
Profiling tool for the Transaction Data of

Scalable Video Decoding

Abelardo Baez Quevedo, Gustavo M. Callicó, Sebastian López
Research Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC)

Campus Universitario de Tafira, Las Palmas (Spain)

{ abaez, gustavo, seblopez }@iuma.ulpgc.es

Abstract— Is highly desirable to known in advance the

transaction data in the design of an electronic embedded system.

Especially for data-intensive applications, such as complex video

system, when the options available in the video decoder change

and/or the features of the input video sequences are different.

This paper exposes the development of a profiling script intended

to help in the transaction data of decoding video sequences using

the H.264 Scalable Video Coding (SVC) standard. The tool

incorporates some Python scripts that allows the system designer

analyze the transaction data of the decoder, with several bit

streams automating profiling and decoding tasks. Using the

profiling scripts, the results show how the transaction data load

changed based on the intrinsic characteristics of the video

sequence and in the scalable options selected. Due to the huge

number of functions that form part of the SVC video decoder, a

set of modules that better describe the internal structure of the

decoder has been defined. The assignation of functions to

modules is open to the designer and can be changed at any time

to accommodate changes in the system. This tool make the

created profiling environment a helpful tool for the system

designer to make better decisions about the transaction data load

distribution, based on the modules defined inside the tool.

Keywords — Scalable Video Coding, profiling, performance

analysis, transaction data.

I. INTRODUCTION

The Scalable Video Coding (SVC) is an Annex of the
H.264/AVC standard [1]-[2], which extends the original
standard with new tools designed to efficiently support
temporal, spatial and quality (SNR) scalability developed by
the Joint Video Team (JVT). The JVT is a group of experts
from ITU-T Video Coding Experts Group (VCEG) and
ISO/IEC Moving Pictures Experts Group (MPEG) created to
develop the H.264/AVC standard.

The Open SVC Decoder (OSD) [3] is an open source
library created at the IETR/INSA of Rennes that implements a
SVC decoder written in C language. It has been developed and
tested over different platforms: x86 processors, PDAs and
DSPs, making it interesting for embedded systems.

A profiling tool could be basically defined as an analysis
environment that measures the performance of a piece of code.
This performance is measured in several different ways, in this
case we focus on transaction data load and the memory usage.
Profiling tools give detailed information about where the
bottlenecks are located in a code or which functions are using
larger amounts of memory.

In this work, the Valgrind have been used [4]. Valgrind is a
tool suite that let system developers measure, evaluate, and
target performance-related issues in their code. The main
problem encountered is that Valgrind are a set of different
standalone tools that require the constant attention of the
developer, and they do not constitute an integrated automated
environment where the designers can setup several profiling
sessions.

The PySVCVal (PSV) is a program written and developed
in Python intended to automate profiling sessions of Open SVC
Decoder using the profiling tools provided by Valgrind. The
PSV tool includes a friendly way to add the bit streams and
manage the profiling sessions.

This paper explains the developing of PSV and its features
designed to automate the profiling process. Section II
describes the main features of PySVCVal. Section III analyses
some profiling results obtained with PSV.

II. PYSVCVAL, A PROFILING TOOL FOR THE TRANSACTION

DATA OF OPEN SVC DECODER

PySVCVal (PSV) is a script tool writted in Python using
the Valgrind profiling tools under Linux, which helps in the
profiling sessions of OSD.

The designer can add several bit-streams to automate the
profiling sessions. The collected data results are stored in an
Excel spreadsheet.

Besides Valgrind, PSV also makes use of several additional
tools to automate the profiling sessions, as the “Bit Stream
Extractor” from JSVM tools, and xlxsWriter Python library to
generate the Excel output.

In summary, PySVCVal was developed under the
following constrains and conditions:

 Python 2.7.3

 xlsxWriter Library

 Valgrind Profiling Tools

 BitStreamExtractorStatic.exe (JSVM Tool).

PSV can be only configurable via two external XML files,
“bitstreams.xml” and “functions.xml”.

The file “functions.xml” has one section named Blocks, and
one element per each block named Block, with attributes
Name, that contains the name of the block, and attributes fn
that contains the n functions associated to the Block. An
example of the file “functions.xml” can be seen in Fig. 5. A file
called “functions.xml” has one section named Blocks, and one
element per each block named Block, with attributes Name,
that contains the name of the block, and attributes fn that
contains the n functions associated to the Block. An example of
the file “functions.xml” can be seen in Fig. 4.

Normally, user needs to run some programs in the
background, to check the scalability levels of a bit stream ,
select the scalability levels desired, and then call Valgrind with
OSD to decode that bit stream. After the profiling session has
stopped, sometimes is necessary to run another tool to analyze
the results obtained, normally writing the results in a file.A
diagram of the full process can be seen in Fig. 5.

PSV uses Cachegrind, the cache and branch-prediction
profiler of Valgrind to analyze the bit streams selected in
bitstreams.xml, once Cachegrind finish, it is recommended use
other tool in Valgrind to get a detailed presentation of the
profiling information. Cg_annotate can get only the

information desired and show that information, or generate a
file with selected information.

III. PREPARE YOUR PAPER BEFORE STYLING

To test PSV, several profiles using some of the common
videos used in the video research community were performed.
In Fig.6 and Fig 7 are shown some of the tests performed with
PSV to check the transaction data load of each block defined in
OSD as a function of the selected scalabilities.

REFERENCES

[1] vWiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A., “Overview
ofthe H.264/AVC video coding standard,” Circuits and Systems for
Video Technology, IEEE Transactions on , vol.13, no.7, pp.560-576,
(2003).

[2] Mrak, M., Sprljan, N., Izquierdo, E., “An overview of basic
techniquesbehind scalable video coding,” Electronics in Marine, 2004.
Proceedings Elmar 2004. pp. 597- 602, (2004).

[3] M. Blestel and M. Raulet, “Open SVC decoder: a flexible SVC
library,”Proceedings of the international conference on Multimedia
(MM '10). ACM, New York, NY, USA, 1463-1466, (2010).

[4] Valgrind Home Page, http://www.valgrind.org , (2013).

[5] Maiti, S.N., Gupta, A., Piccinelli, E.M., and Saha, K., “Real-time SVC
Decoder in Embedded System,” In Proceedings of SIGMAP. (2009).

[6] Joint Video Team, “Conformance testing,” http://wftp3.itu.int/av-
arch/jvt-site/bitstream_exchange/SVC/, (2008).

[7] Heiko Hübert and Benno Stabernack, “Profiling-Based
Hardware/Software Co-Exploration for the Design of Video Coding
Architectures”, IEEE TRANSACTIONS ON CIRCUITS AND
SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 19, NO. 11,
NOVEMBER 2009.

Figure 5. Process diagram in PySVCVal

Figure 4. Function.xml example

Figure 6. Transaction Data Load in OSD Blocks

Figure 7. Total Transaction Data Load

http://www.valgrind.org/

