

High-Level synthesis based on Xilinx Vivado for

hardware accelerators

Adrián Domínguez Hernández, Antonio Núñez Ordóñez, Pedro Pérez Carballo
SICAD Division

Institute for Applied Microelectronics - IUMA
Las Palmas de Gran Canaria, Spain

adominguez@iuma.ulpgc.es

Abstract – This work describes key concepts in the
implementation of a real time event processor using high-
level synthesis methodology based on Xilinx Vivado HLS.
The design flow starts from a SystemC functional model and
has been refined using high-level synthesis methodology to
RTL microarchitecture. The process is guided with
performance measurements (latency, cycle, time, power,
resource utilization) with the objective of assuring the quality
of the final system.

The results show that Vivado HLS provides improvements in
the use of resources despite the difficulties to handle certain
aspects of system descriptions languages as SystemC.

Finally, some recommendations about high-level synthesis
with Xilinx Vivado HLS are given.

High level synthesis, FPGA, Vivado, Synplify, SystemC,
abstraction, methodology

I. INTRODUCTION

Due to the growing complexity of SoC design is necessary to
increase the level of abstraction from which its design is
captured. At present, is desirable to create algorithmic
descriptions that capture the functionality of the design in a high
level language such as C/C++, SystemC and SystemVerilog.
These specifications are transformed by synthesis techniques in
the corresponding high-level RTL description [1][2][3].

The use of ESL methodologies facilitates the design of hardware
accelerators that leverage implicit parallelism of hardware
implementation to accelerate the execution of key cores of the
application for its real-time behavior [1][2][3].

The event processing systems are typical examples of real-time
systems. In them there is an arrival rate of events which must be
processed in a available time. The operation of the event
processing systems can be divided into the following stages:
capture and event filtering, events processing and action
generating [4].

The main idea of this work is the evaluation of the high-level
synthesis methodology proposed by Xilinx Vivado HLS for

comparison in terms of methodology and quality of the results
obtained with Cadence CtoS [5][6].

II. DESIGN FLOW AND METHODOLOGY

The design flow is shown in Figure 1. Starts from a verified and
functional SystemC code and performs the necessary adaptations
to support the SystemC subset of Xilinx Vivado HLS. At each
stage, a functional check is performed to verify that the
functionality is not affected by the changes [7].

Figure 1. Proposed designflow.

III. RESULTS AND FLOW COMPARISON

Figure 2 shows the resource usage after logic synthesis. The
resource usage are expressed in FFs and LUTs. The
improvement of the results after logic synthesis is about 60% for
resource usage. Moreover, Figure 3 shows the timing results. In

this case it is shown a remarked improvement in the clock
period, increasing from 131.7 MHz to 221.3 MHz, as is also
shown in Table1.

Figure 2. Logic synthesis resource results.

Figure 3. Logic synthesis timing results.

Table 1 shows the results of the complete processor. The
improvement in resource usage in some cases is greater than
60% and more than 40% improvement in the operating
frequency.

Table 1.Resource results for both design flows.

 XilinxVivado
HLS flow

Cadence
CtoS flow

Difference

LUT 12.443 25.774 51,72%
BRAM 45 58 22,41%
FF 15.127 44.635 66,11%
DSP 26 38 31,58%
Frecuencia 221.3 131.7 40,49%

IV. CONCLUSIONS

In this paper, we have followed the high-level synthesis design
approach to obtain a RTL description ready to hardware
implementation from an application described in a system
description language like SystemC.

The results obtained with the design flow based on Xilinx
Vivado HLS improve significantly with respect to the Cadence
CtoS design flow despite of the difficulties encountered during

development, as adapting interfaces, using directives and the
necessary adjustments to make code synthesizable.

During the development of this work, some conclusions about
system development tools based on high-level synthesis have
been reached:

• The need to adapt the source code to a synthesizable
subset makes difficult the task of re-synthesizing the
code with each new tool. For designs where is necessary
a design update and implementation of a complete
design flow from time to time, the task of synthesis with
any new and enhanced tool can be complex.

• Vivado HLS does not support certain aspects of
SystemC and treats it as a class of C++, instead of a
systems design language. This makes the designer's
specifications in some cases are not synthetized
successfully as is the case of input/output interfaces.

• Using directives in Vivado HLS to guide the synthesis
to the desired result often does not yield good results,
especially if SystemC is used.

• Vivado HLS is targeting a higher level of abstraction
and is designed for quickly time-to-market.

• The tools of high-level synthesis are constantly
evolving, allowing increasing the abstraction level in
the design of electronic hardware systems. The
tendency of such tools in the future indicates that
hardware design systems will increasingly abstract, for
example, in the communication step with the TLM
libraries.

V. REFERENCES

[1] T. Grötker, System Design with SystemC. Boston:
Kluwer Academic Publishers, 2002.

[2] M. Fingeroff, High-Level Synthesis: Blue Book. S.L.:
Xlibris Corporation, 2010.

[3] P. Coussy, A. Morawiec, High-Level Synthesis from
Algorithm to Digital Circuit. Springer, 2008.

[4] S. Levi, A. K. Agrawala. Real-Time System Design.
Universidad de Michigan: McGraw-Hill Pub. Co., 1990.

[5] C. C.-T.-S. Compiler, «Cadence C-To-Silicon
Compiler» [Online]. Available:
http://www.cadence.com/products/sd/silicon_compiler/
pages/default.aspx. [Last Access: March 2014].

[6] X. V. D. Suite, «Xilinx Vivado Design Suite» [En
línea]. Available:
http://www.xilinx.com/products/design-tools/vivado.
[Último acceso: Marzo 2014].

[7] «Design + System Drivers Update» ITRS Public
Conference, [Online]. Available:
http://www.itrs.net/Links/2012Winter/1205%20Present
ation/DesignSD_12052012.pdf. [Last Access: April
2014].

0

2000

4000

6000

8000

10000

12000

14000

cca ccb ccap ccbp csdd csdt csht dpca dpcb deoe dptd dpth dsrx dstx etos elas elcd iftz lcmd lbrs ntns nvct tuda

Resource consumption

FFs - VIVADO HLS FFs - CTOS LUTs - VIVADO HLS LUTs - CTOS

0

1

2

3

4

5

6

7

8

cca ccb ccap ccbp csdd csdt csht dpca dpcb deoe dptd dpth dsrx dstx etos elas elcd iftz lcmd lbrs ntns nvct tuda

Clock

CLOCK - VIVADO HLS CLOCK - CTOS

	I. Introduction
	II. Design Flow and Methodology
	III. Results and flow comparison
	IV. Conclusions
	V. References

