
Hardware synthesis Methodology of N-FINDR
algorithm

Anabella Medina Machín, Gustavo Marrero Callicó, Sebastián López Suárez
Integrated System Design Division, IUMA

Las Palmas de Gran Canaria, Spain
allebana@gmail.com, gustavo@iuma.ulpgc.es, seblopez@iuma.ulpgc.es

Abstract—This paper presents a hardware synthesis methodology
for the implementation of the N-FINDR algorithm using
MATLAB. In order to implement hardware prototypes following
the time to market philosophy, we have developed a hardware
synthesis methodology for high-level languages. Using software
like Embedded C and Fixed Point MATLAB Toolbox and
Catapult C we have achieved good results in the synthesized
hardware for FPGAs with reduced execution results. In this
article we used the fixed point arithmetic as an alternative to
floating point which is not suitable for electronic devices such as
FPGAs.

Keywords: hyperespectral, endmember, methodology, N-
FINDR.

uring the last years, several algorithms for endmember
extraction have been published in scientific literature.

Despite the different nature of these algorithms, they all
demand a huge computational effort in order to extract the
endmembers of a hyperspectral image. Combined with the
high dimensionality of hyperspectral data, they cause serious
complications in the use of these algorithms in application
domains under real time constraints.

This paper proposes a fast implementation methodology of
one of the most popular endmember extraction algorithm, the
N-FINDR. This methodology is based in the synthesis of the
N-FINDR MATLAB algorithm.

To achieve this, software tools have been used to manage
embedded C code generation from MATLAB’s original code.
Having obtained the Embedded C code, we proceed to
perform the hardware synthesization from high-level
language. Before synthesizing the algorithm, we have to use
fixed point arithmetic instead of the inefficient floating point.

The Embedded C program generated is able to reproduce
the results of its original, while exhibiting a lower
computational complexity in comparison of the Matlab
algorithm. Using the proposed solution of fixed point for the
embedded C code obtain good results from frequency and
latency in the hardware synthesized by the example of Altera
Stratix III FPGA or Xilinx-SPARTAN6.

The rest of this paper is organized as follows. Section I
describes the N-FINDR algorithm, while Section II exposes
the methodology developed for synthetized MATLAB code
algorithm. Section III presents the most significant results
obtained and, finally, Section IV outlines the conclusions

extracted from this work.

I. THE N-FINDR ALGORITHM

The N-finder algorithm (N-FINDR) was developed by M. E.
Winter [1]. It finds a simplex of the maximum volume with a
given number of vertices, p. It is based on an assumption that
for a given p-vertex simplex, the simplex that yields the
largest volume will be the one whose p vertices are most likely
specified by the purest pixels. The vertices of an N-FINDR
found simplex are the desired set of endmembers.
Unfortunately, there are several disadvantages of
implementing the N-FINDR. One is that there is no provided
criterion to determine how many endmembers for the N
FINDR to generate. Another is that the N-FINDR uses
randomly generated vectors as initial endmembers, which is
not an effective way to initialize the algorithm. It generally
takes a long time to find a desired set of endmembers. Most
importantly, due to the nature of random initial endmembers,
the N-FINDR generally produces different sets of final
endmembers at separate runs.
In this section, we summarize the steps to implement the N-
FINDR according to [2].
1. Preprocessing:
 a) Let be the number of endmembers required for the

N-FINDR to generate.
 b) Apply a DR transform such as MNF to reduce the

data dimensionality from L to p where L is the total
number of spectral bands.

2. Exhaustive search:
 For an arbitrary set of data sample vectors e1, e2, ...,ep form
a p-vertex simplex specified by S (e1, e2, ..., ep) and define its
volume V(e1, e2, …,ep) by

V(e , … , e) = det 1 1 …1e e … e(p − 1)!

Find a set of data sample vectors in the data, denoted by {e*
1,

e*
2, …,e*

p}that form a p-vertex simplex to yield the maximum
value of:

{e*
1, e

*
2, …,e*

p} = arg { max{e} V(e1, e2, …,ep)}

The set of {e*

1, e
*
2, …,e*

p}is the desired set of endmembers
needed to be found. To complete the above exhaustive

D

search in this step require =	(!)/(! (−)!)
operations.

II. MATLAB CODE METHODOLOGY

SYNTHESIZATION

Programming in high level languages allows quick
development of algorithms. New programming tools like
Embedded and Catapult C allow fast hardware synthesis from
MATLAB code. For the best results of the synthesis it is
necessary to study the algorithm to simplify and adapt it to the
requirements of Embedded C. Furthermore, we have tested it
for the use of fixed point arithmetic and integer arithmetic to
improve the performance of the NFIND-R that runs on devices
without Floating Point Units. The proposed methodology for
the algorithm aims to simplify the process of hardware
synthesizing other algorithms developed in MATLAB. The
presented method selects the use of integer arithmetic, fixed
point or floating depending on the algorithm, the restrictions
imposed by Embedded MATLAB and taking into account the
possible generation of overflow in math calculations.

III. RESULTS

In this section, the performances of the different versions of
N-FINDR algorithms are compared.

Artificial hyperspectral images represent an excellent test
bench for the purpose of comparing the diferent algorithms. In
particular, the hyperspectral images used in this work were
generated by the demo software tool available at [3].

In order to evaluate the accuracy of the algorithms, the
Spectral Information Divergence (SID) measures the
difference between the extracted endmember and its
correspondent real endmember signature is calculated as
follows:

 , 	≡ (|) + (|) (|) 	≡ 	

	 = ∑ y 	 = ∑ .

TABLE I
N-FINDR SID ERROR

5

Endmembers

10

Endmembers

15

Endmembers

N-FINDR original 0,00241 0,0545 0,0153

N-FINDR Fixed Point 0,00261 0,0545 0,0153

N-FINDR C++ fixed 0,00227 0,0169 0,018

N-FINDR integer

arithmetic
0,00479 0,0545 0,0153

TABLE II

N-FINDR FRECUENCY

 Freq. MHz

N-FINDR original 37,164

N-FINDR Fixed Point 48,783

N-FINDR C++ fixed 33,568

N-FINDR integer

arithmetic
32,624

TABLE III

N-FINDR LATENCY CYCLES

 Latency cycles

N-FINDR original 3.932.839

N-FINDR Fixed Point 2.492.406

N-FINDR C++ fixed 1.311.286

N-FINDR integer

arithmetic
1611

IV. CONCLUSION
As seen from both tables, the SID error results are very

similar between de different implementations. On the other
hand, the frequently results are better for the N-FINDR Fixed
Point implementation. However, that information could not be
good at all, because it can refers to the frequently of internal
operations that not necessary produce a data out. So, we
decide that latency cycles could be better to perform the
comparative algorithm. So, the N-FINDR integer arithmetic
present good result for the latency cycles data.

V. REFERENCES

[1] Winter, M. E. "N-finder: An algorithm for fast autonomous spectral

endmember determination in hyperspectral data." (Image Spectrometry V,
Proc. SPIE) 3753, no. 266-277 (1999).

[2] Chein-I Chang, Fellow, IEEE, Chao-Cheng Wu, Member, IEEE, and
Ching-Tsorng Tsai. "Random N-Finder (N-FINDR) Endmember
Extraction Algorithms for Hyperspectral Imagery." IEEE
TRANSACTIONS ON IMAGE PROCESSING 20, no. 3 (2011).

[3] Bioucas. http://www.lx.it.pt/~bioucas/code.htm. .

