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ABSTRACT The quality of sleep can be affected by the occurrence of a sleep related disorder and, among
these disorders, obstructive sleep apnea is commonly undiagnosed. Polysomnography is considered to be
the gold standard for sleep analysis. However, it is an expensive and labor-intensive exam that is unavailable
to a large group of the world population. To address these issues, the main goal of this work was to
develop an automatic scoring algorithm to analyze the single-lead electrocardiogram signal, performing
a minute-by-minute and an overall estimation of both quality of sleep and obstructive sleep apnea. The
method employs a cross-spectral coherence technique which produces a spectrographic image that fed three
one-dimensional convolutional neural networks for the classification ensemble. The predicted quality of
sleep was based on the electroencephalogram cyclic alternating pattern rate, a sleep stability metric. Two
methods were developed to indirectly evaluate this metric, creating two sleep quality predictions that were
combined with the sleep apnea diagnosis to achieve the final global sleep quality estimation. It was verified
that the quality of sleep of the nineteen tested subjects was correctly identified by the proposed model,
advocating the significance of clinical analysis. The model was implemented in a non-invasive and simple
to self-assemble device, producing a tool that can estimate the quality of sleep and diagnose the obstructive
sleep apnea at the patient’s home without requiring the attendance of a specialized technician. Therefore,
increasing the accessibility of the population to sleep analysis.

INDEX TERMS 1DCNN, CAP, ECG, OSA, sleep quality.

I. INTRODUCTION
The quality of sleep is one of the most important aspects that
can affect physical and mental health since sleep related com-
plaints are the second most usual causes for pursuing medical
care, only superseded by the feel of pain [1]. Another relevant
factor is the prevalence of poor sleep quality in older adults,
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where it was projected that it affects approximately half of the
population [2]. Consistent growth in the prevalence of sleep
disturbances and neurodegenerative disorders is expected by
considering the significant increase in the world aged pop-
ulation. Thus, it is likely that sleep quality assessment will
become a relevant indicator in clinical diagnosis [3].

In most cases, poor quality of sleep is directly connected
to the presence of a sleep related disorder. Sleep-related
breathing disorders are the most prevalent and, among them,
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Obstructive Sleep Apnea (OSA), characterized by a com-
plete or partial obstruction of the upper airway that affects
the ventilation during sleep [4], is the most common in the
adult population. It was estimated to affect 10% of the 30 to
49 year-old men and 3% of the 30 to 49 year-old women,
considering an Apnea-Hypopnea Index (AHI) greater than or
equal to 15 events/hour. This prevalence increases with age,
and it was projected to affect 17% and 9%of the 50 to 70 year-
olds men and women, respectively [5]. However, most cases
(estimated to be around 80%) are undiagnosed, frequently
due to the shortage of resources to perform the analysis or the
lack of knowledge about the disorder [6]. Taking into consid-
eration that the present threshold for the AHI, regarding the
OSA diagnosis, was changed to 5 or more events/hour [7],
a significant increase in the number of undiagnosed cases
is expected. Polysomnography (PSG) is considered the gold
standard for sleep analysis and records multiple sensors,
including the electroencephalogram (EEG) and electrocar-
diogram (ECG) [8], [9]. This information is then analyzed
by a specialist to perform multiple clinical diagnoses [10].
However, the exam is expensive [11], labor-intensive [12],
and is unavailable to a large group of the world population
with a usual long waiting time [13]. Therefore, a non-invasive
and easy to use Home Monitoring Device (HMD) capable
of performing the estimation of both sleep quality and OSA
could allow to overcome these disadvantages and became a
significant tool for future clinical diagnosis.

The EEG signals are used as a reference to define the sleep
structure that is conventionally divided into the macrostruc-
ture, defined by repetitive variations of Rapid Eye Move-
ment (REM) and Non-REM (NREM) epochs that are scored
every 30 second [14], and the microstructure (characterized
by phasic and transient events, in the brain electrical activity,
that are scored by 1 second epochs [15]).Most of the available
HMD that provide an estimation of the sleep quality are based
on the assessment of sleep duration metrics (such as total
sleep time) that are related to the macrostructure. Among the
available devices, actigraphs are themost common in the con-
sumer market, possibly due to the fact that these devices are
easy to use [3]. However, the validity of the predictions made
by these devices still requires a systematic examination [16].

It was also verified that duration, continuity and intensity
metrics have a minor correlation with the patient’s subjective
ratings of prior-night sleep quality [17], possibly indicat-
ing that sleep stability metrics could be more significant
for medical diagnosis [18]. Among these stability metrics,
the ones related to the analysis of the EEG Cyclic Alternating
Pattern (CAP) present the best correlation with the subjec-
tive prior-night sleep quality appraisal [3]. A CAP cycle is
composed of an activation period (named A phase) that is
followed by a quiescent phase (known as B phase). The A
phase comprises multiple microstructure patterns, and both
A and B phases should last between 2 and 60 seconds to be
considered valid CAP phases [15].

The ratio of the total duration of the CAP cycles to the total
duration of the NREM sleep is known as the CAP rate. It is

a stability measure that reflects the mechanisms that regulate
the arousals during sleep and it is an indicator of the quality of
sleep of the total sleep period since the occurrence of distur-
bances during sleep lead to a higher CAP rate [19]. However,
this metric is defined with the analysis of the EEG signals that
are measured by a sensor that is difficult for self-assembly.
This issue led to a major difficulty for HMD to employ the
CAP rate as a metric to define the sleep quality. Nevertheless,
the concept of CAP can be extended in a broader context, so it
could be assessed using other less complex sensors (fewer
channels), such as the single-lead ECG [20]. This indirect
approach is followed in this work, with the analysis of the
signal measured by a single-lead ECG since this sensor is
considerably easier for self-assemble than the EEG sensor.
This is particularly significant for a HMD that is intended to
be assembled by the user.

The single-lead ECG signal was evaluated to compute a
Spectrographic Image (SI), which was examined by both a
minute-by-minute and an average based models to attain two
sleep quality prediction. Taking into consideration the strong
relation between the CAP and the OSA (one of the most
prevalent sleep related disorders) [21], a second minute-by-
minute classification of the SI was employed to estimate the
occurrence of OSA events whose output feeds to a threshold
based classifier to perform the diagnosis of this disorder.
The global quality of sleep was then assessed by combining
the two sleep quality predictions and the OSA diagnosis.
Several methods for sleep quality analysis [3] andOSA detec-
tion [22]–[24] were previously reviewed. The methods that
evaluated the single-lead ECG signal were further examined
in the discussion section.

The algorithms were implemented in an HMD, producing
an important tool for home sleep analysis, capable of predict-
ing the quality of sleep of the general population, assess the
presence of OSA and perform the diagnosis of this disorder,
and help in the follow-up treatment for OSA by indicating
the number of events and the overall quality of sleep of every
night. This tool could also be used for scheduling the PSG
analysis by eliminating the need for the possible negative
cases (for example, a subject with scarce OSA events and
god quality of sleep) to have to perform the PSG exam and
prioritize the possible positive cases (for example, a subject
with a high number OSA events and poor quality of sleep) for
the exam.

Therefore, the objectives of this work were: develop an
algorithm to estimate both the presence of OSA and the
quality of sleep, using only one sensor that is simple to
self-assemble and non-invasive; implement the algorithms in
a prototype to produce a low-cost and easy to use HMD.
Hence, the sleep test can be performed at the patient’s home
without the attendance of a specialized technician to help
assembly the sensor or monitor the subject. All signals and
results of the analysis are stored in files that can later be
inspected by a physician for further validation.

A total of four works were found in the literature with
reference to the estimation of CAP from ECG signals and
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all employed Cardiopulmonary Coupling (CPC) analysis.
Thomas et al. [20] used tuned thresholds to classify CAP
and REM or wake periods, while Mendonça et al. [25] fed
the CPC signal to a Deep Stacked Autoencoder (DSAE)
and tested multiple thresholds to define the CAP minute
concept. A feed-forward neural network was also tested as
a base comparison with the deep learning algorithm and it
was verified that it reaches a performance that was on average
10% lower, supporting the relevance of using a deep learning
algorithm for this analysis. An expansion of the work was
later presented [26], analyzing two ways of estimating the
CPC signal, entropy features, and a causality metric. The
features were then ranked by a Minimum Redundance Max-
imum Relevance (mRMR) procedure and the more relevant
were fed to the DSAE for classification. Mendonça et al. [27]
proposed a tool for time series analysis, namedmatrix of lags,
that evaluated the connection between the Normal-to-Normal
sinus interbeat intervals (N-N series) and the ECG Derived
Respiration (EDR) by feeding the information regarding the
energy of lags to a Support Vector Machine (SVM).

Several methods have been proposed for OSA detection
based on multiple source signals [22]. However, only the
works based on the ECG signal analysis, reporting both the
performance metrics in a minute-by-minute approach and
the global accuracy, are significant for the comparison with
the results attained in this work.

A linear discriminate discriminant analysis was employed
by Ravelo-García et al. [28] to examine 15 features (time
and frequency based) selected by a proposed feature selec-
tion process, for OSA diagnosis. The same classifier was
also used by Chazal et al. [29] that have examined multiple
features from the EDR and Heart Rate Variability (HRV)
signals. A combination of Cepstrum features, from the
HRV, was tested by Ravelo- Garcia et al. [30] to feed a
Quadratic Discriminant Analysis (QDA). Cepstrum features
were also examined byMartin-González et al. [8] with aQDA
classification.

A discriminative Hidden Markov Model (HMM) was pro-
posed by Song et al. [31] to evaluate the HRV, considering
each ECG segment has a hidden state. The distribution of
features was subject independent while the transition proba-
bilities, among states, are subject-specific. Rachim et al. [32]
employed a wavelet decomposition (Debauches 4 wavelet) to
obtain statistical features that were fed to a SVM.

Several approaches have been proposed in the state of the
art for sleep quality estimation [3]. Wu et al. [33] based
the analysis in sound events that were clustered by a self-
organizing map (using the Kullback-Leibler kernel) and cat-
egorized by hierarchical clustering. The quality of sleep was
classified as either good or bad by a multinomial HMM
with five hidden states. Sathyanarayana et al. [34] estimated
the sleep efficiency by feeding the actigraphy signal, during
sleep, to a Convolutional Neural Network (CNN).

A method for the CAP cycles detection was proposed by
Mendonça et al. [35], classifying features (Teager energy
operator, Shannon entropy, power spectral density in the

theta and beta bands, and autocovariance) produced from one
EEG monopolar derivation signal through a Feed-Forward
Neural Network (FFNN). A large number of features from
the five characteristic EEG bands (62 power spectral density
features, one for each electrode, for each band) were analyzed
by Wang et al. [36], and the mRMR algorithm was used
for feature selection. The most relevant features were then
fed to a discriminative Graph regularized Extreme Learning
Machine (GELM) to assess the quality of sleep by analyzing
the total seep time.

An estimation of the CAP rate was proposed by
Mendonça et al. [25], analyzing an index of the CPC signal,
computed from the EDR and N-N series, to fed two DSAE
that predicted theminutes of NREM sleep and CAP. Time and
frequency features from the HRV and EDR signals (60 from
HRV and 52 from EDR) were used by Bsoul et al. [37] to feed
a multi-stage SVM for the deep sleep efficiency estimation
and assessment of the quality of sleep. Choi et al. [38] have
developed a set of rules that analyzed nineteen attributes
(such as the age and body mass index) to qualify the quality
of sleep as either good, normal or bad.

The paper is organized as follows: materials and methods
are presented in Section II; the performance of the developed
algorithms is assessed in Section III; the developed home
monitoring device is presented in Section IV; a discussion of
the results is carried out in Section V; the paper is concluded
in the final section.

II. MATERIALS AND METHODS
A portable solution that performs a combined assessment of
sleep quality and apnea was developed using the algorithm
whose block diagram is presented in Fig. 1. The algorithm
is capable of predicting the quality of sleep by analyzing
the single-lead ECG signal. In addition to that, a minute-
by-minute based OSA prediction and a global assessment
of this disorder (‘‘OSA-positive’’ or ‘‘OSA-negative’’) was
also produced by examining the same signal. The developed
models were implemented in an HMD.

The algorithm can be interpreted as having two main steps.
The first performs the analysis of the preprocessed (resam-
pled and standardized) ECG signal to assess the connection
between the variability of the respiratory volume, using the
EDR, and the heart rate, through the N-N series, by employ-
ing a CPC technique. Specifically, the Cross-Spectral
Coherence (CSC) was computed for each epoch, producing
a spectrographic measure. The results for all epochs were
grouped (in sequence) to create a SI which was subsequently
examined in the second step by three One-Dimensional CNN
(1D-CNN). CNNwas chosen since it was identified as one of
the best networks for automatic feature extraction [39], [40].
Afterwards, the classifiers’ outputs were combined to form
the final classification. The method tries to replicate the
process executed by physicians when they are performing the
analysis of a biomedical image, carrying out a visual exami-
nation to extract information. In this case, the visual analysis
and subsequent evaluation was performed by the CNNs.
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FIGURE 1. Block diagram of the developed algorithm.

A seven minute window, with one minute of displacement
between windows, was used to create the epochs. Therefore,
the CSC (computed for each epoch) evaluated two signals
(EDR and N-N series) with a duration of seven minutes.
Yet, the first and last three minutes are overlapping with,
respectively, the previous and next epochs while the central
minute relates to the label used for the classification. There-
fore, the evaluation of the epochs lead to a minute-by-minute
analysis. The created SI is a time-frequency matrix repre-
sentation, where each line (row of the matrix) contained
the frequency based information of the epoch and was fed
to two classifiers which performed the minute-by-minute
assessment of CAP and OSA. The average of all lines was
fed to the average based classifier. Therefore, the classifiers
are evaluating the spectral information that composed the SI.
This image displays the pattern that is created by a full night
recording and can also be used as a reference for the special-
ized physician that is analyzing the results. An example of the
SI creation is presented in Fig. 2.

The ratio of the number of minutes classified as CAP
(m-CAP) to the time in bed (tib) in minutes is indicated as
m-CAP-tib. It is a metric proposed in this work to evaluate the

FIGURE 2. Example of the SI creation.

quality of sleep that is related to the CAP rate which does not
require the estimation of the sleep macrostructure. After that,
this ratio was compared with a threshold, tuned by comparing
with the CAP rate (predicted by PSG), to determine the first
estimation for the quality of sleep (SQ-m). The total number
of minutes classified as an OSA event was then used to
perform the OSA diagnosis by comparing the ratio of the
number of minutes classified as OSA to the time in bed in
minutes (m-AHI-tib) with a threshold. The average of all lines
from the SI feeds to the last 1D-CNN to perform the second
estimation for the quality of sleep (SQ-ave). The two sleep
quality estimations and the OSA diagnosis were combined to
create a single output for the assessment of the global quality
of sleep (SQ-g). The trained models were employed by the
algorithm (developed in Python 3) that was implemented in
the HMD. The device is composed of two units, a sensing
unit that acquires the signals that are wirelessly sent to a
processing unit (second unit) that performs the analysis and
generates the results.

A. DATABASES
Nineteen full-night recordings (from eleven men and
eight women), were selected from the CAP Sleep
Database (CAPSD) from Physionet [15], [41] to train and
test the 1D-CNN for the CAP and SQ-ave assessment. This
database was also used to test the capability of the models
for the sleep quality estimation (SQ-m, SQ-ave and SQ-g).
Fifteen of the subjects were free of any neurological disor-
ders, and four have been diagnosed with sleep-disordered
breathing. The subjects’ average age is 39.95 years old
(ranging from 23 and 78 years old), with a normal age-related
CAP rate percentage of 55 for four subjects, 32 for five
subjects, and 38 for the remaining subjects. The average time
in bed was 492.11 minutes and only the single-lead ECG
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signals were analyzed, recorded with a sampling frequency
that ranged from 128 to 512 Hz.

This database was chosen due to the availability of the
sleep macrostructure and CAP phase’s annotations, named
Database_Label, provided by specialized physicians. These
allowed to determine the CAP cycles at every second using
the scoring rules presented by Terzano et al. [15], which
were implemented in a finite state machine. The estimated
CAP cycles were stored in a vector, named CAP_cycle, that
indicated if each second corresponds either to a CAP (marked
as ‘‘1’’) or a non-CAP (marked as ‘‘0’’) cycle. The vector
was then reshaped to form a matrix with sixty columns
(corresponding to a minute of data) and the number of rows
corresponds to the number of minutes. Afterward, the CAP
ratio (Cr ) of each minute was computed by adding all ele-
ments of the columns and divide it by sixty. This ratio was
comparedwith a threshold to define if theminute corresponds
to CAP or non-CAP, thus producing the label for the minute-
by-minute CAP (CAPm) assessment used for the SQ-m esti-
mation. This threshold was chosen to be 35% since it was
indicated as the more suitable for CAP analysis based on
the ECG signal [25], [27]. It considers the CAP periods that
are longer than 21 s, filtering the short duration cycles (that
may not significantly manifest in the ECG signal) but still
covering the majority of the events since the average CAP
cycle duration is 26.9 ± 4.1 s [42].

The CAP rate for each subject was estimated by analyzing
the CAP cycles and the sleep macrostructure (employing the
scoring rules defined by Terzano et al. [15]). Afterwards,
the estimated CAP rate was compared with the CAP rate
percentages in healthy subjects [19], [43] (the information
of the gender and age of each subject is available in the
database) to produce the label for the classifier that examined
the average CSC signal, indicating the sleep quality (SQ-ave)
as either ‘‘1’’ if the determine CAP rate was lower than
the CAP rate percentage in healthy subject for the subject,
designating a good sleep quality, or ‘‘0’’ otherwise. These
labels were also used as ground truth for the global sleep
quality assessment.

The flow diagrams of the algorithm used to generate the
labels of the first database are presented in Fig. 3. This anal-
ysis is validated by the fact that the CAP rate is characterized
by a low night-to-night intra-individual variability in normal
subjects [43].

A database recorded by the sleep unit of the Hospital Uni-
versitario de Gran Canaria Dr. Negrín (HUGCDN) [44] was
used to develop the OSA detection algorithm since both the
single-lead ECG signal and a minute-by-minute OSA annota-
tion was provided (aminute-by-minute OSA annotation is not
available in the CAPSD). It is composed of seventy suspected
OSA patients (nineteen females and fifty-one males) with an
age variation between 18 and 82 years old. The recording’s
length ranged from 230 to 486 minutes, and the respiratory
events were annotated every minute by a specialized expert.
Forty-six subjects have an AHI of 10 or more with, at least,
70 minutes of OSA, and four recordings have an AHI of 5

or more (the OSA minutes ranged from 5 and 69). The
remaining subjects have an AHI lower than 5. The single-lead
ECG signals were recorded by a computerized system from
VIASYS Healthcare Inc. (Wilmington, MA, USA), digitized
at 200 Hz with 16-bit resolution [28]. The respiratory events
were scored according to the American Academy of Sleep
Medicine criteria [7].

No balancing operation (modify the datasets to obtain an
equal number of positive and negative examples) was per-
formed in any dataset since it could change the expected
distribution of the data. However, it was verified that the
classifier’s performance can be improved using cost-sensitive
learning (attribute a higher cost to misclassifying a minor-
ity class element compared to a majority class element).
Therefore, this approach was used since the data distribution
is preserved and can significantly improve the performance
of the developed models [45].

B. PREPROCESSING
Since the sampling frequency of the single-lead ECG signals,
available at the CAPSD, varied between 128 to 512 Hz then,
all the records were resampled at 200 Hz (a normally used
frequency by ECG sensors [46] that is also employed in
the HUGCDN dataset), either by decimation or interpola-
tion [47], providing a uniform database. The signals were
then standardized by subtracting the average and dividing
the result by the standard deviation. In the developed HMD,
both signals were acquired with a sampling frequency of
100 Hz (the device can support either 1, 10, 100 or 1000 Hz).
Therefore, the ECG signal measured by the developed HMD
was resampled to 200 Hz by interpolation, allowing the
employment of the trained models.

For the minute-by-minute classifications, a seven minute
window, with one minute displacement between adjacent
windows (first and last three minutes overlap and the cen-
tral minute corresponds to the database label), was used to
create the epochs since it was previously identified to be the
more suitable window for CAP analysis based on the ECG
signal [25], [27].

As recommended by the task force of the European Society
of Cardiology and the North American Society of Pacing and
Electrophysiology, the spectral analysis of the ECG signal
should preferably use a signal with a minimum duration of
five minutes [48]. This condition is in line with the seven
minute window (with six minutes overlapping) that was used.
It is also relevant that the OSA event duration can range from
10.0 to 62.4 seconds [49]; thus, the one minute annotation
can cover both the longer and short duration events. However,
shorter windows (as for example the evaluation based on
15 seconds [50]) can also be used for OSA evaluation.

C. FEATURE CONSTRUCTION
The QRS complex was attained from the ECG signal using
the algorithm developed by Pan and Tompkins [46]. The
R-peaks were then used to estimate the interbeat intervals.
Atypical peaks were corrected by replacing the peak by the
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FIGURE 3. Flow diagram of the algorithms used to generate the labels, from the CAPSD, for a) the minute-by-minute CAP
assessment (used for the SQ-m estimation) and for b) the classifier that examined the average of the SI lines (used for the
SQ-ave assessment).

average of the previous and next peak, thus producing the
N-N series.

Since the respiratory cycle modulates the QRS
morphology, the EDR signal can be produced by analyzing
the modulation [51]. This analysis was performed by employ-
ing the algorithm developed by Arunachalam and Brown [52]
that estimates the respiratory amplitude modulation factor
as the ratio of the current R-peak amplitude and a running

average of the R-peaks amplitudes. Subsequently, a cubic
spline interpolation was applied to produce a continuous
estimation of the EDR signal. An elliptic filter was used at
the end to smooth the signal and reduce the high frequency
noise.

The connection between the EDR and N-N series was
assessed by the CSC, that considers the cross spectral power
and coherence of the signals [25]. The correlation between
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the N-N series and EDR was evaluated by the cross-spectrum
between the discrete Fourier transform components of the
signals, respectively, N and E , that was computed by [53]

0f (N ,E) = αN ,f αE,f ej(8E,f−8N ,f ) (1)

where 8 and α and are, respectively, the phase and ampli-
tude of the Fourier components. The consistency of the
phase difference, between the signals, was determined by the
Magnitude Squared Coherence (MSC), defined as [53]

Hf (N ,E) =
Cf (N ,E)2(

AN ,f ej8N ,f
)2 (

AE,f ej8E,f
)2 (2)

TheWelch averaged periodogrammethodwas then applied
to estimate the cross-correlation matrices [54]. Finally,
the MSC was multiplied by the square of the cross spectral
power to estimate the CSC of the epoch [20].

This procedure was applied to all epochs, producing the
lines of the SI (one line for each epoch), which were fed
to the minute-by-minute classifiers (for the m-CAP-tib and
m-AHI-tib estimation). Thus, the classifiers are evaluating
the CSC signal of the epoch. The average of all lines (average
of all CSC signals) of the SI feeds the 1D-CNN that estimates
the SQ-ave.

D. CLASSIFICATION
Three 1D-CNN were combined to form the classification
ensemble. The 1D-CNN employ convolution kernels to
implement a transformation of the inputs, allowing to detect
patterns, and it reduces the redundancy through pooling
processes [55]. The convolution operation, executed in the
convolution layers, can be defined as [56]

cd = ϕ (Kd ~ X + Bd ) (3)

were ϕ is the activation function, selected to be the Rectified
Linear Unit (ReLU) [57], 1 ≤ d ≤ nKd , given that nKd is
the number of convolution kernels, n is the dimension of the
input, K is the kernel and~ is the n dimensional convolution
operation. X are the layer inputs and B is the bias vector.
A batch normalization layer was used after the activations
to maintain the mean activation close to zero with a nearly
unitary standard deviation. This layer allows to decrease the
network’s initialization sensitivity and increases the training
speed. The maximum pooling operation was performed after
the convolution and normalization layers to reduce the dimen-
sionality of the data [56].

Fully connected (dense) layers were used at the end of the
network to improve the learning capability of the nonlinear
parameters and perform the classification by [56]

O = ϕ (W × X+ B) (4)

wereW is the weights matrix and ϕ is the activation function,
selected to be the ReLU in the first dense layer and the
softmax function [57] in the output layer, providing a final
probabilistic classification.

The 1D-CNN was composed of a sequence of an input
layer, groups of layers and the classification layers (chosen
to be fully connected layers with the final classification
performed by the Softmax function). A grid search method
was used to select the hyperparameters of the convolution
and pooling layers. In each iteration the searching algorithm
decided if another group should be added. Each group was
composed of a sequence of a convolution layer that was
followed by a batch normalization layer which, in turn, was
followed by the activation and pooling layers. A dropout
of 20% was used after each group of layers to reduce the
possibility of overfitting.

Two 1D-CNNs performed the minute-by-minute classifi-
cation of the SI lines. The outputs of the classifiers were
then used to compute the ratio of minutes classified (either
as CAP or OSA) to the time in bed in minutes (m-CAP-tib or
m-AHI-tib). Afterwards, them-CAP-tib was comparedwith a
threshold (tuned during the training) to determine the SQ-m.
The m-AHI-tib ratio was then compared with a threshold
(in this case 8% was used since it is correlated to the ratio
of 5/60 ≈ 0.083 that is given by an AHI of 5, the minimum
value to diagnose OSA, in 60 minutes) to perform the OSA
diagnosis. This approach was verified to be highly correlated
with the AHI obtained with polygraphy [28], [58], [59] thus,
validating the application. Hence, the output of the classifier
(minute-by-minute quantification as either normal respiration
or OSA) allows the production of a global score regarding the
presence of clinically significant OSA that is equivalent to an
AHI greater than or equal to 5. If the subject was diagnosed
with OSA then, the OSA classifier’ output was interpreted as
‘‘vote bad’’, otherwise it was inferred as ‘‘vote good’’, in the
combination procedure.

The average of all SI lines was fed to the third 1D-CNN
classifier to estimate the SQ-ave. The final global quality of
sleep, SQ-g, was determined by considering amajority voting
strategy (the output of each classifier was considered as a vote
and the system chooses the output class with more votes)
to perform the classifiers ensemble. Since tree classifiers
were considered and all performed a binary classification,
thus, SQ-g was given by the class that was chosen by either
two or three classifiers. The complete process of feature cre-
ation, classification and sleep quality assessment is presented
in Fig. 4.

E. PERFORMANCE METRICS
The performance assessment was based on the calculation of
the True Positives (TP), False Positives (FP), True Negatives
(TN), and False Negatives (FN) to estimate the average accu-
racy (Acc), sensitivity (Sen), and specificity (Spe) defined
by [60]

Acc =
TP+ TN

TP+ FP+ TN + FN
(5)

Sen =
TP

TP+ FN
(6)

Spe =
TN

FP+ TN
(7)
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FIGURE 4. Flow diagram of the algorithm for sleep quality estimation.

For the minute-by-minute classification the diagnostic
capacity of the classifier was calculated by the Area Under
the receiver operating characteristic Curve (AUC) as it desig-
nates how likely the classifier is to rank a randomly selected
positive instance higher than a randomly selected negative
instance [61].

The average global accuracy (Acc-G) was considered as
the performance metric to evaluate the sleep quality estima-
tions and the OSA diagnosis. In addition to that, the sensitiv-
ity and specificity of the global classification (respectively,
Sen-G and Spe-G) were also evaluated. Cohen’s kappa coeffi-
cient (k) was calculated for the global analysis to measure the
agreement between the expert and the proposed method [62].
The statistical significance of the results was assessed
by calculating the average value and the 95% confidence
interval [63].

III. RESULTS
An example of the SI created by the used CPC technique is
shown in Fig. 5. By analyzing the Fig. 5 c), it is possible

FIGURE 5. Example of a SI for the minute-by-minute analysis (each
minute corresponds to a line of the image), a) top view and b) side view,
and c) for the average examination (average of all lines) with good and
poor sleep quality.

to verify that the subject with poor sleep quality has the
highest power peaks in the very low (0-0.01 Hz) and low
(0.01-0.1 Hz) frequency bands while the subject with good
sleep quality has a significant amount of power in the high
(0.1-0.4 Hz) frequency band. This information is in agree-
ment with the findings reported in the state of the art where it
was verified that the power in the high frequency is associated
with physiologic respiratory sinus arrhythmia, deep sleep,
and absence of CAP periods while the power in the very low
and low frequency bands was associated with wake or REM
periods, the presence of CAP (suggesting instability in sleep)
and the occurrence of OSA or sleep fragmentation [20], [64].
By examining Fig. 5 a) and b) it is possible to verify the
occurrence of good (as an example, from 1 s to 50 s) and
poor (as an example, from 400 s to 450 s) sleep quality
periods.

The 1D-CNN structure and hyperparameters were selected
by a grid search method. A group of layers was added to all
classifiers if the Acc-G increased. Otherwise, the previous
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network configuration was chosen. Therefore, all classifiers
have the same number of layers, significantly reducing the
simulation time that would be required to test all possible
combinations. The number of filters used by the first convo-
lution layer was selected to be a power of two (for optimiza-
tion), varying from 8 to 512, and the filter length was varied
from 1 to 10. The subsequent convolution layers were chosen
to have twice the number of filters used in the previous layer
with the same length. The number of channels of the batch
normalization layer was chosen to be the same as the number
of filters used on the convolution layer and the pool size of the
pooling layers was selected to be 2. A stride of one was used
for the convolution layers and a stride of two for the pooling
layers. The ReLU was selected as the activation function.

The network’s error optimization was implemented with
the Adam algorithm [65], performing fifty runs in each iter-
ation to attain statistically significant results. A 2-fold cross-
validation scheme [57] was employed to find the optimal
layer parameters for the minute-by-minute classifiers (this
scheme is reasonably fast and was used due to the large num-
ber of simulations that were performed in the grid search).
The training set was composed of data from half of the
subjects (from the CAPSD for CAP analysis and from the
HUGCDN for the OSA evaluation) while the testing set was
composed of data from the remaining subjects. The subjects
that composed the sets were randomly chosen at each iter-
ation. Subject independence was assured by only using the
data from a subject either on the training set or on the testing
set. The performance was assessed by averaging the results
of all iterations and the layer parameters that attained the best
AUC were chosen.

The one hold out cross validation scheme [57] was used
to find the optimal layer parameters for the classifier that
evaluates the average CSC signal because it is a global clas-
sification, training with data from eighteen subjects of the
CAPSD and testing with the data from the leftover subject.
The process was repeated nineteen times and, each time,
a different subject was selected to form the testing set. The
layer parameters that attained the best Acc-G were chosen.
After the optimal layer parameters for all classifiers were
found, the performance of the tuned classifiers was assessed
by the one hold out cross validation scheme.

It was verified that the best Acc-G was achieved using two
groups in the hidden layer. The chosen layer parameters for
each classifier are presented in Table 1 and an example of how
the SI was evaluated by the minute-by-minute CAP classifier
is presented in Fig. 6.

The performance of the algorithms for the minute-by-
minute assessment is presented in Table 2. The minute-
by-minute CAP estimation is in the range of the mutual
agreement among physicians examining the same EEG sig-
nals (69% to 77.5%. [66]). This result is highly relevant
since the developed method is based on the analysis of the
ECG signal. Thus, it is an indirect estimation that achieved
a result as good as a specialist physician examining the EEG
signal. It is also important to take into consideration that the

FIGURE 6. Example of the line examination by the minute-by-minute
classifier for CAP assessment.

agreement gets closer to the lower bound (69%) as the number
of physicians that examine the signals increases as verified
by Largo et al. [67] where the overall average of the pairwise
inter-scorer agreement of seven physicians was 69.9%. These
observations are further substantiated by the results reported
by Mendez et al. [68], where it was estimated that exist 25%
of ambiguity and subjectivity in the manual classification of
the CAP phases.

The results for the OSA detection are in the range of the
best methods reported in the state of the art, that performed
the analysis based on the ECG signal, where the Acc, Sen and
Spe range, respectively, from 76% to 100%, 70% to 92% and
59% to 100% [22].
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TABLE 1. Layer parameters for each classifier.

TABLE 2. Performance of the minute-by-minute classifications.

The regression plot of the predicted m-CAP-tib and the
CAP rate obtained by PSG is presented in Fig. 7. The regres-
sion R2 was 0.88, supporting the relevance of the proposed
metric. Fig. 8 presents the regression plot of the predicted
AHI (m-AHI-tib defined as the number of minutes with
events per hour of time in bed [28]) and the AHI obtained
by PSG. The regression R2 was 0.79, further advocating the
validity of the method for OSA diagnosis.

FIGURE 7. Regression plot of the predicted m-CAP-tib and the CAP rate
obtained by PSG (CAPSD), using the labels for the global sleep quality
assessment to dictate the sleep quality as either ‘‘Good’’ or ‘‘Poor’’.

FIGURE 8. Regression plot of the predicted m-AHI-tib and the AHI
obtained by PSG (HUGCDN).

TABLE 3. Average performance of the global algorithms.

The performance attained by the global classification algo-
rithms is presented in Table 3. The accuracy for theOSA diag-
nose is in the range of the best methods reported in the state
of the art, were the Acc-G ranges from 72% to 100% [22],
with an almost perfect agreement according to the k value.
The classifier for OSA detection was trained and tested in the
HUGCDN dataset and the concept of cross database analysis
(use a classifier that was trained in a dataset to perform
predictions in a new dataset) was employed to perform the
analysis in the CAPSD (used for the SQ-g estimation). The
model based on the average CSC metric achieved the lowest
performance for the sleep quality estimation, with a moderate
agreement according to the k value, while the combined
approach for the global sleep quality estimation attained the
highest possible performance, improving the results that were
reached by applying a threshold to the m-CAP-tib estima-
tion (it was verified that 0.22 was the best threshold for
the developed model, optimized by performing multiple tests
with different values and choosing the model that attained the
highest Acc-G). The OSA diagnosis allowed to correctly pre-
dict the quality of sleep for the subjects where the estimates
from SQ-m and SQ-ave were different, allowing to correctly
classify the sleep quality of all analyzed subjects form the
CAPSD.

IV. DEVELOPMENT OF THE HOME MONITORING DEVICE
A non-invasive HMD that could detect the presence of OSA
and predict the quality of sleep, by analyzing the signals
measured by the sensing unit, was developed. The device
is composed of two units that wirelessly communicate via
Bluetooth. The sensing unit was developed to be easily
self-assembled and is responsible for collecting the sensors
signals and send the data to the processing unit that is a
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single-board computer where an application stores the infor-
mation and performs the analysis. The employed hardware is
presented in Fig. 9.

FIGURE 9. Hardware employed on the HMD. 1- Sensing unit, 2- ECG
sensor, 3- Electrode, 4- Armband, 5- Processing unit.

The sensing unit was implemented by using the BITalino
Core BT [69] that is composed of a microcontroller
(ATmega328P), a power management module fed by a 3.7 V
lithium ion battery, with an average 50 mAh load current
(lasting at least seventeen hours in real-time acquisition over
Bluetooth [69]), and a communication module for Bluetooth
communications. The device sensing rate can be configurable
by the user in the processing unit (the device can support
either 1, 10, 100 or 1000 Hz, however, the default value
of 100 Hz was used in this work since the measurement
had less noise related artifacts than the signal measured at
1000 Hz) and the resolution of the signal is either six or
ten bits, depending upon the Analog to Digital Conversion
(ADC) port (only the ten bits ports were used in this work).

The ECG sensor measures the electrical potentials
(through the electrodes) in the chest with respect to a ground
reference and it was verified, when comparing with the output
of the BioPac MP35 Student Lab Pro (an established gold
standard device), that the average measurement root mean
squared error was 0.049 ± 0.016 [70]. The small error advo-
cates the practicality of the sensor for clinical diagnosis.

The processing unit is composed of a Raspberry Pi 3 B+
with a 1.4 GHz, 64-bit, ARM quad-core processor that feeds
by the DC power supply, and a touch screen that displays the
Graphical User Interface (GUI), allowing the user to config-
ure the sensing unit (the two units automatically connect once
the application is opened), start (and stop) the examination
and produces the analysis of the signals.

By using the GUI, the user can configure the connection
with the sensing unit by choosing the bit rate (the default
value is 19200 bits/s) and can also change the ADCs and
sampling rate that will be used. However, for the normal
examination the user does not need to change any of the
default configurations and the procedure can be summarized
in the following steps: 1- remove the electrodes plastic cover;

2- place the electrodes on the Einthoven triangle configu-
ration to create a single-lead ECG signal [71]; 3- tight the
armband around the arm; 4- attach the sensing unit to the
armband; 5- turn on the sensing unit; 6- turn on the processing
unit and wait until the GUI is open; 7- press the ‘‘Start Test’’
button (a new window will be displayed with the ‘‘Stop Test’’
button and the sensing unit will start transmitting the data to
the processing unit which, in turn, will store all the informa-
tion in a text file with a timestamp); 8- press the ‘‘Stop Test’’
button when the test is finished (the communication between
the units is ended); 9- press the ‘‘Analyze Results’’ button
(the application reads the stored data, uses the developed
algorithms to detect the minutes with OSA, the minutes with
the occurrence of CAP, diagnose the occurrence of the sleep
disorder and estimate the quality of sleep) and wait until the
a message indicating that the analysis is over (the results are
stored in a new text file with a timestamp for each OSA and
CAP detected); 10- the user can either analyze the text files
to verify the signals and results of the test or deliver the HMD
to an expert to verify the files. An example of a signal stored
in a text file, measured by the device when the subject was
sleeping, is presented in Fig. 10.

FIGURE 10. Example of a signal stored in the text file. The vertical lines
are the amplitude and location of the R peaks of the ECG signal.

The sensing unit cost was 115 e (75 e for the BITalino
Core and 40 e for the ECG sensor) while the processing unit
cost was 60e. Nevertheless, the total cost of a potential com-
mercial product could be considerably reduced by developing
the hardware of the sensing unit. However, the used module
was already validated while this approach of developing a
new unit will require a validation by performing a parallel
recording with the PSG. A review of validated commercial
out-of-hospital ECG devices was performed by Bansal and
Joshi [72]. Among the reviewed devices, only five employed
a single-lead measurement and the price ranged from 63 e
to 1255 e. Hence, the cost of the developed device is in the
lowest bond of the cost for validated commercial solution,
supporting the choices of this work for a low cost HMD.

V. DISCUSSION
A summary of the reported results from the works that per-
formed CAP analysis from the ECG signals is presented
in Table 4. By analyzing the table it is possible to conclude
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TABLE 4. Comparison of the proposed method with the work presented
in the state of the art regarding the minute-by-minute CAP estimation.

that only Mendonça et al. [26], [27] achieved better results,
using a significantly more complex approach that is less suit-
able for hardware implementation, while Thomas et al. [20]
presented the less complex approach though, the results are
too unbalanced for clinical analysis.

A comparison between the results of the works that have
performed the OSA detection based on the ECG signal anal-
ysis (reporting both the performance metrics in a minute-
by-minute approach and the global accuracy) is presented
in Table 5. By analyzing Table 5, it is possible to verify that,
although other methods achieved a better minute-by-minute
OSA detection accuracy, the proposed method attained the
third best performance for the OSA diagnosis per-subject
(Acc-G). It is also relevant to notice that the models that
attained the best performance, for theminute-by-minute, have
used the recordings from the PhysioNet apnea-ECG database
while the developed model was trained and tested with
recordings collected in a hospital. Therefore, it is difficult to
establish a direct comparison with the other results due to the
use of different datasets that were created with different con-
ditions. Only the work presented by Ravelo-García et al. [28]
used the same recordings as employed on this work. By com-
paring the results it is possible to verify that the proposed
method attained a balanced performance (similar sensitivity
and specificity) while Ravelo-García et al. [28] have a 52%

TABLE 5. Comparison of the proposed method with the work presented
in the state of the art regarding the OSA detection.

difference between sensitivity and specificity. The Acc-G of
the proposed method is also 12% higher. Hence, the devel-
oped model is more suitable for clinical analysis.

A summary of the works that reported the Acc-G for the
sleep quality analysis is presented in Table 6, where it is
possible to verify that the developed method attained the
highest accuracy.

TABLE 6. Comparison of the proposed method with the work presented
in the state of the art regarding the sleep quality estimation.

VI. CONCLUSION
The main objective of this work was to develop a method
capable of assessing the quality of sleep and the presence of
OSA using only the signal from one sensor and implement
the method in an HMD that is non-invasive and simple to
self-assemble, allowing the examination to be performed at
the patient’s home.

It was verified that the performance of the sleep qual-
ity estimations, produced in this work, is higher than most
methods available in the state of the art. The accuracy of
the indirect CAP estimation is in the range of the agreement
among experts scoring the CAP events, according to the
values reported by Rosa et al. [66] and Largo et al. [67].
It was also verified that the performance of the global OSA
assessment is in the same range as the best works available
in the state of the art. Therefore, the developed algorithms
could possibly be employed for clinical analysis with the
potential to increase the accessibility of the population to the
OSA diagnosis and the assessment of sleep quality deficits.
However, the possible benefits of replacing human analysis
still need to be evaluated.

The proposed sleep quality metric (m-CAP-tib) also
attained a good correlation with the CAP rate estimated by
PSG. Conversely, it is simpler to be estimated; thus, it could
possibly lead to further developments in the sleep quality
assessment by HMDs. The SQ-g correctly predicted the
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quality of sleep of all subjects from the database (CAPSD),
advocating the relevance of the developed work. It is relevant
to notice that only one (minute-by-minute CAP assessment)
of the six classifications that are performed in this work is
similar to the works preened by Mendonça et al. [25], [27]
and uses a different classifier (the LSTM which is a recurrent
network, an approach that is considerably different from the
DSAE and SVM).

The next steps of this research are the validation of the
device against a PSG to assess the performance of the imple-
mentation and perform usability tests to determine if the
subjects are capable to easily use the device. It is also intended
to include the ability to detect other common sleep related
disorders, providing an even more valuable device for clinical
applications. A study will be carried out to evaluate other
classifiers with the goal of assessing if the performance of
the minute-by-minute models can be improved. An extended
comparison of multiple methodologies presented in the state
of the art will be performed in future work.
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