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Abstract — This paper starts describing the existing techniques 

used to compress hyperspectral images. Contributions are then 

addressed on the hardware implementation of the Lossy 

Compression for ExoMars (LCE) algorithm. Synthesis results of 

its implementation on a Virtex-5 FPGA family are also shown in 

this work. These results are further compared with the FPGA 

implementation of the ESA lossless compression algorithm.  
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I.  INTRODUCCTION 

Hyperspectral images are usually captured and stored 
onboard a satellite or aircraft to be transmitted afterwards to a 
ground station. Present and future high resolution instruments 
for space remote sensing missions make it necessary for the 
onboard payload to handle an extensive amount of image data. 
The existing limitations in the available bandwidths and 
onboard storage often require to apply image compression to 
reduce the data volume prior to transmission to the ground 
segment. 

Typically, image compression techniques have been 
classified into two categories: lossless and lossy methods. 
Lossless compression has been traditionally desired to preserve 
all the information contained in the image. However, the 
compression ratios which can be achieved with such techniques 
are limited [1]. On the contrary, lossy compression yields 
higher compression ratios at the cost of introducing losses in 
the information [2]. Despite the loss of quality in the 
reconstructed image, these last techniques have become very 
popular, especially when the required compression is greater 
than what it can be achieved with lossless techniques. 

When hyperspectral images are acquired by a satellite, the 
compression algorithms have to be implemented in a piece of 
hardware able to operate onboard. Although coding efficiency 
is certainly a key aspect for onboard compression, the encoder 
complexity, error-resilience or hardware friendliness are 
requirements to be taken into account.  

In order to be able to operate in real time, the encoder 
complexity has to be limited as the computational power 
available onboard for compression is generally limited. The 
low complexity requirement generally rules out the application 
of transform coding methods. Therefore, the prediction plus 
entropy coding paradigm is amenable to low complexity.   

Algorithms should be capable of containing the effect of 
bit-flipping or packet losses in the compressed file. These 
errors typically occur because of the noise on the 
communication channel. The data partition into units that are 
coded independently is an approximation to alleviate this 
problem. 

Since onboard compression algorithms are usually 
implemented on FPGA or ASIC, the algorithm has to be 
designed using simple techniques. The algorithm should buffer 
a limited amount of data, e.g. not the whole hyperspectral cube, 
but a few spectral lines. Furthermore, in order to speed up the 
compression process the algorithm should be able to be 
parallelized. 

The rest of this paper is organized as follows. Section II 
describes the LCE algorithm [3]. Section III exposes the 
proposed implementation approach. Section IV presents the 
most significant results obtained and, finally, Section V 
outlines the conclusions extracted from this work. 

II. LOSSY COMPRESSION FOR EXOMARS (LCE) 

ALGORITHM 

The LCE algorithm [3] is designed to operate onboard a 
satellite and to achieve high compression ratios for the ESA-
ExoMars mission. The main objectives in its design are the low 
complexity, error-resilient and easy to implement on hardware. 
The algorithm consists of a predictor followed by a Golomb 
entropy coder. It compresses individual blocks of data 
independently, so that an error in one block does not affect the 
decompression of the rest of the blocks. 

A. Prediction 

The algorithm compresses independent non-overlapping 
spatial blocks of 16x16 pixels with all bands. Let        be the 

pixel of a hyperspectral image in the  -th line,  -th pixel and  -
th band. For the first band      , 2D compression is 
performed using a predictor defined as                    

            , where    denotes the predictor,    the decoded 

value and   stands for right shift. All predictor values, except 
for the first sample, are mapped to non-negative values. For all 
other bands, the samples are predicted from the decoded 
samples          in the previous band. A least-square estimator 

is computed as        . Quantized versions of  , denoted 
   , are generated using a scalar quantizer. Finally, the predicted 
values are computed for all samples in a block as  
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Figure 1.  Hardware controller (hwctrl) black-box model 

 

                              and the prediction error as  
                     .  

B. Rate-Distorsion Optimization 

If the prediction is close to the actual pixel value that it 
makes sense to skip the encoding of the prediction error 
samples, a one-bit-flag is raised indicating that the current 
block contains all-zero prediction samples (this is denoted as 
zero_block condition). 

C. Quantization and Mapping 

Prediction error samples are quantized to integer values, 
       , and dequantized to reconstructed values,        . It is 

possible to choose between a uniform scalar quantizer and a 
uniform-threshold quantizer. The reconstructed values are 
mapped to non-negative values. 

D. Entropy Coding 

The mapped prediction residuals of a block are encoded in 
raster order using a Golomb code which parameter is 
constrained to a power of two. 

III. HARDWARE IMPLEMENTATION OF THE LCE 

ALGORITHM 

The LCE algorithm was originally implemented in ANSI C 
programming language to be executed on a single threaded 
CPU. Based on the changes described in [4], the algorithm has 
been implemented by using the Catapult C Synthesis and 
ModelSim tools.  

A. Split of the algorithm into functionality independent 

modules 

The first step was to split the provided reference code into 
modules that being functionally independent perform the same 
global compression result. The outputs of this process 
produced eight modules implemented in ANSI C files 
independently. Special attention was made to the resulting 
interfaces because they will be latter the interface ports at 
hardware level. 

B. Module implementation by using Catapult C 

Once the modules were split, its implementation was 
performed by using the Catapult C Synthesis tool. At this step, 
the design methodology proposed by the tool was followed, 
setting global hardware constraints, such as, the clock 
frequency, to 100MHz, and the reset/enable behavior. The 
technology was set to the Xilinx family Virtex-5 model 
5VFX100TFF1136, speed grade -1. Also, the handshake 
protocol was configured to use start and stop signals.  The 
architectural constraints such as loop unrolling and initiation 
interval were studied and set for each module in particular. The 
output of this step was a synthesizable RTL code used for the 
implementation of the whole algorithm. 

C. Hardware controller implementation 

The final step carried out was the design, implementation 
and verification of a hardware controller module. This module 
manages each module and its data flow. Additionally, it 

controls the external interfaces. Fig. 1 shows the black-box 
model of the hardware controller module designed. 

IV. RESULTS 

This section presents the synthesis results obtained. The 
synthesis tool employed was Precision RTL from Mentor 
Graphics. The target platform to perform the synthesis was the 
Virtex-5 FPGA model 5VFX100TFF1136 with speed grade -1. 
Table I depicts the synthesis results obtained after the place and 
route of the whole hardware controller module. Table II 
presents the comparison between the LCE algorithm 
implementation and the ESA lossless implementation [4]. 

TABLE I.  INDEPENDENT MODULE SYNTHESIS RESULTS 

Module LUT Slices 
RAM 

Blocks 
DSP48 

Max. 

Frequency 

hwctrl 
7746 

(12,1%) 
1937 

(12,11%) 
4 

(0,88%) 
25 

(9,77%) 
86,964MHz 

TABLE II.  LCE VS. ESA LOSSLESS RESOURCE COMPARISON 

 
LCE Algorithm ESA Lossless [4] 

4VLX200 (-11) 5VFX100 (-1) 4VLX200 (-11) 

LUT 9283 7746 10306 

Slices 4642 1937 6312 

RAM Blocks 4 4 9 

DSP48 25 25 9 

Max. Frequency 75,844 MHz 86,964 MHz 81 MHz 

 

V. CONCLUSIONS 

As it is seen from Table II, the implementation results 
obtained for the LCE algorithm are comparable to the ESA 
lossless implementation. The main difference is the number of 
DSP used, which is greater for the lossy algorithm because of 
the mathematical operations involved. The results also show 
that the number of RAM required is really low for the LCE 
algorithm. 

The LCE algorithm has been implemented into an FPGA 
by using Catapult C tool. Design, implementation and 
verification of a hardware controller module which integrates 
the Catapult C implementation is also presented. The proposed 
implementation achieves synthesis results comparable to the 
ESA lossless implementation despite of its greater complexity. 
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