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Definition of terms relating to the non-ultimate 
mechanical properties of polymers (IUPAC 
Recommendations 1998) 

DEFINITION OF TERMS RELATING TO THE NON-ULTIMATE 
MECHANICAL PROPERTIES OF POLYMERS 

SUMMARY 

The document gives defínitions of terms related to the non-ultimate mechanical 
behaviour of polyrneric rnaterials, in particular bulk polymers and concentrated solutions 
and their elastic and viscoelastic properties. 

The terms which have been selected are those met in the conventional mechanical 
characterization of isotropic polyrnenc materials. They have additionally been lirnited to 
those which can be defúied precisely and with mathematical rigour. They are arranged in 
sections deaiing with basic defínitions of stress and strain, deformations used 
experirnentally, stresses observed experimentally, quantities relating stress and 
deformation, linear viscoelastic behaviour, and oscillatory deformations and stresses used 
experimentally for solids. 

An index, an alphabetical list of terms and a glossary of symbols are included for 
ease of reference. 

INTRODUCTION 

This document gives definitions of tenns related to the non-ultimate mechanical 
L L .  ---l---:--1 L-L--2 r-. ..__ 1  . ~ . - 1 -  
vciiaviuui üi iiicr;iiruur;zu vc:~izrviuui yiivi iü idluc ui poiyrnerir; malenas, in par'Uciiiíar bu% 
polyrners and concentrated solutions and their elastic and viscoelastic properties. 

The terms are arranged into sections dealing with basic definitions of stress and strain, 
deformations used experimentally, stresses observed experimentally, quantities relating stress and 
deformation, linear viscoelastic behaviour, and oscillatory deformations and stresses used 
experimentally for solids. The terms which have been selected are those met in the conventional 
mechanical characterization of polymenc materials. 

To compile the definitions, a number of sources have been used. A number of the 
definitions were adapted fiom an Intemtional Standards Organization (ISO) manuscript on 
Plastics vocabularyl. Where posible, the names for properties, their definitions and the symbols 
for linear viscoelastic properties were checked against past compilations of terminolo&". Other 
documents consulted include ASTM publications '-13 

The document does not deai with the properties of anisotropic materials. This is an 
extensive subject in its own right and the reader is referred to specialized texts I4,l5 foi 
information. 

In the list of contents, main terms separated by 1 are altemative names, and terms in 
parentheses give those which are defined in the context of main terms, usually as notes to the 
definitions of main terms, with their names printed in bold type in the main text. 
Multicornponent quantities (vectors, tensors, matrices) are printed in bold type. Narnes printed in 
iraiics are defined eisewhere in h e  áocurnent ami riieir aefinitions can be founa by reference to 
the alphabetical list of terms. 
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8. ALPHABETICAL INDEX OF TERMS 

1. BASIC DEFINITIONS 

In this section, quantities are expressed with respect to rectanguiar Cartesian 
co-ordinate axes, Oxl, &, &, except where otherwise stated. The components of a vector V 
are denoted VI, V', and V3 with respect to these axes. 

1.1 traction 
stress vector 

Recommended symbol: f 

A vectnr fnrce per unit area on an infinitesimal element of area that has a @ven n o 4  and is at a 
given point in a body. 

Unit: Pa 

Note 

1. The components of t are written as t i ,  r t  h. 

2. t is sometimes called true stress. The t e m  traction (or stress vector) is prefened to 
a-.- :A ..#..&...:-- ..:+L. ..h.*..', +m..',..- /C.=.= 1 9 -.-.+a c\ 
a v v i u  ~uuiwiuii w i u i  0 6 1  r i o  r r r w v r  ti- r.r vurr Y J  

1.2 stress tensor 
stress 

Recommended symbol: a 

The tensor with components o, which are the components of the iraction in the Oxi direction on 
an element of area whose normal is in the 4 direction. 

Unit: Pa 

Notes 

1. A unit vector area with normal n can be resolved into three smaller areas equal to ni, 
nz, and n3 with nonnals in the directions of the respective co-ordinate axes. 
Accordingly, each component of the traction on the original area can be considered as 
the surn of components in the sarne direction on the smaller areas to give 

2. In usual circumstances, in the absence of body couples, q = a, . 

3. For a homogeneous stress a is the sarne at al1 points in a body. 
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4. For an inhomogeneous stress o, = a, ( x i .  xz, x3 ) .  

5. u is a true stress because its components are forces per unit current area (cf. 3,4). 

6. If o13 (= 0 3 1 )  = 023 (= a 3 2 )  = 0 3 3  = O then the stress is called a plane stress. Plane 
stresses are associated with the deformation of a sheet of material in the plane of the 
sheet. 

1.3 deformation of an elastic solid 

A defomation of an elastic solid through which a mass point of the solid with co-ordinates Xi, 
Xt X3 in the undefonned state moves to a point with co-ordinates xl ,  x t  x3  in the dcformed state 
and the deformation is defined by 

Notes 

1. A homogeneous defomation is one in which the relationships between the co- 
ordinates in the undefokned and deformed states reduce to 

where theh are constants. 

2. An inhomogeneous deformation is one in which the incremental changes in the 
undeformed and deformed cosrdinates are related by 

1'1 

where f;, = &,/dXJ , i, j = 1, 2, 3, and where the f;, are the functions of the 

coordinates x, 

3. Thef, in notes 1 and 2 are deformation gradients. 

1.4 deformation gradient tensor for an elastic solíd 

Recornrnended symbol: F 

The tensor whose components are deformation gradients in an elastic solid. 

Notes 

1. The components of F are denotedh. 

2. See 13 for the definitions of& 

1.5 deformation of a viscoelastic liquid or solid 

A deformation of a viscoelastic liquid or solid through which a mass point of the viscoelastic 
liquid or solid with co-ordinates x ; ,  x; , x; at time t' moves to a point with co-ordinates xi ,  x2,  x 3  

at timei such that there are functions gi, i = l,2,3, where 
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Notes 

l. t 'ofien refers to some past time and t to the present time. 

2. The relationships between the total differentials of the functions gi define how particles 
of h e  material move relative to each other. Thus, if two particles are at small distances 
dxl, dx; , dx; apart at time f and dxl, dx2, dq at time t then 

3. The matrix with elements gv is denoted G and the matrix with elements g> is denoted 
G'. 

4. A hnmogen_mi~ defnrmatian ir; one h w k h  & fimc&nFr gi k e ~ r  f i A c C ~ i ~ ~ ~  ~f 
the x,, i, j = 1,2,3. As a resdi, the gq and G are functions of r only and the equations 
which define the deformation become 

f f 

5. Homogeneous deformations are commonly used or assumed in the methods 
employed for characterising the mechanical properties of viscoelastic polymeric liquids 
and solids. 

1.6 deformation gradients in a viscoelastic liquid or solid 

Recommended syrnbol: A, 

If two n1w points of a liquid are at a small distance dx;, dx;, dx; apart at time t' then the 
defomation gradients are the rates of change of dxj with respect to dx,, i, j = 123. 

Note 

j;J = aXtr/aX,, i , j  =1, 2, 3 

1.7 deformation gradient tensor for a viscoelastic liquid or solid 

Recommended symbol: F 

The tensor whose components are defomation gradients in a viscoelastic liquid or solid. 

Notes 

1. The components of F are denotedfj, 

2. See 1.6 for the definition ofj;,. 

3. By matrix multiplication, F = ( ~ 9 %  where the matrices G and G'are hose defined in 
1.5. 
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710 COMMlSSlON ON MACROMOLECULAR NOMENCLATURE 

1.8 strain tensor 

A symmetric temor that results when a deformation gradrent temor is factorised into a rotation 
tensor followed or preceded by a symmetric tensor 

Notes 

1. A strain tensor is a measure of the relative displacement of the mass points of a body. 

2. The defonnation gradient temor F may be factorised as 
F = R  U = VR, 

where R is an orthogonal matrix representing a rotation and U and V are strain tensors 
which are symmetric. 

3. Altemative strain tensors are often more useful. 
For example: 
the Cauchy temor, C = l? = FTF 
the Green tensor, B = 3 = F F ~  
the F ige r  Ensor, C' 
the Piola tensor, S' 
Y denotes transpose and '-1' denotes inverse. B is most useful for solids and C and C' a 

for viscoelastic liquids and solids. 
O 

4. If the 1,3; 3,l; 2,3; 3,2; 3,3 elements of a strain tensor are equal to zero then the m 
O 

e 
strain is temed plane strain 

2 

1.9 Cauchy tensor 

Recommended syrnbol: C 

The strain tensor for a viscoelastic liquid or solid, whose elements are 

where x,' and xi are co-ordinates of a particle at times t' and t, respectively. 
3 
O 

Notes 

1. See 1.5 for the definition of x j and x, 

2. See 1.8 for the definition of a sirain tensor. 

1.10 Green tensor 

Recommended syrnbol: B 

where X, and x,  are co-ordinates in the undeformed and deformed states, respectively. 
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Notes 

1. See 1.3 for the definition of X, and xi. 

2. See 1.8 for the definition of a srrain temor 

3. For smdl strains, B may be expressed by the equation 

where I is ihe unit matrix of arder three and E is &e small-strain tensor. The 
components of s are 

with uk = xk - Xk, k = l,2,3, the displacements due to the defomtion. 

The strain tensor, for a viscoelastic liquid or solid, whose eiements are .; =ieL.i 

k ,  a; h; 
where x: and xj  are cosrdinates of a particle at times r' and t, respectively. 

Notes 

t. See 1.8 for the definition of a strain temor. 

Recommended symbol: D 

The time denvative of a strain tensor for a viscoelastic liquid or solid in homogeneous 
deformation at reference time, t. 

Unit: s.' 

N I ~ P P  

l. 

2. 

3. 

For an inhomogeneous deformation. the material derivative has to be used to find time 
derivatives of strain. 

, where U and V are defined in 1.8, note 2. 

The elements of D are 
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where the vk are the components of the velocity v at x and time, t. 

1.13 vorticity tensor 

Recommended symbol: W 

The derivative, for a viscoelastic liquid or solid in homogeneous defomation, of the rotational 
part of the deformation-gradient tensor at reference time, t. 

Unit: S-' 

Notes 

1. For un inhomogeneous deformation the material derivative has to be used. 

3. The elements of W are 

where the y, are the components of the velocity v at x and time t .  

1.14 Rivlin-Ericksen tensors 

Recomrnended symbol: A,, 

The Rivlin-Ericksen tensor of order n, for a viscoelastic liquid or solid in homogeneous 
deformation, is the nth time derivative of the Cauchy strain tensor at reference time, t. 

Unit: S'" 

Notes 

1. For an inhomogeneous deformation the material derivatives have to be used. 

anc 
2. A, =lim /,+, ( a t , n )  - , where C is defured in 1.9. 

A. = 1, where I is the unit matrix of order three. 

4. A1 = F+ F= 20, where F is the deformation-gradient tensor (see 1.7), 

P= l i m ( E )  , Y denotes transpose and D is the rare-of-train tensor (see 1.12). 
r'+t at' 

5. In general, A,,, = a,, + FA,, + A,,F , n =  0,1,2,. . . . 

2. DEFORMATIONS USED EXPERIMENTALLY 

Al1 deformations used in conventional measurements of mechanical properties are 
interpreted in terms of homogeneous deformations. 

2.1 general orthogonal homogeneous deformation of an elastic solid 

A deformation, such that a mass point of the solid with co-ordinates X,, Xt X3 in the undeforrned 
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state moves to a point with co-ordúiates xi, xb x3 in the deformed state, with 

xi =AJi  , i = 1,2,3, 

where the hi are constants. 

Notes 

1, The relationships between the xi and Xi for orthogonal homogeneous deformations are 
a particular case of the general relationships given in 1.3, provided the deformation 
does not include a rotation and the co-ordinate axes are chosen as the principal 
directions of the deformation. 

2. The ki are effectively deformation gradienb, or, for finite .deformations, the 
deformation ratios characterising the deformation. 

3. For an incompressible material 

A,&$ = 1 . 

4. The hi are elements of the deformation gradieni temor F (see 1.4) and the resulting 
Cauchy and Green temors Cand B (see 1.9 and 1.1d 

o o 1; 

are 

2 2  uniaxiai deformation of an elastic solid 

An orthogonal, homogeneous deformation in which. say? 

A, = A  
and &=A3 

Notes 

í. See 2.1 for the aeñnition o í  A, 1 = 1,2,3 . 

2. For an incompressible material 

A? = A, = l / P  

2.3 uniaxial deformation ratio 
deformation ratio 

Recornmended symbol: ñ 

The quotient of the length (0 of a sample under uniaxial tension or compression and its original 
1engt.h (lo) 

1. In tension 1 (>1) may be temed the extension d i o .  
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2. In compression A. (4) may be termed the compression ratio. 

3. A. is equivaient to hi in 2.1 and 2.2. 

2A uniasial strain 
engineering strain 

Recommended symbol: E 

The change in length of a sample in uniaxial tensile or compressive deformation divided by its 
initial length 

E = (1, - lo) l lo 

where lo and 1, are, respectively, the initiai and final lengths. 

Notes 

1. E = A- - 1, where A. is the unimial deformation ratio (see 23). 

2. E > O is refened to as (uniaxial) tensile strain. 

3. E < O is referred to as (uniaxial) compressive strain. 

2.5 Hencky strain 

Recornrnended symbol: EH 

The integral over the total change in length of a sample of the incremental strain in uniaxial 
tensile deformation 

b 

lo , I i  and 1 are, respectively, the initial, final and instantaneous lengths. 

Notes 

1. See uniaxial strain (2.4). 

2. The sarne equation can be used to define a quantity EH (< O) in compression. 

2.6 Poisson's ratio 

Recornmended syrnbol: p 

ln a sample under small uniaxial deformation, the negative quotient of the lateral strain ( h d  and 
the longitudinal strain (&J in the direction of the uniaxial force 

/ \ 

Notes 

1. Lateral strain is the strain normal to the uniaxial d e f m a h n  
&lo, = h2 - 1 = h3 - 1 (see 2.2 pnd 2.4). 
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2. For an isotropic, incompressible material, P = 0.5. It shodd be noted that, in materials 
referred to as Uicompressible, volume changes do in fact occur in deformation, but they 
may be neglected. 

3. For an anisotropic matexial, p varies with the direction of the uniaxial deformation. 

4. Poisson's ratio is also sometimes d l e d  the lateral contraction ratio and is 
sometimes used in cases of non-linear deformation. The present defínition will not 
apply in such cases. 

2.7 pure shear of an elastic solid 

An orthogonal, homogeneous deformation in which 

Note 

See 2.1 for the definition of hi , i = 1,2,3 . 

2.8 simple shear of an elastic solid 

A homogeneous deformation, such that a mass point of the solid with co-ordinates XI, X2, Xj in 
the undeformed state moves to a point with co-ordinate xl, x2, x3 in the deformed state, with 

where y is constant. 

Notes 

1. The relationships between the xi and Xi, i = 1,2,3, in simple shear are a particular case 
of the general relationships given in 13. 

2. y is known as the shear or shear strain. 

3. The deformation gradient tensor for the simple shear of an eiastic solid (see 
1.4) is 
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and the Cauchy (C)  and Creen (B) strain tensors (see 1.9 and 1.10) are 

2.9 buk  compression 

Recommended symbol: x 

The fiactional decrease in volume (V) caused by a hydrostatic pressure 

Note 

Also referred to as volume compression, isotropic compression and bulk 
compressive strain. 

2.10 general homogeneous deformation or flow of a viscoelastic liquid or solid 

A flow or deformation such that a particle of the viscoelastic liquid or solid with co-ordinate 
vector X at time r' moves to a point with co-ordinate vector X at time t with 

GX' = GX 

where G and C are tensors defining the type of deformation or flow and are fúnctions of time 
only. 

Notes 

l. The definition is equivalent to that given in 1.5 note 4. Accordingly, the elements of 
G and G are denoted g; (t ') and g&) and those of X and X, ( x;, x; , x; ) and (x ,  , x2, x3). 

2. For an incompressible material 
det G= 1 

where det G is the detenninant of C. 

3. Deformations and flows used in conventional measurements of properties of 
viscoelastic liquids and solids are usually interpreted assuming incompressibility. 

2.1 1 homogeneous orthogonal deformation or flow of an incompressible 
viscoelastic liquid or solid 

A deformation or flow, as defined in 2.10, such that 
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Nofes 

1. The g,are defined in 1.5, notes 2 to 4. 

2. If g22 = 833 = llg: the elongational deformation or flow is uniaxial. 

3. The Finger strain temor for an homogeneous orthogonal deformation or flow of 
incompressible, viscoelastic liquid or solid (see 1.11) is 

2.12 steady uniaxial homogeneous elongational deformation or flow of an incompressible 
viscoelastic liquid or solid 

- - 
Uniaxid homogeneous elongational Ilow in which 

8idt )  = ~ X P ( - Y ~ )  

where ?E is a constant, and g22 = g33 =y& . 

Notes 

1. gi #), gu(t) and gS3(t) are elements of the tensor G defined in 1.5. 

2. From the definition of general homogeneous flow (1.5) (GX' = GX = constant) in the 
particular case of steady uniwial elongationflow 

x,g,, ( t )  = x,  exp(-Y, t )  = constant 

and differentiation with respect to time gives 

Hence, is the elongational or extensional strain rate. 

3. The Finger strain temor for a steady uniaxial homogeneous elongation deformation or 
flow of an incompressible viscoelastic liquid or solid (see 1.11) is 

exp(2% ( t  - t')) O O 
c-l = O exp( -fE (t - t l ) )  O 

o o 

2.13 homogeneous simple shear deformation or flow of m incompressible viscoelastic 
liquid or solid 

A flow or deformation such that 

o o 
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718 COMMlSSlON ON MACROMOLECULAR NOMENCLATURE 

where y(t) is the shear. 

Notes 

1. The general tensor G is defíned in 1.5. 

2. Y =  dy(t)/dt is the shear rate. The unit of .f is S-'. 

3. If y (t ) = - r  , where $is a wnstant, then the flow has a constant 
shear rate and is known as steady (simple) shear flow. 

4. If y(t) = yosin 2xvr then the flow is oscillatory (simple) shear flow of frequency v 

and amplitude y,. The unit of vis Hz. 

S. The Finger sfrain tensor for simple shearflow (see 1.11) is 

+ ( Y - Y  - Y  0 
1 

o O 01 1 

where y (t) - y (t') is h e  amount of shear given to the liquid between the times t 'and t. 

For steady simple shear flow C-' becomes 

1 + ( t  - t )  t - t )  
1 

3. STRESSES OBSERVED EXPERIMENTALLY 

For a given defonnation or flow, the resulting stress depends on the materid. Howeve;, 
the stress tensor & e  1-21 does take particular general fonns for experimentally useii 
deformations (see section 2). The definitions apply to elastic solids, and viscoelastic liquids and 
solids. 

3.1 stress temor resulting from an orthogonal deformation or flow 

For an orthogonal deformation or flow the stress temor is diagonal with 

Unit: Pa 

Notes 

1. See 1.2 for the general definition of a. 

2. If the srrain tensor is diagonal for al1 time then the stress rensor is diagonal for al1 time 
for isotropic rnaterids. 



3. For a uniaxial (orthogonal) deformation or flow an = ~ 3 3 .  

4. For a pure shear deformation or flow the stresses (aii, 022, a33) are usually al1 
different from each other. 

5. The stress tensor resulting from a pure shear deformation or flow is called a pure 
shear stress. 

3.2 tensile stress 

Recommended symboi: o 

The component-o, of the stress tensor resuliing h m  a tensile uniaxial deformation. 

Unit: Pa 

Notes 

1. The stress temor for a uniaxial deformation is given in 3.1. 

2. The 0x1 direction is chosen as the direction of the unimial deformation. 

3 3  compressive stress 

Recommended symbol: a 

The component o, 1 of the stress temor resulting fiom a compressive uniaxial deformation. 

Unit: Pa 

Note 

See notes 1 and 2 of 3.2. 

3.4 nominal stress 
engineering stress 

Recommended symbol: a 

The force resuiting fkom an applied tensile or compressive uniaxiai deformation divided by the 
initial cross-sectional area of the samp!e normal to the applied deformation. 

Unit: Pa 

Note 

-- 
l he  term engineerzng or nominai stress is often useci in circumstances wnen h e  
defonnation of the body is not infinitesimai and its cross-sectional area changes. 

3.5 stress tensor resulting from a simple shear deformation or flow 
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For a simple shear defomtion or fiow the stress tensor takes the fonn 

Notes 

1. See 1.2 for the general definition of U 

2. o,,, i = 1,2,3 are denoted nomal stresses. 

3. o 1 2  is cailed the shear stress. 

3.6 first normal-stress difference 
fint normal-stress function 

The difference between the first two normal stresses u, 1 and 022 in simple shear flow 

NI = U11 - Q22.  

Unit:. Pa 

Notes 

1. See 3.5 for the detinition of 01 1 and 02. 

2. For Newtonian liquids (see 4.2 note 3) NI = 0. 

3.7 second normal-stress difference 
second normal-stress function 

Recommended symbol: N2 

The difference between the second and third normal-stresses (a22 - a33) in simple shear flow 

N2 = 033 . 

Unit: Pa 

Notes 

1. See 3.5 for the definition of a22 and a33 

2. For Newtonian liquids (see 4.2 note 3), Nz = 0. 
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4. QUANTITIES RELATING S T W S  AND DEFORMATION 

4.1 constitutive equation for an eiastic soiid 

An equation relating stress and strain in an elastic solid. 

Notes 

1. For an elastic solid, the constitutive equation may be written 

where B is the Green strain temor (see 1.10). 
I,, Iz, I3 are invariants of B, 
with Ii = Tt(B) 

12 = 11'2 ((T~(B))~ - Tr(&)) 
I3 = det(B), 

where 'Tr' denotes trace and 'det' denotes determinant. (Invariants are independent of 
the co-ordinate axes used and for symmetric tensors there are three independent 
invariants.) 
W is a function of Ii,I2, and 13 and is known as the stored energy function and is the 
increase in energy (stored energy) per unit initial volume due to the deformation. 

2. For small deformations, the constitutive equation may be written 

where G is the shear modulus (see 4.10), E is the srnall-strain tensor (see 1.10, note 3) 
anA I ir ta 1 .amd ~ n n c t a n t  -.- . -., - ---- -"-"-....- 

3. The Lamé constant, ( I ) ,  is related to the shear modulus (G) and Young's rnodulus (E) 
(see 4.7) by the equation 

4. For an incompressible elastic solid, the constitutive equation mqj be betten 

where P is the hydrostatic (or isotropic) pressure, I3 = 1 and W is a b c t i o n  of Il and Iz, 
oniy. 

S. For srnall deformations of an incompressible, inelastic solid, the constitutive 
equation may be written 

4.2 constitutive equation for an incompressible viscoelastic liquid or solid 

An equation relating stress and defonnation in an incompressible viscoelastic liquid or solid. 

0 1998 IUPAC. Pure and Applied Chemistry70.701-754 



COMMISCION ON MACROMOLFCULAR NOMENCLATURE 

Notes 

1. A possible general forin of constitutive equation when there is no dependence of stress 
on amount of strain is 

where A 1 ,  A2, . . . . are the Rivlin-Ericksen tensors (see 1.14) 

2. For a non-Newtonian liquid (see note 3), a form of the general constitutive equation 
which may be used is 

where q is the viscosity (see 4.12) and a and B are constan&. 

3. A Newtonian iiquid is a liquid for which the constitutive equation may be witten 

where D is the rate-of-strain tensor (see 1.12). Liquids which do not obey this 
constitutive equation are temed non-Newtonian iiquids. 

4. For cases where there is a dependence of stress on strain history the following 
constitutive equation may be used, namely 

where C is the Cauchy sírain temor (see 1.9) and R is a function of the invariants I I ,  12 
and Ij of C' and the time intervai t-t'. R is formally equivalent to the stored-energy 
function, W, of a solid (see 4.1, note 4). 

Recornmended symbols: general M 
in bulk compressive deformation K 
in uniaxial deformation E 
in shear defomtion G 

7ñe quotient of stress and strain where the iy,pe of stress and strain is defined by the iype of 
deformation employed. 

Unit: Pa 

Notes 

1. The detailed definitions of K, E and G are given in 4.5,4.7 and 4.10. 

2. An elastic modulus or modulus of elasticity is a modulus of a body which obeys 
Hooke's law (stress a strain). 
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4.4 compliance 

Recommended symbols: general C 
in bu& compressive deformation B 
in uniaxial defomiation D 
in shear deforrnation 3 

The quotient of strain and stress when the type of strain and stress is deñned by the type of 
deformation employed. 

Notes 

1. C = IIM, where Mis moduius (see 43). 

2. The detailed deñnitions of B, D and J are @ven in 4.6,4.8 and 4.1 1. 

4 .S bulk modulus 

Recommended symbol: K 

n i e  quotient of hydrostatic pressure (P) and bu& compnssion (x )  

K = PIx . 

Unit: Pa 

Notes 

1. Also hown as bu& compressive modulus. 

2. For the definition of x , see 2.9. 

3. At small defonnations, the bulk rnodulus is related to Young 'S moduitu (E) (see 4.7) by 

K = E1(3(1 - 2 ~ ) )  

4.6 biilk compiiance 

Recommended symbol : B 

The quotient of buik compression ( x )  and hydrostatic pressure (P) 

Unir: ~ a "  

Notes 

1. Also known as buik compressive compliance. 
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2. For the deíinition of X,  see 2.9. 

3. B = IIK, where K is the bulk modulus (see 4.5) 

4.7 Young's modulus 

Recomrnended symbol: E 

The quotient of uniaxial stress (o) and strain (E) in the limit of zero strain 

E = lim (al&) . 
E-O 

Unit: Pa 

Notes 

1. The stress is a m e  stress, as in 3.2 and 3.3, and not a nominal stress, as in 3.4. 

2. E is defined in 2.4. 

3. Young 'S modulus may be evaiuated using tensile or compressive unimial deformation 
(see 2.0). If dekmir?uY 1ai~g tmsi!r defhmti~:: it may be terme:! temi!e zmdUks.  

4. For non-Hookean matenals (see 43), the Young 's modulus is sometimes evaluated as: 

(i) the secant modulus - the quotient of stress (a) and strain at some 
nominal strain (E) in which case 

(ii) the tangent modulus - the slope of the stress-strain curve at some 
nominal strain (E'), in which case 

4.8 uniaxial compliance 

Recommended symbol : D 

The quotient of uniaxiai strain (E) and uniaxial stress (o) in the limit of zero strain 

D=lim ( & / a )  . 
c->o 

Unit: ~ a - '  

Notes 

1. The stress is a true stress as in 3.2 and 3.3. and not a nominal stress. as in 3.4. 

2. E is defined in 2.4. 

3. Uniaxial compliance may be evaluated using tensile or compressive uniaxial 
deformation (see 2.4). If determined using tensile deformation it may be temed tensile 
compliance. 

4. D = 1 /E, where E is Young S modulus (see 4.7). 
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4.9 extensionai viscosity 
elongational víscosity 

Recommended symbol: q~ 

The quotient of the difference between the longitudinal stress (oi I )  and the lateral stress (cm) and 
the elongational strain rate ( f, ) in steady uniaxial flow 

Unit: Pa S 

Note 

See 3.1 and 2.12 for the definitions of al 1,022 and y ,  

4.10 shear modulus 

Recommended symbol: G 

The quotient of shear stress (oi2) and shear strain (y) 

G = 4121~. 

Unit: Pa 

Notes 

1. See 2.8 for the definitions of y for an elastic solid and 3.5 for the definition of criz. 

2. The shear modulus is related to Young S modulus ( E )  (see 4.7) by the equation 

where p is Poisson 'S ratio (see 2.6). 

3. For elastomers, which are assumed incompressible, the moduius is often evaluated in 
unimial tensile or compressive deformation using h - as the strain function (where 
h is the unimial deformation ratio (see 23)) .  In the h i t  of zero deformation the 
shear modulus is evaluated as 

da - E - - 
d(h-XZ) 3 

= G (for p = 0.5) , 

where a is the tensile or compressive stress (see 3.2 and 3.3). 

4.1 1 shear complince 

Recommended syrnbol: J 

The quotient of shear strain (y) and shear stress (012) 
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Unit: pa-' 

Notes 

1. See 2.8 for the definition of y for an elastic solid and 3.5 for the definition of ~ 1 2 . .  

2. J =  1/G, where G is the shear modulus (see 4.10). 

4.12 shear viscosity 
coefficient of viscosity 
viscosity 

Recommended syrnbol: q 

The quotient of shear stress (qz) and shear rate ( Y )  in steady, simple shear flow 

Unit: Pa S 

Notes 

1. See 3.5 and 2.13 for the definitions of o12 and ): 

2. For Newtonian liquids (see 4.2 note 3), 5 1 2  is directly proportional to *f and 7 is 
constant. 

3. For non-Newtonian liquids (see 4.2 note 3), when 0 1 2  is not directly proportional to y ,  
q varies with f .  The value of q evaluated at a given value of f is temed the non- 
Newtonian viscosity. 

4. Some experimental methods, such as capillq flow and flow between parallel plates, 
employ a range of shear rates. The value of q evaluated at some nominal average value 
of .j is temed the apparent viscosity and given the symbol'q,. It should be noted 
that apparent viscosiíy is an imprecisely defined quantity. 

5. Exirapolation of q or qWp for non-Newtonian liquids to zero f gives the zero-shear 
viscosity, which is given the symbol qo. 

6. Extrapolation of 7 and q, for non-Newtonian liquids to infinite j gives the infinite- 
shear viscosity, which is given the syrnbol q, . 

4.13 first normal-stress coefficient 

Recomrnended symbol: y, 

The quotient of the first normal stress difference (Nl) and the square of the shear rate ( j )  in the 
limit of zero shear rate 
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Unit: Pa s2 

Note 

See 3.6 and 2.13 for the definitions of Ni and f 

4.14 second uonnal-stress coefflcient 

The quotient of the second nomal stress difference (N2) and the square of the shear rate ( j )  in 
the h i t  of zero shear rate 

Note 

See 3.7 and 2.13 for the deíinitions of N2 and f 

5. LINEAR VISCOELASTIC BEHAVIOUR 

The timedependeni response of a liquid or solid subjected to stress or straúl. 

Notes 

1. Both viscous and elastic responses to stress or sü-ain are required for the description of 
viscoelastic behaviour. 

2. Viscoelastic propcrties are usually measured as tesponses to an instantaneously applied 
or removed constrmt stress or strain or a dynamic stress or sttain. The latter is 
defincd as a sinusoidal stress or strain of sinal1 amplitude, which may or may not 
decrease with time. 

5.2 linear viscoelastic behaviour 

iñe interpretation of the viscoelastic behaviour of a liquid or solid in simple shem or uniarial 
deforwion such that 

where a is the shear stress or uniaxial stress, y is the shear strain or uniaxi  strain, and P(D) and 
Q(D) are poiynomiais in D, where D is the differential'coefficient operator dldt. 

Notes 

1. In linear viscoelastic behaviour, stress and strain are assumed to be small so that the 
squares and higher powers of a and y may be neglected. 
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2. See 3.5 and 2.13 for the definitions of o and y in simple shear. 

3. See 3.2 and 2.12 for definitions of o and y (qE) in uniaxial deformations. 

4. The polynomials Q(D) and P(D) have the foms: 

Q(D) = a(D + qa) . . . . . (D + q J 
(a polynomial of degree n + 1) 

PíD) = (D +pd (D +pS . . (D +pd 
(a polynomial of degree n + 1) 

and 

PíD) = (D +pd íD + p 3  . . íD +pn-d 
(a polynomial of degree n) 

where 
(i) a is a constant 
(ii) qo 2 O,po> O andp,, q,> O, s = 1, . . ., n. 
(iii) qicPi<qi+i and q,cp,, (ifp,, exists) 
pi and qi are related to relaxation and retardation times, respectively (see 5.6 - 5.9). 

5. If qo= 0, the material is a liquid, otherwise it is a solid. 

6. Given that Q(D) is a polynomial of degree n + 1 ; if P(D) is also of degree n + 1 the 
material shows instantaneous elasticity; if P(D) is of degree n, the material does not 
show instantaneous elasticity (Le. elasticity irnmediately the deformation is applied.) 

7. There are definitions of linear viscoelasticity which use integral equations instead of the 
differential equation in definition 5.2. (See, for example, ref. 11 .) Such deftnitions 
have certain advantages regarding their mathematical generality. However, the 

approach in the present document, in terms of differential equations, has the advantage 
that the definitions and descriptions of various viscoelastic properties can be made in 
terms of comrnonly used mechano-mathematical models (e.g. the Maxwell and Voigt- 
Kelvin models). 

5 3  Maxweil model 
Maxwell element 

A model of the linear viscoelastic behaviour of a liquid in which 

where a and p are positive constants, D is the differential coefficient operator cVdt, and o and y 
are the stress and strain in simple shear or unimial deformation.. 

Notes 

1. See 5.2 for a discussion of o and y. 

2. The relationship defining the Mmwell model may be written 
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3. Comparison with the general defínition of linear viscoelastic behaviour (5.2) sfiows 
that the polynorniais P(D) and Q(D) are of order one, qo=O, po=Pla and aclla. Hence, 
a material descnbed by a Maxwell model is a liquid (qo = O )  having instantaneous 
elasticity (P(D) and Q(D) are of the same order 1 

4. The Mmwell model may be represented by a spring and a dashpot filled witb a 
Newtonian liquid in series, in which case l la  is the spring constant (force = 
!!rr)-extepsbt..) =d !!p is &e Izshpef c ~ m t o y ?  (fime = (!!B)'~-?P of eytemion). 

5.1 Voigt-Kehin model 
Voigt-Kelvin element 

A model of the linear viscoelmtic behaviour of a solid in which 
cr = (a + PD)y 

where a and p are positive constants, D is the differential coefficient operator d a ,  and o and y 
are the stresses and strain in simple shem or unimial deformation.. 

Notes 

1. The Voigt-Kelvin model is also known as the Voigt model or Voigt element. 

2. See 5.2 for a discussion of o and y. 

3. The relationship defining the Voigt-Kelvin model may be written 

4. Comparison with the general definition of linear viscoelastic behaviour (5.2) shows 
that the polynomial P(D) is of order zero, Q(D) is of order one, aqo = 4 and a = P. 
Hence, a material described by- the Voigt-Kelvin model is a solid ( q H )  without 
instantaneous elasticity (P(D) is a polynomial of order one less than Q(D)). 

5. The Voigt-Kehin model may be represented by a spring and a dashpot filled with a 
.Y iuewonian iiquiá in parai'lei, in wiiich case a is h e  spriPg constani (fon;e - 
a-extension) and j3 is the dashpot constant (force = pmte of extension). 

5.5 standard linear viscoelastic solid 

A model of the linear viscoelastic behaviour of a solid in which 

where al, pl, a2 and p 2  are positive constants, D is the differential coefficient operator ddt ,  and o 
and y are the stress and strain in simple shear or uniaxial deformation. 

Notes 

1. See 5.2 for a discussion of o and y. 

2. The relationship defining the standard linear viscoelastic solid rnay be written 
ala + Pi(ddd0 = m y  + Pz(dy'W 

3. Comparison with the general definition of a linear viscoelastic behaviour (5.2) shows 
that the polynomial P(D) and Q(D) are of order one, qo = a2/P2, a = P2lP1 and PO = 
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al/a2. Hence, the standard linear viscoelastic solid is a solid (aqo>O) having 
instantaneous elasticity (P(D) and Q(D) are of the same order). 

4. The standard linear viscoela.stic solid may be represented by: 

(1) a Mtmvell model (of spring constant h2 and dashpot constant k2) in parallel with a 

spring (of spring constant hl) in which case a l  = h2, PI  = k2, a2 = hih2 and p2 = 
hlk2+ h2k2. 

(ii) a Voigt-Kelvin model (of spring constant h2 and dashpot constant kz) in series with a 
spring (of spring constant hi) in which case al = hl +h2, P i  = kZ, a2 = hlh2 and P2 = 
hlk2. 

5. The standard linear viscoelastic solid can be used to represent both creep (see 5.9) and 
sIyess re,?ur-UiiOn íSeC 5.7) ir, matef,& In icms "f i;C*rrrr&Goil 
times, respectively. 

5.6 relaxation time 

Recommended symbol: r 

A time characterising the response of a viscoelastic liquid or solid to the instantaneous 
application of a constant strain. 

Unit: s 

Notes 

1. The response of a material to the instantaneous application of a constant strain is 
?e.+.ed stress r e ! c a t h  (ser s.?). 

2. The relaxation time of a Mmwell element (53) is r = l/po = a / B .  

3. The relmcation rime of a standard linear viscoelastic solid (5.5) is r = 140 = Pilai. 

4. Generally, a linear viscoelastic material has a spectrurn of relaxation times, which are 
the reciprocals of p,, i = 0, 1, . . . , n in the polynomial P(D) (see 5.2). 

S. The relaxation spectmm (spectnim of relaxation times) describing stress relaxation 
in polymers may be considered as arising fiom a group of Manvell elements in parallel 
(see 5.7). 

5.7 stress relaxation 

The change in stress with time after the instantaneous application of a constant strain. 

Notes 

1. The applied strain is of the form y = O for t < O and y = yo for t > O and is usually a 
uniawial extension or a simple shear (see 5.2). 

2. For linear viscoelastic behaviour, the stress takes the form 
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c is a constant that is non-zero if the material has instantaneous elasticity and W(t)is 
the relaxation function. 

3. y / ( [ )  has the fom 

where the j3i are functions of the pi and qi of the polynomials P(D) and Q(D) defining 
the linear viscoelastic material (see 5.1). 

4. The relaxation times of the material are lbi (se'e 5.6). 

5.8 retardation time 

Recomrnended syrnbol: T 

A time characterising the response of a viscoelastic material to the instantaneous application of a 
constant stress. 

Notes: 

1. The response of a material to the instantaneous application of a constant stress is 
temed creep (see 5.9). 

2. The retardation time of a Voigt-Kelvin elemenl is T = I/qo = p/a = (dashpot 
constant)/(spring constant) . 

3. The retardation time of a standard linear viscoelastic solid (5.5) is r = Vqo = P21a2. 

4. Generally, a linear viscoelasfic material has a spectrum of retardation times, which are 
reciprocaís of qi, i = O, 1,  . . . , n in the poiynomiai QJD) (see 5.2 ). 

5. The retardation spectrum (spectrum of retardation times) describing creep in 
polymers may be considered as arising fiom a group of Voigt-Kelvin elements in series 
(see 5.9). 

5.9 creep 

The change in strain with h e  aíkr the instantaneous application of a constant stress. 

Notes 

1. The applied stress is of the form o = O for t<0 and o = 00 for t>O and is usually a 
unirnial stress or a simple shear stress (see 5.2). 

2. For linear viscoelastic behaviour, the strain usually takes the form 

n is a cnnstxnt that is non-~ern if the material has instsntanenus elaqticity and h is a 
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constant that is non-zero if the material is a liquid. iy(t) is the creep function. In 
addition, 

is sometimes called the creep compliance. 

3. The creep function has the fom 

1 

where the surnmation runs from i = O to n for a solid and 1 to n for a liquid. The Ai are 
functions of the pi and qi of the polynomials P(D) and Q(D) defining the linear viscoelastic 
material and the qi are the qi of the polynomial Q(D) (see 5.1). 

4. The retardation times of the material are l/qi (see 5.8). 

5. Creep is sometimes described in terms of non-linear viscoelastic behaviour, leading, 
for example, to evaluation of recoverable shear and steady-state recoverable shear 
compliance. The definitions of such terms are outside the scope of this document. 

5.10 forced oseillation 

The deformation of a material by the application of a small sinusoidal strain (y) such that 

where yo and o are positive constants. 

Notes 

1. y may be in simple .ear (see 
see 2.4). 

2. yo is the strain amplitude. 

2.8 and 2. 13) or unimial deformation (often denoted E, 

3. o is the angular velocity of the circular motion equivalent to a sinusoidal fiequency v, 
..AL - TL- ..-:A -C .. :- --1 
W l U l  w - L I C  V. 1 U G  U L U L  V1 W 13 1QU 3 . 

4. For linear viscoelastic behaviour, a sinusoidal stress (a) results h m  the 
sinusoidal strain with 

a = a,cos(ot + 6) = o,cos 6 cos o t  - oosin 6 .sin o t  . 

o0 is the stress amplitude. 6 is the phase angle or loss angle between stress and 
strain. 

5. Alternative descriptions of the sinusoidal stress and strain in a viscoelastic material 
under forced oscillations are: 

(i) y = y ,sin o t  a = oosin(ot + 6) 
= oosin6-cosot  + 

a, cos 23 sin wt 
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(ii) y = y, cos(or- 6) Q = a0cos ot  
= y o  cos 6 . ~ 0 s  cot + 

yosin6-sincoi 

5.11 loss factor 
loss tangent 

Recommended symbol: tan 6 

The tangent of the phase angle difference (6) between stress and strain duriug forced oscillations. 

Notes 

l. tan 6 is caicuiated using 
y =y0 wsar and o = o, cos(wc + 6). (see 5.10). 

2. tan 6 is aiso equal to ?he ratio of loss to sturage modulus (see 5.12 and 5.13). 

3. A plot of tan 6 versus temperature or frequency is known as a loss curve. 

Recommended symbol: general M 
in simple shear deformation G' 
in uniaxiai deformation E' 

The ratio of the amplitude of the stress in phase with the strain (ao cos 6) to the amplitude of the 
strain (yo) in the forced oscillation of a material 

See 5.10 for the defínition of aforced oscillation in which y = yo cos ot and 
a = o. cos (ot + 6). 

5.13 loss modulus 

Recommended symbols: General M' 
in simple shear deformation G" 
in uniaxial defomtion in E" 

The ratio of the amplitude of the stress 90' out of phase with the strain (oo sin 6) 
to the amplitude of the strain (yo) in the forced osciltation of a material 

Unit: Pa 
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Note 

See 5.10 for the definition of a forced oscillation in which y = yocos ot  and o = 00 cos (wt . 
+ 6). 

5.14 absolute modulus 

Recornrnended symbols: general lMYl 
in simple shear deformation (G*l 
in uniaxial deformation IE*l 

The ratio of the amplitude of the stress (00) to the amplitude of the strain (yo) in the forced 
oscillation of a material 

Unit: Pa 

Notes 

1. See 5.10 for the definition of a forced osci11ution in which y = yocos wt 
anda  = o 0  cos (ot + 6). 

2. The absolute modulus is related to the storage modulus (5.12) and the loss modulus 
(5.13) by the relationship 

5.15 cüiiipiex mof üiüs 

Recomrnended symbols: general MY 
in simple shear defonnation G* 
in uniaxial deformation E* 

The ratio of complex stress (o*) to com~lex strain (y*) in the forced oscillation of material 

w = cr*/y* . 

Unit: Pa 

Notes 

1. See 5.10 for the deftnition of a forced oscillation in which y = yocos ot and 
o = aocos (ot + 6). 

2. The complex strain y * = yoei"' = y ,(tos or + i sin ot) ,  where i = 4-1, so that the 
real part of the complex strain is that actually applied to the material. 

3. The complex stress a* = a0ei("'*' = ao(cos(ot + 6) + i sin(w + 6)), so that the real 
part of the complex strain is that actually experienced by the material. 
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4. The complex modulu~ is related to the storage and loss moduli through the relationships 

M* = o*/y* = ~q,e' /~,  = (~Y,,,/~,)(COS~+ i sin 6) = M' + iM". 

5. For linear viscoelastic behaviour interpnted in terms of complex stress and strain (see 
notes 2,3) 

(see 5.2). F d e r  as Da* = d H d t  = ioa* and Q* = i q , *  

5.16 stora y compliance 

Recommended syrnbols: general C' 
in simple shear defomation J 
in uniaxid deformation D' 

The ratio of the amplitude of the strain in phase with the stress (yocos 6) to the amplitude of the 
stress (oo) in the forced osciilation of a material 

C' = (yocos S)/oo . 

Unit: ~ a - '  

Note 

See 5.10, note 5 for the definition of a forced oscillation in which 
y = y ~ o s  (ot - S) and a = actos o!. 

5.17 loss compliance 

Recornmended symbols: general C" 
in simple shear defomation J' ' 
in uniaxial deformation D " 

The ratio of the amplitude of the strain 90" out of phase with the stress (yosin 6) to the amplitude 
of the stress (oo) in the forced oscillation of a material 

C" = (y, s in6) /ao .  

Unit: ~ á '  

Note 

See 5.10 for the definition of a forced osciIlation in which 
y = yocos(wt - 6) and a = o0 cos ot. 

5.18 absolute compliance 

Recomrnended syrnbols: general IC*l 
in simple shear deformation 
in uniaxial deformation ID*/ 
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The ratio of the amplitude of the strain (yo) to the amplitude of the stress (ao) in the forced 
oscillation of a material 

UNt: pa-' 

Notes 

1. See 5.10 note 5 for the deñnition of a forced oscillatiort in which 
y = yocos(ot - 6) and a = cocos or. 

2. The absolute compliance is related to the storage compliance (5.16) and the loss 
compliance (5.1 7) by the relationship 

3. The absolute compliance is the reciprocal of the absolute modulus (5.14). 

5.19 complex compliance 

Recornrnended symbols: general C* 
in simple shear deformation S* 
in shear deformation D* 

The ratio of complex strain (y*) to complex stress (a*) in the forced oscillation of a material 

Unit: ~ a "  

Notes 

1. See 5.10 for the definition of a forced oscillation in which 
y = yo cos (ot - 6) and o = o 0  cos ot. 

2. The complex strain y* = yoei (@''S) = yo (cos(ot-6) + i sin (ot-6)), where i = 4-1, So that 
the red pan of uie wmpiex strain is Uiat acruaiiy experienced by Ule mareriai. 

3. The complex stress o* = ooe'"' = a 0  (cos o t  + i sin or), so that the real part of the 
complex stress is that actually applied to the material. 

4. The complex compliance is related to the sforage and loss compliances (5.16 and 5.17) 
through the relationships 

5. The complex compliance is the reciprocal of the complex modulus 
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5.20 dynamic viscosity 

Recornmended symbol: q ' 

The ratio of the stress in phase with the rate of strain (oosin 8) to the amplitude of the rate of 
strain (ayo) in the forced oscillation of a material 

Unit: Pa s 

Notes 

2. See 5.2, note 6: q' = M% may be used for evaluating the dynamic viscosily. The 
same expression is ofien used to evaluate the shear viscosity. The latter use of this 
expression is not recommended. 

5.21 outsf-phase viscosity 

Recornmended symbol: q " 

The ratio of the stress 90' out of phase with the rate of strain (aocos S) to the amplitude of the rate 
of strain (oyo) in the forced oscillation of a material 

Unit: Pa S 

Notes 

1. See 5.10, note S for the defmition of a forced oscillation in which y = y, sin o t  
and o = a,sin(ot + 6), so ihat Y= ayo cosot and 
o = o,sin6-cosot+a, cos6-sinot. 

2. See 5.22, note 6: q'l =M8/o may be used to evaluate the out-ofphase viscosiiy. 

5.22 complex viscosity 

Recornmended syrnboI: 7 * 

The ratio of complex stress (o*) to complex rate of strain ( Y * )  in the forced oscillation of a 
material 

Unit: Pa S 

Notes 

1. See 5.10, note 5 for the definition of a forced oscilfation in which y = yo sin ot and o = 

qcos  (ot + 6) and the rate of strain f = o0 cos ot. 
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2. The complex rate of strain j* = i oyoei"' = i coy0 (cos ot  + i sin ot), where 
i=d-l.  

3. The complex stress a* = ooei(w'+S) = a 0  (cos (ot+6) + i sin (ot+6)) 

4. The complex viscosity may alternatively be expressed as 

,,* = O*/ y* = (ooei6)/(i ayo) = W/i  o 

where M is the complex modulus (see 5.15). 

5. The complex viscosity is related to the dynamic and out-of-phase viscosities through the 
relationships 

q* =a*/  j* = 00 (cos 6 + i  sin6)/(i oya) = q'- iq". 

6. The dynamic and out-of-phase viscosities are related to the storage and loss moduli 
(5.11 and 5.13) by the relationships q* = q' - i q" = Wli o = (M + i W)/i o, so 
that q1 = M"lo and q" = M/o. 

6. OSCILLATORY DEFORMATIONS AND STRESSES USED EXPERTMENTALLY 

There are three modes of free and forced oscillatory deformations which are cornmonly used 
experimentally, torsional oscillations, uniaxial extensional oscillations and flexura1 
oscillations. 

The oscillatory deformations and stresses can be used for solids and liquids. However, the 
apparatuses employed to measure them are usually designed for solid materials. In principle, they 
can be modified for use with liquids. 

Analyses of the results obtained depend on the shape of the specimen, whether or not the 
, 4 : , i L i i A ,  ..P,,,, :- d., ,,,:-,- :, ,---..- r-2 LL- --A r l -  2 - - . l - I  2 r -  r  AL- 
UIJUIUUUVLL VI I L L ~ S J  111 u16 J~GMLLLGLL 13 a-uu~~cu &VI UILU ULC ~ J ~ U I L C U  IIIUUGI wcu LU I C ~ I C ~ C I I L  UIG 

linear viscoelastic properties of the material. The following tenns relate to analyses which 
generally assume small defonnations, specimens of uniform cross-section, non-distributed rnass 
and a Voigt-Kelvin solid (see 5.4). These are the conventional assumptions. 

6.1 free osciüation 

The oscillatory defonnation of a material specimen with the motion generated without the 
continuous application of an externa1 force. 

Note 

For any real sample of material the resulting oscillatory deformation is one of decaying 
,amplitude. 

6.2 damping curve 

The decreased deformation of a material specimen versus time when the specimen is subjected to 
a h e  oscillation. 
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Nota 

1. See 6.1 for the definition of afiee oscillation. 

2.. The term 'damping curve' is sometimes used to describe a loss cune (see 5.11). 

3. A damping curve is usually obtained using a toaion pendulum, involving the measurement 
of decrease of the &al, torsional displacemcnt of a specimen of unifonn cross-stction of 
known shape, with the torsional displacement initiated using a torsion bar of known moment 
of inertia. 

4. Damping curves are wnventionally analysed in t e m  of the Voigt-Kelvin solid (see 5.4) ~iving 
a decaying amplitude and a singie frequency. 

5. Given the propeaies of a Voigt-Kelvin solid, a damping curve is descnbed by the equation 

where X is the displacement from equilibriurn (for torsion X = 8, the anguiar displacement), t 
is time, A is the amplitude, P is the decay constant (see 63), a, is the angular velocity 
corresponding to the decayfiequency (see 5.10 and 6.4) and 4 is the phase angle. 

6 3  decay constant 

Recommended symbol: P ; 

The exponential coeffkient of the time-dependent decay of a damping curve, assuming Voigt- 
Kelvin behaviour 

Unit: S" 

Notes 

1. See damping curve (6.2) and the equation therefor (6.2, note 5). 

2. See Voigt-Kelvin solid (5.4). 

3. For small damping, B is related to the loss moduIus (M'), see 5.13, through the 
equation 

o is h e  angular velocity corresponding to the decayfiequency (se 5.10 and 6.4). H 
depends on the cross-sectiond shape of the specimen and the type of defomation. (For 
example, for the axial torsion of a circular rod of radius a and length 1 using a forsion 
pendulum (see 6.2, note 3) with a torsion bar of moment of inertia I 

and M' S G", the loss modulus in simple shear ) 

6.4 decay frequency 

Recommended symbol: v 
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The frequency of a damping curve assuming Voigt-Kelvin behaviour. 

Unit: Hz 
Notes 

1. See damping cwve (6.2) and the equation therefor (6.2, note 5). 

2. See Voigi-Kelvin solid (5.4). 

3. v = 0/2rr, where o is the angular velocity corresponding to v (see 5.10). 

4. For small damping, the storage modrrlus (M), see 5.12, may be evaluatcd from w 
through the equation 

where H is discussed in 63, nok 3. Again, for torsian, M' z G' , the storage moduIus in 
simple shear. 

6.5 logarithmic decrement 

Recornrnended qmbol: A 

Natural logarithm of the ratio of the displacement of a damping curve separated by one period of 
the displacement. 

Notes 

1. Voigt-Kelvin behaviour (see 5.4) is assumed so that tbe displacement decays with a 
single period T, where 

1 SR T = - = -  
v O 

with v the frequency and o is the angular velocity corresponding to v (see 6.4). 

2.  The logarithmic decrement can be used to evaluate the decay constan( P (see 6.3). 
From the equation for the damping curve of a Voigt-Kelvin solid (see 6.2, note 5). 

where X, and t,, are the displacement and time at a chosen point (usually near a 
maximum) in the n-th period of the decay, and X,,+, and t,,+l are the corresponding 
displacement and time one period later. 

4. For smaii damp~ng, A is related to the l o s  tangent, tan 6 (see 5.11) by 

tan 6 = M'YM' = 2P/o = 2 N T o  = Nsr 
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(See 6.3 and 6.4 for expressions for M and M"). 

6.6 forced uniaxial extensional oscillations 

The uniaxial extensional defonnation of a material specimen of uniform cross-sectional area 
along its long axis by the continuous application of a sinusoidal force of constant amplitude. 

Notes 

1. For a specimen of negiigible mas, the linear-viscoelastic interpretation of the resulting 
deformation gives 

(A/L)e(D)l = P(D% cos o t  

where P(D) and e(D) are the polynomials in D(=dfdr) characterising the linear- 
viscoelastic behaviour (see 52), A is the cross-sectional area of the specimen, L its 
original length, 1 is here the change in length,fo the amplitude of the applied force of 
angular velociy o (see 5.10, note 3) and t the time. 

2. For a Voigt-Kelvin soiid (see 5A), with P(D)=l and Q(D)=a+PD, where a is the spring 
consmt and B the dashpot constant, the equation describing the deformation becomes 

(A/L)P(dlldt) + (A1L)al = fo cos o t  

or, in terms of stress and strain, 

where E = IIL is the uniaxial strain (see 2.4 and 5.10) and oo =fdA is the amplitude of 
the stress (see 5.10). The solution of the equation is 

where 6 is h e  phuse angle (see 5.10) with tan8 = Bola. 

3. From 5.14, the absolute modulus in uniarial deformation 

where cx = E, Po = E' and tan 6 = E 'YE equal to the loss tangent (see 5.1 1). 

4. If one end of the specimen is fixed in position and a mass m is attached to the moving end, the 
linear-viscoelastic interpretation of the resulting deformation gives 

where the syrnbols have the sarne meaning as in note 1. 

5. For a Voigr-Kelvin solid (cf. note 2), the equation in note 4 describing the deforrnation 
becomes 

m(d21/dt2)+(~/~)~(dlldi)+(~/~)a~1 = focos or 

with the soiution 
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where tan 0 = ( ( A P ) / ( ~  m and symbols have the same meaning as in notes 1 
( ( ~ a ) i ( ~ m ) )  - 

and 2. 

6. The arnplitude of the strain SO is maximal when 

giving the value of the angular velocity (oR) of the resonance fiequency of the 
spccirnen (S- 6.i2j in h r c d  uniaxiai exiensionai osciiiauon. 

7. Notes 2 and S show that application of a sinusoidal uniaxial force to a Voigt-Kelvin 
solid of negligible mass, with or without added mass, results in an out-of-phase 
sinusoidai uniaxial extensional oscillation of the same frequency. 

6.7 forced flexural oscillation 

The flexura1 deformation (bending) of a material specimen of uniform cross-sectional area 
perpendicular to its long axis by the continuous application of a sinusoidal force of constant 
ampiitude. 

Notes 

1. There are three modes of flexure in comrnon use. 

(ii) Application of the flexural force at the centre of the specimen with the two 
en& clarnped (three-point bending or flexure). 

(iii) Application of the flexural force at the centre of the specimen with the two 
en& resting fieely on supports (also known as three-point bending or 
€hure). 

2. For specirnens wirhour mms, Uie iiiear-viscoeiastic interpretation of the resuiting 
deformations follows a differential equation of the same fonn as that for a uniaxial 
exrensional forced oscillation (see 6.6, note l), narnely 

where P[D); @DIi ,f& w and t have the -ame meming as fm a ,fo.rcod lmin~h! 
extensional oscillation (see 6.6, note 1) and H is a constant. The length of the 
specimen is 2L. For mode of flexure (i) H=3, for (ii) H=24 and for (iii) H=6 (see note 
1). J is the second moment of area of the specimen, defined by 
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where da is an element of the cross-sectional area (A) of the specimen and q is the 
distance of thaí element fiom the neutral axis or plane of the specimen, lying centraily 
in the specimen and defmed by points which experience neither compression nor 
extension during the flexure. For a specimen of circular cross-section J d 1 4 ,  where r 
is the radius, aud for one of rectanguiar cross-section ~--4ad/3,  where 2a and 2b are the 
lateral dimensions with flexure aiong the b dimension. Finally, y is the flexura2 
&jZection (see 6.9) of the specimen at the point of application of the force, of either the 
end (mode of flexure (i)) or the middle (modcs of flexure (ii) and (iii)). 

3. For a Voigt-Kelvin soliá, the equation describing the defonnation becomes 

with solution 

where 6 is thephase angle with 

equal to the loss tangent (see 5.1 1). 

4. Uniike ihe strain in forced unimial extensional oscillations, those in forcedflexlval 
defimtions are not homogerieous. h the latter modes of defonnation, ihe strains vary 
h m  point-to-point in the specimen. Hence, the equation defining the displacement y in 
tenns of the amplitude of applied force Cfo) cannot be converted into one defining stiain 
in t e m  of amplitude of stress. 

5. If a mass m is attached to the specimen at the point of application of the force, the 
linear-viscoelastic intcrpretation of the resdting deformation gives 

6. For a Voigt-Kelvin solid (cf. note 3 and 6.6, note 5), the equation describing the 
deformation becomes 

with the solution 

Y' 
f o  !m -..d A,+ 

1/2 - " I  
HJa 
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7. Thejlexwal defection y (see 6.9) is maximal when 

giving the vaiue of the angular velocity (oR) of the resonante frequency of the 
specimen (see 6.6, note 6) in forced flexural oscillations. 

8. Notes 3 and 6 show that the application of the defined sinusoidal flexural forces (i), (ii) 
and (iii) (note 1) to a Voigt-Kelvin solid of negligible mass, with or without added rnass 
at the points of application of the forces, resuits in out-of-plane sinusoidal flexural 
oscillations of the same frequency. 

6.8 Rexural force 

Recommended symbol: je 

The amplitude of the force applied to a material specimen to cause a forced flexural oscillation. 

Unit: N 

Notes 

1. See 6.7 for the definition and interpretation of forcedjlexuraI oscillation. 

2. A related quantity is the flexural stress which is somewhat arbitrarily defined as the 
amplitude of the stress in the convex, outer surface of a material specimen in forced 
flexura1 oscillation. 

6.9 ílexural deflection 

Recornmended syrnbol: y 

The deflection of a specimen subject to a forced flexural oscillation at the point of application of 
the flexura1 force. 

Unit: m 

Notes 

1. See 6.7 for the definition and interpretation of forcedflexural oscillations 

2. See 6.8 for the definition offlexural force. 

6.10 flexura1 modulus 

Recornmended symbol: IE*l 

The rnodulus measured using forced flexural oscillations. 

Unit: Pa 

Notes 

1. See 6.7 for the definition and interpretation of forcedjlexural oscillarions. 
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2. For a Voigr-Kelvin solid (see 5.4) of negligible mas, the absolute moduius can be 
evaiuated from the ratio of the jlexural force (fo) and the amplitude of the flexura¡ 
dejection @) with 

where Yo is the amplitude of thejlexural deflecfion (see 6.7, note 3,6.8 and 6.9), 

IE*l = (a2 + P ~ O ' ) ' ~  

(see 5.14 and 6.6, note 3) and the remaining symbols are as defined in 6.7, note 2. 

3. The ratio of the loss to the storage flexural modulus (E'%') is derived fiom the loss fangent 
(tan 6) of the forcedjlexural oscillation with 

(see 5.1 1 and 6.7, note 3). 

4. The flexural modulus has been given the same symbol as the absolute modulw in uniaxiai 
deformation (see 5.14) as it becomes equal ?o that quantity in the h i t  of zem amplitudes of 
applied force and deformation. Under real experimental conditions it is often used as an 
approximation to (PI. 

6.11 resonance curve 

Recommended symbol: A(v) 

The curve of the frequency dependence of the amplitude of the displacement of a material 
specimen subject to forced osciilaiions in the region of a resonance fiequency. 

Unit: that of the arnplitude A 

Notes 

1. See 6.6 and 6.7 for the description of modes of forced oscillation commonly used. 

2. See 6.12 for the defuiition of resonancefiequency. 

6.12 resonance frequency 

Recommended syrnbol: v~ 

The frequency at a maximum of a resonance curve 

Ü n k  iiz 

Notes 

1. See 6.11 for the definition of a resonance curve. 

2. Material specirnens subiect to aforced oscillafions (see 6.6 and 6.7) in general have a 
spectrurn of resonance frequencies. 
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3. In cases of a single resonancefiequency, the resonancejiequency is proportional to the 
square root of the storage modulus (M') of the material (see 5.12). 

4. A material specimen which behaves as a Voigt-Kelvin solid under forced oscillations 
with a rnass added at the point of application of the applied oscillatory force has a 
single resonance fiequency. 

5. Under a forced unimial extensional oscillation the resonance frequency 

(see 6.6 for the origin of the equation and definitions of symbols). E is the storage 
modulus in unimial extension (see 5.12). 

6. Under a forcedflexural oscillation the resonance fiequency 

HJa HJE ' 
v,=..,lz=( L3m )"/.=( C m  )1'2/2z 

(see 6.7 for the origin of the equation and the definition of symbols). 

6.13 width of the resonance curve 

Recommended symbol: Av 

The magnitude of the difference in frequency between two points on a resonance c w e  on either 
side of vR which have amplitudes equal to ( 1 / 4 2 ) ~ ( v ~ ) .  

Notes 

1. For a material specimen which behaves as a Voigt-Kelvin solid under forced uniaxial 
extensional oscillation with mass added at the point of application of the applied 
oscillatory force, Av is proportional to the loss modulus (E') (see 5.13). 

In addition (6.6, note 6), the storage modulus (E) (see 5.12) may be 
evaluated fiom 

(see 6.6 for the definition of syrnbols). 

2. For a material specimen which behaves as Voigt-Kelvin solid under fomed flexura1 
oscillations with added mass at the point of application of the applied oscillatory force, 
Av is proportional to the loss modulus ( E )  (see 5.13) 



In addition, h e  storage modulus (E) (see 5.12) may be evaluated fonn 

(see 6.7 for the defuiition of symbols). 

3. For the Voigt-Kelvin behaviours specified in notes 1 and 2, the ratio of Av and the 
resonance frequency (vR) is equal to the loss tangent (tan 6). 

Under forcedjlexural oscillation 

(see 5.11 for the definition of tan 6). 
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8. ALPHABETICAL INDEX OF TERMS 

absolute compliance (5.1 8) 
absolute moáulus (5.14) 
angular velocity (of a fofced oscillation) (5.10) 
angular velocity of resonante frequency (6.7) 
apparent viscosity (4.12) 

bulk compliance (4.6) 
bu& compression (2.9) 
bulk compressive compliance (4.6) 
buik compressive modulus (4.5) 
bulk compressive strain (2.9) 
bulk moddus (4.5) 

Cauchy tensor (1.8,1.9) 
coefficient of viscosity (4.12) 
cnmp1ex crirmn!ianre (5.  ! 9) 
complex moddus (5.15) 
complex rate of strain (5.22) 
complex strain (5.1 5,5.19) 
complex stress (5.15,5.19,5.22) 
complex viscosity (5.22) 
compliance (4.4) 
compressive strain (2.4) 
compressive stress (3.3) 
constitutive equation for an elastic solid (4.1) 
wiistitütivc ry-uuon Íor an incompressibie viscoeiasric iiquia or soiia [4.¿j 
creep (5.9) 
creep compliance (5.9) 
creep function (5.9) 

damping c w e  (6.2) 
dashpcit constant (5.3. 5.4) 
decay constant (6.3) 

0 1998 IUPAC, Pure and Applied Chemistry70,701-754 



decay frequency (6.4) 
defonnation gradients in an elastic solid (1.3) 
defomtion gradients in a viscoelastic liquid or solid (1.6) 
defoxmation gradient in the orthogonal deformation of an elastic solid (2.1) 
deformation gradient temor for an elastic solid (1.4) 
deformation gradient tensor for a viscoelastic liquid or solid (1.7) 
deformation of an elastic solid (1.3) 
defohtion of a viscoelastic liquid or a solid (1 S )  
deformation ratio (2.3) 
deformation ratio in the orthogonal deformation of an elastic solid (2.1) 
dynamic strain (5.1 ) 
dynamic stress (5.1 ) 
dynamic viscosity (5.20) 

iiIdii;w (4.3) 

elongational strain rate (2.12) 
elongational viscosity (4.9) 
engineering strain (2.4) 
engineering stress (3.4) 
extensional strain rate (2.12) 
extensional viscosity (4.9) 
extension ratio (2.3) 

Finger tensor (1.8, 1.1 1) 
first normal-stress coefficient (4.1 3) 
fírst normal-stress difference (3.6) 
fust normal-stress fúnction (3.6) 
f i e x d  deflection (6.9) 
flexural force (6.8) 
flexurai modulus (6.10) 
flcrimd stress (6.8) ---.. 

forced flexural oscillation (6.7) 
forced oscillation (5.1 0) 
forced uniaxial extensional oscillation (6.6) 
free oscillation (6.1) 

general homogenous deformation or flow of a viscoelastic liquid or solid (2.1 0) 
general orthogonal homogeneous deformation of an elastic solid (2.1) 
Green tensor ( 1.8, 1.1 0) 

Hencky d n  (2.5) 
homogeneous deformation of elastic solids (1.3) 
homogeneous deformation of viscoelastic liquids and solids (1 S) 
homogeneous orthogonal deformation or flow of an incompressible viscoelastic liquid 

or solid (2.1 1 ) 
homogeneous simple shear deformation or flow of an incompressible viscoelastic liquid 

or solid (2.13) 

infinite-shear viswsity (4.12) 
inhomogeneous deformation of elastic solids (1.3) 
isotropic compression (2.9) 

lateral contraction ratio (2.6) 
iaterai strain (2.5) 
linear viscoelastic behaviour (5.2) 
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linear viscoelastic behaMour of a liquid (5.2) 
linear viscoelastic behaviour of a solid (5.2) 
logarithmic decrernent (6.5) 
l o s  angle of a forced oscillation (5.10) 
loss compliance (5.1 7) 
loss c w e  (5.1 1) 
Ioss factor (5.1 1) 
10s modulus (5.1 3) 
loss tangent (5.1 1 ) 

Maxwell element (5.3) 
Maxwell model(5.3) 
moduius (4.3) 
moduius of eiasticity (4.3) 

neutral axis (in forced flexural oscillation) (6.7) 
neutral plane (in forced flexural oscillation) (6.7) 
Newtonian liquid (4.2) 
nominal stress (3.4) 
non-Newtonian liquid (4.2) 
normal stresses (3.5) 

oscilfatory (simple) shear flow (2.1 3) 
out-af-phase viscosity (5.21) 

phase angle (of a forced oscillation) (5.10) 
Piola tensor (1.8) 
plane strain (1 .S) 
plane stress ( 1.2) 
Poisson's ratio (2.6) 
pure shear deformation or flow (3.1) 
pure shear of an elastic solid (2.7) 
pure shear stress (3.1) 

rate-of-strain tensor ( 1.12) 
relaxation function (5.7) 
relaxation spectrum (5.6) 
relaxation time (5.6) 
resonance curve (6.1 1 ) 
resomce frequency (6.12) 
resonance frequency (in forced flexural oscillation) (6.7) 
resonance frequency (in forced uniaxial extensional oscillation) (6.7) 
retardation spectrum (5.8) 
retardation time (5.8) 
Rivlin-Ericksen tensors (1.14) 

secant modulus (4.7) 
second moment of area (in forced flexural oscillation) (6.7) 
second normal-stress coefficient (4.14) 
second normal-stress difference (3.7) 
second normal-stress function (3.7) 
shear (2.8,2.13) 
shear cornpiiance (4.1 1) 
shear modulus (4.10) 
shear rate (2.13) 
shear strain (2.8) 
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s h  stress (3.5) 
shear viscosity (4.12) 
simple shear of an elastic solid (2.8) 
small-strah tensor (l. 10) 
spring constant (5.3,5.4) 
siandard linear viscuelastic solid (5.5) 
steady (simple) shear flow (2.1 3) 
steady uniaxial hornogeneaus eIongational deformation or flow of an incúmpressible 

viscoeiastic liquid or solid (2.12) 
storage compliance (5.16) 
storage modulus (5.12) 
stored energy function (4.1) 
strain amplitude (of a forced oscillation) (5.10) 
strain temor ( 1.8) 
stress (1.2) 
stress amplitude (of a forced oscillation) (5.10) 
stress relaxation (5.7) 
stress tensor (1.2) 
stress tensor resdting from an orthogonal deformation or flow (3.1) 
stress tensor resulting form a simple shear deformation or flow (3.5) 
stress vector (l .  1) 

tangent modulus (4.7) 
tensile compliance (4.8) 
tensile modulus (4.7) 
tensile strain (2.4) 
tensile stress (3.2) 
three-point bending (6.7) 
three-point flexure (6.7) 
torsion pendulum (6.2) 
naction (i.i j 
true stress (1.2) 

uniaxial compliance (4.8) 
uniaxial defonnation of an elastic solid (2.2) 
uniaxial deformation or flow of an incompressible viscoelastic liquid or solid (2.1 1) 
iniiaxial deformation ratio (2 3 )  
uniaxial orthogonal deformation or flow (3.1) 
uniaxial strain (2.4) 

viscoelasticity (5.1 ) 
viscosity (4.12) 
Voigt-Kelvin element (5.4) 
Voigt-Keivin model(5.4) 
Voigt element (5.4) 
Voigt model(5.4) 
w!mx ccmpressicr. (2.0) 
vorticity tensor ( l .  13) 

width of the resonante c w e  (6.13) 

Young's modulus (4.7) 

zero-shear viscosity (4.12) 
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9. GLOSSARY OF SYMBOLS 

compliance in bulk compressive defomation (4.4)/ 
bulk compliancdbuik compressive compliance (4.6) 
Green temor (1.8, 1.10) 
Piola temor ( l .  8) 

compiiance (general symbol) (4.4) 
storage compliance (general symbo1)(5.16) 
loss compliance (general symbol) (5.17) 
compiex compliance (general symbol) (5.1 9) 
absolute compliance (general symbol) (5.1 8) 
Cauchy temor (1.8, 1.9) 
Finger tensor (1.8, 1.1 1) 

compliance in uniaxial deformation (4.4)/ 
uniaxial compiiance/tensile compliance (4.8) 
storage compliance in uniaxial deformation (5.16) 
lncc rnrnp!i=o iiiniayial A p f ~ p d ~ ~  (s.!q ---- 
complex compliance in uniaxial deformation (5.19) 
absolute compliance in uniaxial deformation (5.1 8) 
ratesf-strain tensor (l. 12) 

moddus in uniaxial defonnation (4.3)Noung's 
moddus/tensile moddus/secant modulus/tangent modulus (4.7) 
storage mdulus in uniaxid defonnation (5.12) 
l o s  modulus in uniaxial deformation (5.13) 
complex madulus in uniaxial deformation (5.1 5) 
absoiuie moddus in uniaxid deformation (5 .  i 4 j 
f l e x d  modulus (6.1 0) 

modulus in shear defonnation (4.3)/shear modulus (4.10) 
storage modulus in simple shear defonnation (5.12) 
loss modulus in simple shear deformation (5.13) 
complex modulus in simple shear defomation (5.15) 
absolute modulus in simple shear deformation (5.14) 

wrnpiiance in hear áeformation (47jishear compiiance (4.i i ji 
creep compliance (5.9) 
second moment of area (in a forced flexura1 oscillation)(6.7) 
storage compiiice in simple shear defomation (5.16) 
l o s  compliance in simple shear deformation (5.1 7) 
complex compliance in simple shear defomtion (5.19) 
absolute compliance in simple shear deformation (5.18) 
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Non-ultimate mechanical properties of polymen 
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modulus in bulk compressive deformation (4.3)lbulk rnodulus/ 
bulk compressive moduIus (4.5) 

modulus (general symbol) (4.3) 
storage moddus (general symbol) (5.12) 
loss modulus (general symbol) (5.13) 
complex modulus (general symbol) (5.15) 
absolute modulus (general symbol) (5.14) 

first normai-stress differencefirst normal-stress fúnction (3.6) 
second normal-stress differencdsecond normal-stress fúnction (3.7) 

traction (1.1) 
loss factorlloss tangent (5.1 1) 

stored energy function (4.1 ) 
vorticity tensor (l. 13) 

flexura1 deflection (6.9) 

decay constant (of a damping curve) (6.2,6.3) 

width of the resonance curve (6.13) 

shearlshear strain (2.8) 
shear mte (2.13) 
strain amplitude (of a forced oscillation)(5.10) 
eiongational strain mtelextension strain rate (2.12) 
complex strain (of a forced oscillation) (5.15,s. 19) 
complex rate of strain (of a forced oscillation) (5.22) 
phase mgle (of a forced osciIlation)/loss angle of a forced osciliation (5.10) 

uniaxial ~Wengineering strain/(uniaxial) 
tensile straid(uniaxia1) compressive strain (2.4) 

srnall-strain tensor (l. 10) 
Hencky strain (2.5) 
lateral strain (2.6) 

shear viscositylcoef5cient of viscosityíviscosity (4.12) 
d;TA%ic ..4xcsi~ ((5.2^) 
outsf-phase viscosity (5.2 1 ) 
apparent viscosity (4.12) 
extensional visoosity/elongational viscosity (4.9) 
zero shear viscosity (4.12) 
complex viscosity (5.22) 
infinite-shear viscmity (4 1 2 )  
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uniaxial defonnation ratio/deformation ratiol 
extension ratiokompression ratio (2.3) 
defonnation gradientddeformation ratios; 

i = l,2,3 (2.1) 

logarithmic decrement (of a decay c w e )  (6.5) 

Poisson's ratio (2.6) 

decay fiequency (of a darnping curve) (6.4) 
resonance frequency (6.12) 

tensile stress (3.2) 
compressive stress (3.3) 
P....;..PPI-- -..a /I) A \ riieuarbx uis JUWJ [il .TI 

normal stresses; i = 1,2,3 (3.5) 
stress arnpiitude (of a forced oscillation) (5.10) 
shear stress (3 S) 
stresdstress tensor (1.2,3.1,3.5) 
complex stress (in a f o d  oscillation) 

(5.15,5.19,5.22) 

relaxation time (5.6)fretardation time (5.8) 
bulk compression~volurne compression~isotropic compressionl 
bulk compressive strain (2.9) 

first nomial-stress coefficient (4.13) 
second normal-stress coefficient (4.14) 
creep function (5.9) 
retaxation function (5.7) 

angular velocity (of a forced oscillation) (5.10) 
angular velocity (of a decay firequency) (6.2) 
angular velocity of the resonance fresuency 
(of a forced flexura1 oscillation) (6.7) 
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