
Hyperspectral Image Compression Tecniques for

Space Applications

Aday García, Roberto Sarmiento, José F. López

Integrated System Design Division, IUMA

Universidad de Las Palmas de Gran Canaria (ULPGC)

Las Palmas de Gran Canaria, Spain

E-mail: agarcia@iuma.ulpgc.es, roberto@iuma.ulpgc.es, lopez@iuma.ulpgc.es

Abstract — This paper starts describing the existing techniques

used to compress hyperspectral images. Contributions are then

addressed on the hardware implementation of the Lossy

Compression for ExoMars (LCE) algorithm. Synthesis results of

its implementation on a Virtex-5 FPGA family are also shown in

this work. These results are further compared with the FPGA

implementation of the ESA lossless compression algorithm.

Keywords: hyperspectral image, lossy compression, low

complexity, error-resilience, hardware implementation

I. INTRODUCCTION

Hyperspectral images are usually captured and stored
onboard a satellite or aircraft to be transmitted afterwards to a
ground station. Present and future high resolution instruments
for space remote sensing missions make it necessary for the
onboard payload to handle an extensive amount of image data.
The existing limitations in the available bandwidths and
onboard storage often require to apply image compression to
reduce the data volume prior to transmission to the ground
segment.

Typically, image compression techniques have been
classified into two categories: lossless and lossy methods.
Lossless compression has been traditionally desired to preserve
all the information contained in the image. However, the
compression ratios which can be achieved with such techniques
are limited [1]. On the contrary, lossy compression yields
higher compression ratios at the cost of introducing losses in
the information [2]. Despite the loss of quality in the
reconstructed image, these last techniques have become very
popular, especially when the required compression is greater
than what it can be achieved with lossless techniques.

When hyperspectral images are acquired by a satellite, the
compression algorithms have to be implemented in a piece of
hardware able to operate onboard. Although coding efficiency
is certainly a key aspect for onboard compression, the encoder
complexity, error-resilience or hardware friendliness are
requirements to be taken into account.

In order to be able to operate in real time, the encoder
complexity has to be limited as the computational power
available onboard for compression is generally limited. The
low complexity requirement generally rules out the application
of transform coding methods. Therefore, the prediction plus
entropy coding paradigm is amenable to low complexity.

Algorithms should be capable of containing the effect of
bit-flipping or packet losses in the compressed file. These
errors typically occur because of the noise on the
communication channel. The data partition into units that are
coded independently is an approximation to alleviate this
problem.

Since onboard compression algorithms are usually
implemented on FPGA or ASIC, the algorithm has to be
designed using simple techniques. The algorithm should buffer
a limited amount of data, e.g. not the whole hyperspectral cube,
but a few spectral lines. Furthermore, in order to speed up the
compression process the algorithm should be able to be
parallelized.

The rest of this paper is organized as follows. Section II
describes the LCE algorithm [3]. Section III exposes the
proposed implementation approach. Section IV presents the
most significant results obtained and, finally, Section V
outlines the conclusions extracted from this work.

II. LOSSY COMPRESSION FOR EXOMARS (LCE)

ALGORITHM

The LCE algorithm [3] is designed to operate onboard a
satellite and to achieve high compression ratios for the ESA-
ExoMars mission. The main objectives in its design are the low
complexity, error-resilient and easy to implement on hardware.
The algorithm consists of a predictor followed by a Golomb
entropy coder. It compresses individual blocks of data
independently, so that an error in one block does not affect the
decompression of the rest of the blocks.

A. Prediction

The algorithm compresses independent non-overlapping
spatial blocks of 16x16 pixels with all bands. Let be the

pixel of a hyperspectral image in the -th line, -th pixel and -
th band. For the first band , 2D compression is
performed using a predictor defined as

 , where denotes the predictor, the decoded

value and stands for right shift. All predictor values, except
for the first sample, are mapped to non-negative values. For all
other bands, the samples are predicted from the decoded
samples in the previous band. A least-square estimator

is computed as . Quantized versions of , denoted
 , are generated using a scalar quantizer. Finally, the predicted
values are computed for all samples in a block as

mailto:agarcia@iuma.ulpgc.es
mailto:roberto@iuma.ulpgc.es
mailto:lopez@iuma.ulpgc.es

Figure 1. Hardware controller (hwctrl) black-box model

 and the prediction error as
 .

B. Rate-Distorsion Optimization

If the prediction is close to the actual pixel value that it
makes sense to skip the encoding of the prediction error
samples, a one-bit-flag is raised indicating that the current
block contains all-zero prediction samples (this is denoted as
zero_block condition).

C. Quantization and Mapping

Prediction error samples are quantized to integer values,
 , and dequantized to reconstructed values, . It is

possible to choose between a uniform scalar quantizer and a
uniform-threshold quantizer. The reconstructed values are
mapped to non-negative values.

D. Entropy Coding

The mapped prediction residuals of a block are encoded in
raster order using a Golomb code which parameter is
constrained to a power of two.

III. HARDWARE IMPLEMENTATION OF THE LCE

ALGORITHM

The LCE algorithm was originally implemented in ANSI C
programming language to be executed on a single threaded
CPU. Based on the changes described in [4], the algorithm has
been implemented by using the Catapult C Synthesis and
ModelSim tools.

A. Split of the algorithm into functionality independent

modules

The first step was to split the provided reference code into
modules that being functionally independent perform the same
global compression result. The outputs of this process
produced eight modules implemented in ANSI C files
independently. Special attention was made to the resulting
interfaces because they will be latter the interface ports at
hardware level.

B. Module implementation by using Catapult C

Once the modules were split, its implementation was
performed by using the Catapult C Synthesis tool. At this step,
the design methodology proposed by the tool was followed,
setting global hardware constraints, such as, the clock
frequency, to 100MHz, and the reset/enable behavior. The
technology was set to the Xilinx family Virtex-5 model
5VFX100TFF1136, speed grade -1. Also, the handshake
protocol was configured to use start and stop signals. The
architectural constraints such as loop unrolling and initiation
interval were studied and set for each module in particular. The
output of this step was a synthesizable RTL code used for the
implementation of the whole algorithm.

C. Hardware controller implementation

The final step carried out was the design, implementation
and verification of a hardware controller module. This module
manages each module and its data flow. Additionally, it

controls the external interfaces. Fig. 1 shows the black-box
model of the hardware controller module designed.

IV. RESULTS

This section presents the synthesis results obtained. The
synthesis tool employed was Precision RTL from Mentor
Graphics. The target platform to perform the synthesis was the
Virtex-5 FPGA model 5VFX100TFF1136 with speed grade -1.
Table I depicts the synthesis results obtained after the place and
route of the whole hardware controller module. Table II
presents the comparison between the LCE algorithm
implementation and the ESA lossless implementation [4].

TABLE I. INDEPENDENT MODULE SYNTHESIS RESULTS

Module LUT Slices
RAM

Blocks
DSP48

Max.

Frequency

hwctrl
7746

(12,1%)
1937

(12,11%)
4

(0,88%)
25

(9,77%)
86,964MHz

TABLE II. LCE VS. ESA LOSSLESS RESOURCE COMPARISON

LCE Algorithm ESA Lossless [4]

4VLX200 (-11) 5VFX100 (-1) 4VLX200 (-11)

LUT 9283 7746 10306

Slices 4642 1937 6312

RAM Blocks 4 4 9

DSP48 25 25 9

Max. Frequency 75,844 MHz 86,964 MHz 81 MHz

V. CONCLUSIONS

As it is seen from Table II, the implementation results
obtained for the LCE algorithm are comparable to the ESA
lossless implementation. The main difference is the number of
DSP used, which is greater for the lossy algorithm because of
the mathematical operations involved. The results also show
that the number of RAM required is really low for the LCE
algorithm.

The LCE algorithm has been implemented into an FPGA
by using Catapult C tool. Design, implementation and
verification of a hardware controller module which integrates
the Catapult C implementation is also presented. The proposed
implementation achieves synthesis results comparable to the
ESA lossless implementation despite of its greater complexity.

REFERENCES

[1] R.E. Roger and M.C. Cavenor, “Lossless compression of AVIRIS
images,” IEEE Transactions on Image Processing, vol. 5, no. 5, pp. 713–
719, May 1996.

[2] B. Penna, T. Tillo, E. Magli, and G. Olmo, “Transform coding
techniques for lossy hyperspectral data compression,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 45, no. 5, pp.
1408–1421, May 2007.

[3] A. Abrardo, M. Barni, and E. Magli, “Low-complexity predictive lossy
compression of hyperespectral and ultraspectral images”, ICASSP, 2011
IEEE International Conference, pp. 797-800, May 2011.

[4] Lossless Data Compression, Green Book, CCSDS 120.0-G-1, May 1997

[5] L. Santos, José F. López and R.Sarmiento, LCE GPU Implementation
Report. ESA Standard Document.

