procesos fotocatalíticos que tienen lugar en la superficie del TiO₂.

De esta forma se han realizado estudios FTIR de la interacción distintos ácidos carboxílicos con el TiO₂ dopados con Fe que han puesto de manifiesto variaciones en la interacción según el tipo de síntesis utilizado para el catalizador y según la concentración del dopante. Estas variaciones se han correlacionado con la actividad catalítica de estos catalizadores.

En otros ensayos fotocatalíticos realizados con distintos compuestos dihidrofenólicos, como hidroquinona, catecol y resorcinol, utilizando como catalizador TiO₂ dopado con Cu, se ha observado por FTIR que la efectividad del proceso de degradación viene determinada por el tipo de complejo Cu-hidrofenol formado.

También la espectroscopia infrarroja ha servido para determinar las propiedades ácido base de catalizadores formados por mezclas de TiO₂ y carbón activo. En estos estudios además de caracterizar los grupos hidroxilos superficiales se ha analizado la interacción de distintas moléculas que han puesto de manifiesto el mayor carácter ácido de las superficies de estos catalizadores.

Los estudios FTIR también han colaborado en determinar los procesos que tienen lugar en la degradación fotocatalítica de alcoholos en fase gas en sistemas de reacción en continuo. En estos estudios se ha determinado que los alcoholatos generados a partir de la interacción del metanol y etanol con la superficie del TiO₂ evolucionarían rápidamente a formiato o acetato respectivamente que inactivan al catalizador.