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Abstract: Thermography enables non-invasive, accessible, and easily repeated foot temperature
measurements for diabetic patients, promoting early detection and regular monitoring protocols,
that limit the incidence of disabling conditions associated with diabetic foot disorders. The estab-
lishment of this application into standard diabetic care protocols requires to overcome technical
issues, particularly the foot sole segmentation. In this work we implemented and evaluated several
segmentation approaches which include conventional and Deep Learning methods. Multimodal im-
ages, constituted by registered visual-light, infrared and depth images, were acquired for 37 healthy
subjects. The segmentation methods explored were based on both visual-light as well as infrared
images, and optimization was achieved using the spatial information provided by the depth images.
Furthermore, a ground truth was established from the manual segmentation performed by two
independent researchers. Overall, the performance level of all the implemented approaches was
satisfactory. Although the best performance, in terms of spatial overlap, accuracy, and precision,
was found for the Skin and U-Net approaches optimized by the spatial information. However, the
robustness of the U-Net approach is preferred.

Keywords: segmentation; thermography (D013817); diabetic foot (D017719); diabetic neuropathy
(D003929); supervised and unsupervised algorithms

1. Introduction

Abnormal plantar temperature in diabetic patients may be an early sign indicating the
appearance of foot disorders [1]. These complications, which include peripheral arterial
disease, neuropathy, and infection among others, are associated with substantial costs and
loss of quality of life [1,2]. Early stage detection of diabetic foot disorders can avoid or delay
the appearance of further complications with personalized care and treatment. Diabetic pa-
tients with peripheral neuropathy or ulcers reportedly present skin hardness compared to
normal foot tissue [3] and a strong correlation is observed between this hardness and the
severity of the neuropathy [4]. Soft tissue firmness is often measured by palpation which
is a subjective method dependent on the proficiency level of the expert. Following this
line, an experimental robotic palpation has been recently introduced to measure the elastic
moduli of diabetic patients [5]. However, although the assessment is fast, its use has only
been tested in a phantom and a couple of healthy subjects. Screening methods based on
foot temperature were long ago identified as leading technologies in the field [1]. Thus,
preventive care by regular monitoring plantar temperature limits the incidence of disabling
conditions such as foot ulcers and the related lower-limb amputations required in acute
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cases [1,2,6,7]. The most common and clinically effective monitoring protocol for diabetic
foot ulcers consists in comparing the temperature of six contralaterally-matched plantar
locations daily [7]. This can be a time-consuming procedure for self-monitoring and lack of
adherence to the monitoring protocols is often observed [1]. Therefore, a fast and precise
screening protocol is vital for this purpose in which plantar temperature is measured.

Thermography is a marker-free, non-invasive, safe, accessible, contactless and easily
repeatable technique that has been used covering military, space and civilian applica-
tions, from astrophysics to medicine [8,9]. In the medical field, it has been employed
for diagnosis and detection of soft tissue pathologies based on the temperature mea-
surement. For instance, thermography has been successfully utilized for diabetic foot
disorders [2,6,10] and, among other applications, for intraoperative functional imaging
with high spatial resolution and localization of superficial tumours, including brain
tumors [11] and its size estimation from the temperature distribution [12], quantitative
estimation of the cortical perfusion [13] and the visualization of neural activity [14,15],
as well as in a sport scenario to assess the efficacy of treatment in myofascial pain syndrome
and software validation before and after physical activity [16,17]. Therefore, infrared cam-
eras have become a supplementary diagnostic tool for the medical personnel since the
temperature of the epidermis can be measured in a non-invasive manner. However, several
technical issues should be addressed before such a tool could be integrated into standard
diabetic care protocols.

First, high-end infrared cameras are considerably expensive as the ones used in astro-
physics [8,9]. Low-cost devices, based on microbolometers, can provide similar features
for the required medical application under controlled ambient environment [18]. Second,
a fully unsupervised, without end-user interaction, and automatic segmentation of the
feet sole is critical since manual segmentation is dependant on the observer as well as an
extremely time-consuming task. Furthermore, a segmentation based solely on infrared (IR)
images constitutes a great challenge, as thermographic images provide functional data and
exhibit little structural information. IR images consist of a single channel of temperature
data, mainly relative temperature values, and are normally noisy. These images present
unclear boundaries and certain regions cannot be found, for instance cold toes or heels.
These areas could become undetected because the gradient information is not observed [19].
Some regions in the background, such as other thermal sources within the body, could be
considered as part of the soles because they exhibit similar statistical characteristics. Be-
sides, the foot sole is not completely flat and the shape of the arc is subject dependent.
Consequently, the establishment of a well-defined standard, reference or ground truth is
prevented by the above mentioned reasons.

Multimodal imaging facilitates the segmentation process [20] since structural and
functional information of the tissues can be acquired [21]. Visual-light images (RGB: Red,
Green and Blue color space) provide structural information, primarily a clear feet delin-
eation required to establish the ground truth. The multimodal fusion, resulting from the
combination of RGB with IR images, solves the issue as detailed morphological information
is gathered. This multimodal image fusion has been previously investigated for several
medical applications [22] including the intended application [2] but also in the context
of brain surgery [21]. However, low-cost infrared sensors are not usually equipped with
visible-light cameras to provide spatially registered RGB images onto the thermal ones,
so an additional camera is required. This alternative entails a new challenge to overcome
because the acquired RGB and IR images will not be spatially registered. Furthermore, once
the images are properly registered so each pixel has information in four-channels (RGB-IR),
the segmentation problem still applies.

Previous attempts to segment IR images are mainly based on the application of
a threshold to discriminate the background and rely on the homogenization of the back-
ground to aid the process [2]. For instance, thresholding [23] and active contours [6,19]
were employed among others. A homogeneous background without thermal sources,
except for the sole of each foot, may help the segmentation process but, since an extended
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exam time is required, presents a serious drawback for the patients’ comfort and the tight
schedule of clinical practitioners. Non-constrained acquisition protocols have also been
employed to attempt a segmentation based on IR images [19] including active contour
methods and Deep Learning approaches [24]. The latter provided a more powerful and
robust performance as active contour methods are sensitive to the initialization parameters
and may fail to converge. The combination of the multimodal approach and a constrained
acquisition protocol has also been explored and segmentation was achieved via clustering
using the RGB images as input [2].

Our research aim is to develop an automated workflow, based on affordable ther-
mography, to aid in the detection and monitoring of diabetic foot disorders for future
clinical trials. This workflow, providing a proof-of-concept technology and prototypes for
such use, consists of several steps which include the acquisition and registration between
imaging modalities, extraction of the areas of interest by segmenting the sole of the feet,
and finally the analysis of temperature patterns that may indicate areas of risk. In the
present work, the focus has been placed on the segmentation procedure, and since the
detection of anomalies have not been contemplated yet, only healthy subjects have been
considered for the newly created database. Recently, continuing with the non-constrained
acquisition protocol, we explored the feasibility of a unified RGB-based Deep Learning
approach with point cloud processing, derived from the spatial information provided
by the depth images (D), to improve the robustness of the semantic segmentation [20].
This workflow favours the benefits of the transfer-learning technique where layers are
initialised using layers from other networks trained with different RGB image databases,
mainly ImageNet. Thus, a robust model can be achieved despite the size of the database
which, in our case, for deep learning approaches, was small. This approach was imple-
mented without a database in which RGB-D and IR images were in the same coordinate
system. Thus, the present work intends to quantify such approach when employed for the
segmentation of the corresponding IR images. In addition, other segmentation approaches
were implemented for comparison purposes regarding feasibility and performance.

2. Materials and Methods
2.1. Image Acquisition

RGB-D images, consisting of Red, Green and Blue color space plus depth information,
were acquired with an Intel® RealSense™ D415 camera (Intel Corporation, Santa Clara,
CA, USA). IR images were acquired with a low-cost thermal camera model TE-Q1 Plus
from Thermal Expert™ (i3system Inc., Daejeon, Republic of Korea) which was previously
described and calibrated [18]. These cameras were assembled together in a customized
support, manufactured in a 3D printer, that kept the cameras horizontally aligned.

The resolution of the IR images is determined by the TE-Q1 Plus sensor (384× 288 pixels),
whereas for the RGB-D images the resolution is conditioned by the maximum value achievable
by the depth sensor (1280 × 720 pixels). As mentioned earlier, IR images lack the information
required to apply the usual feature-based and intensity-based registration techniques. Feature-
based methods fail due to the low contrast exhibited by the IR images, but can be circumvented
by landmark selection [2]. Intensity-based registration also presents its challenges but it can be
successfully achieved via a third modality, for instance binary images [21]. In the present work,
the Field of View (FOV) of the RGB-D camera was scaled to match the FOV of the IR camera to
overcome the lack of registration between the acquired images. The ad-hoc approach included
a translation and cropping procedure to match the coordinate system and size of the IR camera,
respectively. In this manner, each pixel in the acquired images is represented by five-channels
(RGB-D-IR).

The generated dataset contained 74 images from 37 healthy subjects, 15 female and
22 male with a mean age of 40 ± 8 in a range between 24 and 60 years old. The mean
European foot-size was 41 ± 3, ranging from 35 to 45. The acquisition campaign was
carried out in November 2020, for three non-consecutive days, among staff members at
our facilities. Within the volunteers, none presented partial amputations or deformations
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on the feet. Informed consent was obtained from all subjects involved in the image
acquisition. Furthermore, acquired data was codified and anonymised to ensure subject
confidentiality and data protection. Two images were acquired for each subject and
stored in Portable Network Graphic (PNG) format. The RGB images had 32 depth bits
whereas the IR and Depth had 16. The first was taken at the beginning of the exam
(T0), as soon as the person sits or lies down with legs extended forward and feet off
the ground. The second was taken five minutes later (T5) meanwhile the subject was at
the same resting position keeping the feet off the ground. The acquisition can be done
in seconds although the time required for the complete procedure was approximately
seven minutes, since the subjects needs to accommodate into position. No subject was part
of the acquisition more than once. A non-constrained acquisition protocol was selected for
the presented setup, that is, a homogenized background was not required for the thermal
image acquisition. The distance between the cameras and the subject’s feet was set at 80 cm.
Finally, the acquisition was carried out in a room with controlled luminosity and average
ambient temperature of 25 ◦C.

2.2. Segmentation Approaches
2.2.1. Manual Segmentation: Establishment of the Ground Truth

RGB images were labelled manually by two independent and unbiased researchers
with the aim to extract the sole of the feet from the background. By using the RGB images,
in which the sole of the feet and the corresponding boundaries are clearly observed,
no expert was required to accomplish this essential task.

Each foot was segmented separately using the manual and the semi-automatic tools
provided by the software application ITKSnap (version 3.8.0) [25]. Thus, four masks
were generated from each RGB image acquired, corresponding to right (R) and left (L) feet
delineated by two different researchers, which facilitated the quantification of the inter- and
intra-researcher variability. A probabilistic estimation of the true segmentation was formed
by the Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm using
the previously generated masks as input [26]. Thus, the output masks were established as
the ground truth.

Once the ground truth was established, the acquired images and the corresponding
masks were employed as input on several segmentation approaches for automatic image
segmentation. In this regard, the dataset containing all the images was split in two non-
overlapping groups, employed for training and testing purposes, which consisted of 50 and
24 images, respectively.

2.2.2. U-Net + Depth (UPD)

This approach was previously implemented and reported [20]. The pixelwise segmen-
tation generated was based on the U-Net architecture, a convolutional neural network,
initially proposed for biomedical image segmentation, that consists of a contracting path
or encoder and an expanding path or decoder [27]. The encoder aims to extract high
resolution features, applying convolutions and activation functions per layer, as well as to
reduce the spatial dimension by max-pooling, without overlapping windows. The decoder
uses a symmetric expanding path to generate the output enabling precise localization.

Shortly, the encoder was constructed by an VGG11 (Visual Geometry Group) [28],
excluding the fully connected layer. The decoder was created following the encoder shape
and the weights were randomly initialized. The RGB-D images were employed as input
parameters in the proposed workflow. Particularly, the RGB images were used for training
the neural network. The depth image information was employed to improve the subse-
quent prediction by applying a RANdom SAmple Consensus (RANSAC) estimator [29].
This estimator was implemented to extract the best plane among a point cloud previously
filtered, by a statistical filter, to discard noisy points that are mainly present at the edges
or boundaries. Thus, a distance threshold is employed as a parameter to discard outliers,
that is, points that do not belong to the sole of the feet. The distance threshold was selected
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taking into account the depth information, specifically the standard deviation at the surface
of the feet.

Figure 1 shows a simplified scheme of the proposed workflow for IR image segmentation.

Figure 1. Simplified workflow for the U-Net + Depth (UPD) approach for IR image segmentation.

The results presented were generated using the model reported earlier [20]. The neural
network was not trained with the newly generated dataset (registered RGB-D-IR), instead
the training dataset consisted of 30 original (registered RGB-D) and 17 augmented images.
Augmentation included random scaling, rotations, elastic distortions as well as contrast
gamma adjusting. However, for comparison purposes, the test dataset employed to extract
the overlap measures reported here was the newly created and described above.

2.2.3. Skin + Depth (SPD)

This unsupervised approach consisted in a pixel-based technique for human skin
detection [30] complemented with the RANSAC estimator described above [20,29]. Shortly,
skin pixels were recognised by a threshold based on three color models which are RGB, HSV
(Hue, Saturation, Value) and YCbCr (Luminance, Chrominance). Images were converted
to RGB with an alpha channel, ARGB, and then from RGB to HSV and YCbCr. Then,
the respective thresholds were applied according to previously reported values [30].

The workflow is similar to that shown in Figure 1, although instead of the U-Net
segmentation, the skin segmentation by thresholding was applied.

2.2.4. SegNet

This segmentation approach was based on the SegNet network [31] which recently pro-
vided interesting results for the segmentation of the sole of the feet on thermal images [24].
In order to perform a comparison as precise as possible, the same pre-processing previously
reported was implemented. Images were cropped to separate the feet, thus each foot
correspond to one image. This requirement was hard to fulfill because a non-constrain
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protocol was employed for image acquisition. The images were cropped but not equally,
since feet were not always centered on the image. Subsequently, as required, the left foot
was flipped, so all images have an unique foot orientation.

In order to improve the network performance, image augmentation was also a req-
uisite for this segmentation approach. The training dataset was augmented by random
scaling, rotations, elastic distortions as well as contrast gamma adjusting using the Aug-
mentator software package [32]. An additional random horizontal flip was included in the
augmentation process because, to detect both feet in one image, feet in both orientations
should be considered. The initial training dataset consisted of 100 images. After augmenta-
tion, the final training dataset was composed of 200 images.

The neural network was trained using an Stochastic Gradient Descent (SGD) opti-
mizer with a 0.1 constant learning rate and 0.9 momentum for 150 epochs. The same loss
function proposed for training the UPD approach was used (Equation (1)) in order to obtain
comparable results.

Loss(Y, Ŷ) = α · BCE(Y, Ŷ) + (1− α) · DICE(Y, Ŷ), (1)

where BCE is the Binary Cross Entropy between the target Y and the output Ŷ and DICE is
the Dice Similarity Coefficient. The encoder path was initialized by the convolution layers
from a VGG16 [33] which have been pre-trained on ImageNet [34]. Grayscale images were
represented as RGB to apply the typical mean and standard deviation from ImageNet for
normalization purposes at the input of the SegNet.

2.3. Evaluation Metrics

The most common metrics were employed to evaluate the performance of the manual
and automatic segmentation approaches as well as other measures of spatial overlap.

2.3.1. Simultaneous Truth and Performance Level Estimation (STAPLE)

The expectation-maximization STAPLE algorithm provides a probabilistic estimate
of the true segmentation and a measure of the performance level represented by each
segmentation [26]. The quality of each segmentation is represented by quantitative values
for sensitivity and specificity.

The manual segmentation produced by each researcher was employed as input to
derive the ground truth. In addition, a quantitative estimation of the intra- and inter-
researcher variability was provided.

Similarly, the performance of the automatic segmentation approaches (Ŷ) was com-
pared using the STAPLE algorithm.

2.3.2. Dice Similarity Coefficient (DICE)

DICE [35], which ranges from zero to one, measures the spatial overlap between two
regions as indicated in Equation (2).

DICE(Y, Ŷ) =
2 · |Y ∩ Ŷ|
|Y|+ |Ŷ|

, (2)

where ∩ is the intersection between the two mentioned regions.

2.3.3. Intersection over Union (IoU) or Jaccard

Intersection over Union (IoU) or Jaccard coefficient [36] can be derived from Equation (3).

IoU(Y, Ŷ) =
|Y ∩ Ŷ|
|Y ∪ Ŷ|

, (3)

where ∪ is the union between the two mentioned regions.
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2.3.4. Sensitivity, Specificity, and Precision

These metrics are generally chosen to estimate the classifier performance. Sensitivity is
the proportion of true positives that are correctly identified by the classifier [37,38]. It can
be expressed as follows:

Sensitivity =
TP

TP + FN
, (4)

where TP (True Positives) are the correctly detected conditions and FN (False Negatives)
the incorrectly rejected conditions.

Specificity is the proportion of true negatives that are correctly identified by the classi-
fier [37,38]. It is computed as follows:

Speci f icity =
TN

TN + FP
, (5)

where TN (True Negatives) are the correctly rejected conditions and FP (False Positives)
are the incorrectly detected conditions.

Finally, the precision or Positive Predictive Value (PPV) [39] is the ability of the classifier
not to label as positive a sample that is negative. This ratio is represented as:

Precision =
TP

TP + FP
, (6)

where TP and FP are, respectively, the true positives and the false positives provided by
the segmentation approach employed.

2.4. Statistical Analysis

Statistical analysis was performed in RStudio v1.1.453 (RStudio, Inc., Boston, MA,
USA) [40]. The Wilcoxon’s matched-pairs test [41,42] was used to determine intergroup
differences, at each time point, between the masks generated by each researcher and the
segmentation approaches implemented. The same test was employed to assess longitudinal
changes from T0 to T5. When significance was detected, the probability value was indi-
cated (p). The Hochberg adjustment method [43] was employed as correction for multiple
testing and a significance level of 5% was considered in all tests.

3. Results
3.1. Manual Segmentation: Establishment of the Ground Truth

The overlap measures between the segmentation masks produced by each researcher,
for the right (R) and left (L) foot, are listed according to time point in Table 1. As expected,
the main area of discrepancies occur at the boundaries of the feet, particularly at the toes as
well as at the area between the arch and the inner ankle. Longitudinal changes were found
by the Wilcoxon’s matched-pairs test. The overlap measures were significantly changed for
the masks associated to the left foot (p ≤ 0.05). Oppositely, no longitudinal changes were
observed for the masks associated to the right foot.

Table 1. Overlap measures between the segmented masks produced by each researcher for each foot,
at each time point, T0 and T5.

Overlap
Measures Left Feet (T0) Right Feet (T0) Left Feet (T5) Right Feet (T5)

DICE 98.91 ± 0.50 99.27 ± 0.37 98.74 ± 0.52 99.25 ± 0.37
IoU 97.85 ± 0.97 98.55 ± 0.73 97.52 ± 1.00 98.51 ± 0.73



Sensors 2021, 21, 934 8 of 16

The final mask employed and established as the ground truth was obtained using
the STAPLE algorithm, which provided a measure of the specificity and sensitivity of each
researcher as listed in Table 2. Regarding longitudinal changes, specificity and sensitivity
were significantly modified (p < 0.01) for the masks associated to the left foot only for
one researcher. The Wilcoxon’s matched-pairs test detected intergroup differences for
these parameters, at both time points, for the masks associated to the left foot (p < 0.01).
No longitudinal changes or intergroup differences were found for the masks associated to
the right foot.

Table 2. Specificity and sensitivity provided by the Simultaneous Truth and Performance Level
Estimation (STAPLE) algorithm for each researcher.

Researcher Mask Time Specificity Sensitivity

Researcher 1

L T0 99.95 ± 0.04 99.23 ± 0.49
R T0 99.94 ± 0.06 99.64 ± 0.23
L T5 99.95 ± 0.05 99.08 ± 0.48
R T5 99.94 ± 0.06 99.65 ± 0.27

Researcher 2

L T0 99.88 ± 0.07 99.68 ± 0.26
R T0 99.95 ± 0.04 99.62 ± 0.35
L T5 99.86 ± 0.08 99.66 ± 0.32
R T5 99.95 ± 0.05 99.59 ± 0.36

3.2. Segmentation Approaches

The overlap measures for the segmentation approaches based on the RGB and RGB-D
images are summarized in Table 3. Based on the listed measures, both approaches per-
formed better when the depth information was used to refine the final prediction. The sim-
ilarity measures, DICE and IoU, exhibited the best results for the UPD approach.

Table 3. DICE and IoU provided by the U-Net and Skin segmentation approaches as well as their
refined prediction achieved considering the depth information. Values are expressed in percentage at
each time point, T0 and T5.

Segmentation DICE (T0) IoU (T0) DICE (T5) IoU (T5)

U-Net 87.45 ± 6.52 78.24 ± 10.20 89.95 ± 6.52 82.27 ± 9.73
UPD 95.35 ± 0.40 91.11 ± 0.72 95.26 ± 0.41 90.95 ± 0.74
Skin 90.03 ± 4.40 82.13 ± 7.36 89.73 ± 5.25 81.75 ± 8.54
SPD 95.24 ± 0.52 90.93 ± 0.95 95.21 ± 0.47 90.86 ± 0.86

No significant changes were observed for the overlap measures associated with the
final predictions according to the time point. Regarding intergroup differences, at both time
points, the DICE and IoU coefficients were significantly higher for the UPD as compared to
the rest of approaches (p≤ 0.01) except the SPD (p > 0.5). That is, a comparable performance
was provided by the approaches in which the depth information was employed for the
final prediction.

Figure 2 shows an example of the U-Net approach for segmentation and the optimized
UPD approach, which illustrates the improvement in the final prediction achieved by
including the depth information. Figure 3 displays a similar comparison for the Skin
approach and its improved prediction SPD.
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Figure 2. Illustrative example showing the input images and the final prediction including the improvement achieved by
including the depth information: (a) RGB input image; (b) Depth input image; (c) IR original image and overlapping U-Net
final prediction (white mask); (d) IR original image and overlapping UPD final prediction (white mask). The ground truth
was overlapped (pink mask) to facilitate the comparison with the predictions.

Figure 3. Example showing the final prediction for the Skin approach in which the ground truth has been overlapped
(pink mask): (a) RGB input image; (b) Depth input image; (c) IR original image and overlapping Skin final prediction
(white mask); (d) IR original image and overlapping SPD final prediction (white mask).
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The overlap measures for the SegNet segmentation approach, in which IR images
were employed as input, are summarized in Table 4, according to the α parameter in
Equation (1). The best performance, according to the overlap measures, was achieved for
an α value equal to one. For illustrative purposes, Figure 4 displays the final predictions
according to the varying α parameter.

Table 4. DICE, IoU and precision provided by the SegNet approach, according to the α parameter in Equation (1). Values are
expressed in percentages at each time point, T0 and T5.

α DICE (T0) IoU (T0) Precision (T0) DICE (T5) IoU (T5) Precision (T5)

0 91.99 ± 3.36 85.33 ± 5.73 89.83 ± 5.36 92.93 ± 2.66 86.89 ± 4.56 90.25 ± 4.76
0.2 90.39 ± 4.17 82.70 ± 6.86 86.68 ± 6.92 90.55 ± 3.93 82.94 ± 6.49 86.20 ± 6.98
0.4 92.49 ± 3.55 86.22 ± 6.07 90.19 ± 5.34 92.36 ± 3.42 85.97 ± 5.87 88.82 ± 6.19
0.6 92.15 ± 3.20 85.60 ± 5.44 90.55 ± 5.57 92.55 ± 2.93 86.27 ± 5.00 89.80 ± 5.35
0.8 88.02 ± 4.31 78.83 ± 6.69 80.24 ± 7.46 88.87 ± 4.44 80.24 ± 7.19 81.07 ± 7.42
1 92.99 ± 3.25 87.05 ± 5.55 92.11 ± 5.19 93.30 ± 2.91 87.57 ± 5.01 92.26 ± 5.11

Figure 4. Illustrative example showing the final prediction for the SegNet approach according to the α parameter in
Equation (1): (a) IR input image; (b) Final prediction α = 0; (c) Final prediction α = 0.2; (d) Final prediction α = 0.4; (e) Final
prediction α = 0.6; (f) Final prediction α = 0.8; (g) Final prediction α = 1. The ground truth (pink mask) was overlapped to
both, the IR image and the corresponding final predictions (white mask).

Similar to that observed for the other segmentation approaches, no significant changes
were found for the overlap measures in the corresponding final prediction according to the
time point. Regarding intergroup differences, in comparison to the approaches based and
refined employing the RGB-D images, particularly the UPD, the DICE and IoU coefficients
were significant lower at T0 (p < 0.05) but not at T5 (p < 0.05). Figure 5 shows the final
prediction, based on the IR images, for four different subjects, corresponding to the best
and the worst overlap measures (DICE), at T0 and T5.
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Figure 5. Illustrative examples showing the final prediction for the SegNet approach (α = 1): (a) IR input image and the best
prediction at T0; (b) IR input image and the best prediction at T5; (c) IR input image and worst prediction at T0; (d) IR input
image and worst prediction at T5. The ground truth (pink mask), was overlapped to both, the IR and the final prediction
(white mask).

Finally, the performance level of the segmentation approaches were compared via
the STAPLE algorithm and the results are listed in Table 5. Overall, the performance was
satisfactory for all the implemented approaches. The sensitivity was higher for the Skin
and U-Net approaches at T0 and T5, respectively. The highest specificity and precision,
were provided by the SPD approach at both time points.

Table 5. Specificity and sensitivity provided by the STAPLE algorithm for the implemented approaches. Values are expressed
in percentages at each time point, T0 and T5.

Segmentation Specificity (T0) Sensitivity (T0) Precision (T0) Specificity (T5) Sensitivity (T5) Precision (T5)

U-Net 93.29 ± 7.10 98.41 ± 3.17 78.87 ± 10.36 92.37 ± 5.78 99.91 ± 0.20 82.76 ± 9.96
UPD 97.38 ± 4.83 96.09 ± 2.80 99.01 ± 0.45 97.73 ± 4.24 94.81 ± 2.63 98.93 ± 0.66
Skin 93.06 ± 4.14 99.18 ± 1.34 83.64 ± 7.75 95.36 ± 4.21 97.57 ± 2.85 83.25 ± 9.17
SPD 99.19 ± 1.83 94.57 ± 3.57 99.44 ± 0.28 99.99 ± 0.02 92.97 ± 2.26 99.44 ± 0.35

SegNet 97.72 ± 1.56 96.55 ± 2.50 92.11 ± 5.19 97.93 ± 1.46 97.01 ± 1.78 92.26 ± 5.11

The performance of the segmentation approaches was not longitudinally changed,
that is no significant changes were found between T0 and T5 according to the Wilcoxon’s
paired test. Sensitivity was significantly modified at T0 between the SPD and U-Net as
well as Skin (p < 0.01). A similar trend was observed for Skin and SegNet as well as UPD
(p < 0.05). At T5, sensitivity values were significantly changed among groups (p < 0.01)
except for the Skin and SegNet; Skin and UPD; as well as UPD and SegNet. Regarding
specificity, significant differences among groups were only found for the Skin and SPD
groups at T0 (p < 0.01). However, at T5, intergroup differences were detected between SPD
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and the other approaches U-Net (p < 0.01), UPD (p < 0.05), Skin (p < 0.01), and SegNet
(p < 0.01). Similarly, specificity values were significantly changed between U-Net and UPD
(p < 0.01) as well as SegNet (p < 0.05). Finally, for the precision parameter, intergroup
differences were significant at both time points, T0 (p < 0.05) and T5 (p ≤ 0.01), among the
approaches, except for the U-Net and Skin groups.

4. Discussion

Several segmentation approaches have been assessed for a medical application focused
on the detection and monitoring of diabetic foot disorders which included U-Net, Skin,
their refined versions provided by the spatial information, UPD and SPD, respectively,
as well as SegNet. The execution of the segmentation approaches described is fast and they
all work in real time, thus segmentation of IR images can be achieved efficiently with a
satisfactory performance.

Medical image segmentation is a recognised difficult problem in which high accuracy
and precision are desirable properties [26]. IR manual segmentation is challenging since
tissue limits are difficult to define and, as a result, the segmentation is strongly dependent
on the observer as well as prone to errors. This is the main reason a RGB segmentation was
preferred and, as a consequence, a proper registration between modalities constitutes the
main challenge that requires further study. The low-cost cameras employed for the image
acquisition were in a non-coaxial arrangement and the RGB images covered a larger FOV
than the IR ones. Thus, the IR images were considered as reference and the RGB ones were
transformed to match the reference image space using an ad-hoc method. By doing so,
a spatially registered dataset formed by multichannel images was created in which each
pixel was characterized by five-channel information (RGB-D-IR).

The establishment of the ground truth was based on the manual segmentation carried
out on the RGB images by two researchers enabling the quantification of the inter observer
variability. However, as mentioned above, the inherent problem associated to the establish-
ment of a ground truth based on the RGB images, is that the quantification of the accuracy
provided by each segmentation method is biased by the degree of overlapping between the
IR and the RGB images. Furthermore, the use of affordable devices has an impact in the
quality of the IR images acquired. For instance, the included optical system may present
optical distortions or misalignment. During the establishment of the ground truth, it was
demonstrated that the employed IR camera presents some of these effects, particularly on
the right side of the images. Significant intergroup differences and longitudinal changes
in the masks produced by each researcher, were detected solely for the left foot in the
overlap measures, specificity and sensitivity. Thus, a more accentuate lack of correspondence
between imaging modalities is observed for the left foot.

The advantage of each method, according to the quantitative evaluation, revealed
that the approaches based on the RGB images, namely U-Net and Skin, displayed the
best performance. Particularly, the optimization of these approaches, considering the
spacial information provided by the depth images significantly improved the overlap
measures of the final predictions. A previous attempt to automatically segment the sole of
the feet, based on thermal images and employing Deep Learning approaches, reported a
74.35% ± 9.48% DICE coefficient by the implemented U-Net architecture [24]. In the work
presented here, the same network architecture provided superior results according to the
overlap measures. As previously reported, the UPD approach improves the performance
of the segmentation, as compared to the U-Net, even for a small training dataset [20].
A similar trend was observed for the SPD approach, in which substantially superior results
were observed when optimized with the spatial information provided by the depth images.

Overall, the SPD approach showed a performance comparable, and even superior,
to the UPD segmentation method of reference. This approach is truly unsupervised and
the practicality of its implementation makes this segmentation approach the simplest,
faster and, therefore, the preferred choice by clinical practitioners. However, despite
this numerical advantage, simplicity and good visual reproduction, the skin recognition
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method is reportedly affected by the light conditions at the image acquisition room as well
as individual characteristics like skin tone, age, sex, and body parts under study [30,44].
Other factors affecting are the background colors, shadows and motion blur. The testing
dataset employed in this work is extremely homogeneous regarding the skin tone of the
subjects. In addition, all images were acquired in the same room, so the lighting condition
were not varied neither the background colors. Thus, the robustness of this method was
not truly tested and this segmentation approach must be considered with caution. At least,
until a larger, more diverse and inclusive dataset is available.

In the same study mentioned earlier [24], a SegNet architecture provided a
97.26% ± 0.69% DICE coefficient. For comparison purposes, the same architecture was
replicated in this work and resulted in a slightly worse performance, 93.15% ± 3.08%, ac-
cording to the same overlap measure. Our results confirmed that the best qualitative and
quantitative results were obtained for an α value equal to one according to Equation (1).
That is, the network is trained more efficiently using a loss function based on the BCE instead
of the DICE. Regarding the disagreement in the overlap measures may be due to the fact that
the number of images available for our training dataset was significantly lower (200 vs. 1134).
Furthermore, this segmentation approach required to pre-process the training dataset so
a single foot or unique orientation was employed. Since a non-constrained protocol was
preferred for the image acquisition, to avoid a partial cut off, the cropping procedure was not
centered within the image for the majority of the cases. And this could cause the lower overlap
measures detected. In fact, it must be noted that the final prediction for the non-flipped foot
was more accurate, in comparison to the flipped one, as can be noticed by simple visual
inspection of the presented images. Nevertheless, this effect may be also caused by the smaller
training dataset since it was not reported in the mentioned study.

There are several limitations in the present study. First, an ad-hoc method was
employed for registration. This approach is not robust enough. A slight displacement
between the cameras during transportation may cause a misalignment and, in some cases,
there is a clear mismatch between IR and RGB-D images. For this reason, further research
is currently in progress to assess the most accurate registration method. Second, no partial
foot amputations or deformations have been considered. However, these are common
and characteristic features of the intended application that may originate morphological
and functional differences in the subsequent analysis of the temperature patterns. In any
case, regarding the previously required segmentation process aimed to discriminate the
feet from the background, independently of whether the subjects are healthy or diabetic,
the impact of these partial amputations or deformations in the segmentation process
must be assessed in the future. In addition, further research is planned to provide a
foot model that can be taken as a standard for these cases in which certain parts of the
foot are missing. Image acquisition is currently in progress with the aim to increase the
multimodal image database for healthy subjects as well as pathological ones who are
affected by diabetic disorders. The images from healthy subjects will be employed to
establish normalcy regarding temperature patterns, while the pathological ones will aim
to establish a relationship between temperature patterns and the status of the underlying
diabetic condition. A larger database will improve the UPD model which has a promising
performance to replace the standard time-consuming manual feet segmentation. Finally,
the approaches presented will facilitate the development of a robust demonstrator which
can be used in future clinical trials to monitor diabetic foot patients, allowing to place the
focus on the diagnosis task.

5. Conclusions

Several segmentation approaches have been assessed with the intention to be em-
ployed in a medical application focused on the detection and monitoring of diabetic foot
disorders. The feasibility to perform IR image segmentation has been demonstrated with
all the implemented approaches, which included U-Net, Skin and SegNet as well as the
corresponding optimizations, UPD and SPD, provided by the spatial information. Despite



Sensors 2021, 21, 934 14 of 16

the superior performance displayed by the SPD approach, according to the quantifica-
tion of the overlap measures, the robustness of the algorithm has not been tested. Thus,
the UPD segmentation is consequently the preferred approach to replace the standard
time-consuming manual feet segmentation.
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