
PCI Express FPGA Platform for Big Data

Applications
Irene González Crespo, Pedro Pérez Carballo and Antonio Núñez Ordóñez

IUMA, Institute for Applied Microelectronics, University of Las Palmas de Gran Canaria, Spain
{igcrespo,carballo,nunez}@iuma.ulpgc.es

Abstract— This paper presents the work done to create a

platform that combines PCI Express and data classification. It is

divided in two parts. The first one focus on the implementation of

the PCI Express communication bus that allows a fast and

efficient communication between the FPGA and the system host.

By doing so the FPGA allows the use of PCI Express as a data

interface. The second one focus on the development of a data

sorter for Big Data applications. This allows the use of streamed

data. For this reason, the combination of both parts provides the

consolidation of a processing system for Big Data, but it also

facilitates its re-utilization for other applications (DPI, CEP, …).

The system implementation has been done on an ZC706 Xilinx

development board.

Keywords— PCI Express; Big Data; FPGA; sorting; classifier;

RIFFA; bitonic sorting

I. INTRODUCTION

In the last decade the breakthroughs in data traffic and
analysis have required new methods capable to process
extensive amounts of data in real time. This implies the
necessity of new systems to improve their bandwidth and
latency. Big Data appears as a solution to those problems
allowing the storage and processing of large quantities of data
[1].

MapReduce is a parallel program model used in Big Data
as basic structure [2]. A sorting of the data between the map
and reduce stages is necessary to reduce the complexity of
these stages. The significance of classifiers is the increasing
need in easing the processing and distribution of data.

Also, the bandwidth between the FPGA and the host CPU
is a key parameter that needs to be improved. PCI Express is a
fast and efficient solution that exploits the bandwidth of the
system [3].

II. PCI EXPRESS

PCI Express is a point-to-point serial interconnection
protocol, that allows a high bandwidth and introduces
scalability and versatility. It can be implemented in a huge
variety of applications, like mobile devices, servers,
communication platforms or embedded systems [4].

PCI Express is a communication bus that is compatible
with PCI and PCI-X, its predecessors. It implements a packet
based communication protocol and is part of a third generation
of input/output buses of high performance. The use of a layer
model with three principal layers –the physical layer, the data
link layer and the transaction layer– provides integrity to the
bus [5], [6]. In Fig.1 the connection between the layers is
shown. It requires the use of TLPs to do the communication
between the devices through PCI Express. The allowed
transactions are divided into four categories: memory
(read/write), input/output (read/write), configuration

(read/write) and messages [7]. The messages are bursts of
control information or data sent from buffer to buffer.

Figure 1: Layers of PCI Express

It also implements a control flow; this confirms that every
receiver buffer has enough space to accept the information
from the transmitter. Because of this most errors are avoided
and there is no need for forwarding packets support.

ZC706 has an integrated block for PCI Express from the 7
series of Xilinx FPGAs [8]. This block allows the
implementation of PCI Express over the platform, providing
scalability, high bandwidth and reliability. All the
characteristics of this block are based on the PCI Express
specification. The implementation of Gen1 and Gen2 are
available, as well as the channel configuration from 1, 2, 4 or 8
lanes. Also, it offers AMBA AXI-4 Stream interfaces as user
interfaces.

Due to the use of less signals than the previous
communication protocols, PCI Express is a low power bus. It
allows the individual power management of each integrated
device. It also supports error management and the addition of
multiple data structures, including isochronous transmissions.

III. RIFFA

RIFFA (Reusable Integration Framework for FPGA
Accelerators) integrates the PCI Express communication bus
between the host CPU and the FPGA [9]. Its main objective is
to improve the implementation of applications in FPGAs and to
expand its use. RIFFA allows communication and
synchronization of software and hardware through a standard
interface. It includes flexibility and reusability in the designs.

RIFFA does not require specialized hardware or licensed
IPs. It only requires a host with the PCI Express
communication bus enabled and a FPGA with a PCI Express

peripheral. RIFFA offers support for Windows and Linux OS,
and the APIs for its implementation are developed in C/C++,
Python, MATLAB and Java. Nevertheless, its hardware
implementation includes an interface with independent
transmission and reception signaling, handshaking and first
word fall through a FIFO interface [10]. Yet, the use of RIFFA
provides a 97% of the allowed bandwidth of PCI Express. In
Fig. 2 the architecture of RIFFA is presented.

Figure 2: Architecture of RIFFA 2

However, for its implementation the FPGA Xilinx ZC706
is selected. In this project we have used RIFFA version 2.2.2.
The design has been synthesized in the Vivado 2018.1 version.
The original code has been adapted for this version of the tools
and the prototyping board. Most of the modification are related
with the Verilog code and the support for new versions of
SystemVerilog.

The diagram of the RIFFA platform over ZC706 is shown
in Fig. 3. In this block diagram the RIFFA block is presented,
connected to the PCIeGen2x4lf128, that includes the PCIe
block from Xilinx. The inputs and outputs of the system are
displayed, as well as the signals for its synchronization.

Figure 3: Diagram of the RIFFA platform over ZC706

After the completion of the synthesis and the
implementation the results of its utilization resources are
obtained. In this project two different implementations of
RIFFA are made; the first one has an AXI interface width of
128 bit, and the second one of 64 bit. The comparison of these
two projects is shown in Table 1.

TABLE I. UTILIZATION RESOURCES OF RIFFA IMPLEMENTATION OVER

ZC706

Resources
RIFFA Implementation over ZC706

AXI 128 bit AXI 64 bit

LUT 7.364 (3,37%) 5.343 (2,44%)

LUTRAM 225 (0,32%) 157 (0,22%)

FF 12.061 (2,76%) 9.186 (2,10%)

BRAM 31 (5,69%) 24 (4,40%)

IO 5 (1,38%) 5 (1,38%)

GT 4 (25,00%) 4 (25,00%)

BUFG 6 (18,75%) 4 (12,50%)

MMCM 1 (12,50%) 1 (12,50%)

PCIe 1 (100%) 1 (100%)

IV. BITONIC SORTING

Bitonic sorting is a sorting network specially used in
applications with high classification rates. It is a parallel
algorithm that realizes comparisons through a predefined
sequence [11], [12]. It uses a bitonic sequence which first half
values are ascending and its second half values are descending.
The bitonic sorting algorithm starts from a bitonic sequence.
Then realizes the comparison between the first element of the
first half and the first element of the second half and exchanges
them in case the first one is greater than the second.
Subsequently, it realizes the same comparison between the
second element of the first half and the second element of the
second half, and so on. When it finishes these comparisons,
two bitonic sequences are created. So, it realizes the
comparisons for each bitonic sequence separately. These stages
should be repeated, until the width of the bitonic sequence is
the unit, thereby the data are sorted. In Fig. 4 an example of
bitonic sorting for an 8-element array is shown.

Figure 4: Performance of the bitonic sorting algorithm

Due to its parallelizable capability it is a great choice for its
implementation in FPGAs [11]. In Fig. 5 the design of the
bitonic sort developed in this project is presented. 8 bit AXI4-
Stream in and out interfaces are selected for its further
implementation in Big Data applications. The key-values are
sent sequentially, because each of them has a value of 8 bit.

Figure 5: Design of the bitonic sort developed

V. FINAL SYSTEM

Once the RIFFA and the bitonic sort are implemented in the
platform, a final system including both of them is created. The
block diagram of its implementation is shown in Fig. 6. The
RIFFA version with the 128 bit AXI width is selected. The
layout of the final system is presented in Fig. 7. As displayed,
the yellow cells are the RIFFA block, the green cells are the
bitonic sort and the orange cells are the PCIe Xilinx block. The
utilization resources of the final system implementation are
presented in Table 2. There is a comparison between the full
system, the RIFFA module (without the Xilinx PCIe block),
and the classifier (bitonic sort).

Figure 7: Block design of the final system

TABLE II. UTILIZATION RESOURCES OF RIFFA IMPLEMENTATION OVER

ZC706

Resources
Final System Implementation over ZC706

Complete System RIFFA Bitonic sort

LUT 9.559 (4,37 %) 5.172 (2,37 %) 522 (0,24 %)

LUTRAM 467 (0,66 %) 187 (0,27 %) 0 (0,00 %)

FF 15.547 (3,56 %) 9.139 (2,09 %) 566 (0,13 %)

BRAM 30 (5,50 %) 24 (4,40 %) 1 (0,18 %)

IO 5 (1,38 %) 0 (0,00 %) 0 (0,00 %)

GT 4 (25,00 %) 0 (0,00 %) 0 (0,00 %)

BUFG 7 (21,88 %) 0 (0,00 %) 0 (0,00 %)

MMCM 1 (12,50 %) 0 (0,00 %) 0 (0,00 %)

PCIe 1 (100%) 0 (0,00 %) 0 (0,00%)

VI. CONCLUSIONS

In this paper, a PCI Express platform for Big Data
applications is presented. The advantages of implementing a
communication bus with high throughput and low power
consumption on FPGA produces a system with great
performance that can be implemented in a lot of applications.
However, the implementation of a sorting algorithm, like
bitonic sort, provides a system that easiness the processing and
distribution of data. Combining these two systems an efficient
platform is obtained. Hence, it can fulfill the necessities of Big
Data applications.

REFERENCES

[1] K. Neshatpour, A. Sasan, and H. Homayoun, “Big

data analytics on heterogeneous accelerator

architectures,” CODES+ISSS. ACM, Pittsburg, PA

(USA), 2016

[2] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski,

and C. Kozyrakis, “Evaluating MapReduce for Multi-

core and Multiprocessor Systems,” in 2007 IEEE 13th

International Symposium on High Performance

Computer Architecture, 2007, pp. 13–24

[3] Y.-T. Yang, S.-T. Zhang, Z.-C. Li, M.-D. Zhang, and

G.-C. Cao, “Design and Implementation for High

Speed Data Transfer Interface of PCI Express Based

Figure 6: Block design of the final system

on Zynq Platform,” Dianzi Keji Daxue

Xuebao/Journal Univ. Electron. Sci. Technol. China,

vol. 46, no. 3, pp. 522–528, 2017.

[4] J. Lawley, “Understanding Performance of PCI

Express Systems,” Xilinx. 2014

[5] E. Solari and B. Congdon, “Chapter 2: PCI Express

Architecture Overview,” in The Complete PCI

Express Reference. Design Insights for Hardware and

Software Developers, Intel Press, 2003, pp. 41–91.

[6] N. Budruk, D. Anderson, and T. Shanley, “Chapter 2:

Architecture Overview,” in PCI Express System

Architecture, Ed. Addison Wesley, 2004, pp. 55–105.

[7] N. Budruk, D. Anderson, and T. Shanley, “Chapter 4:

Packet-Based Transactions,” in PCI Express System

Architecture, Ed. Addison Wesley, 2004, pp. 154–209.

[8] X. Inc., 7 Series FPGAs Integrated Block for PCI

Express v3.3, PG054 ed. 2016

[9] D. Richmond and M. Jacobsen, “RIFFA 2.2.2

Documentation.” 2016

[10] M. Jacobsen, D. Richmond, and M. Hogains, “RIFFA

2.1: A Reusable Integration Framework for FPGA

Accelerators,” ACM Trans. Reconfigurable Technol.

Syst., vol. 8, no. 4, 2015

[11] M. Roozmeh, “High Level Synthesis of Bitonic

Sorting Algorithm,” GitHub, 2016. [Online].

Available: https://github.com/mediroozmeh/Bitonic-

Sorting

[12] “Bitonic Sort,” GeeksForGeeks, 2018. [Online].

Available: https://www.geeksforgeeks.org/bitonic-

sort/

	I. Introduction
	II. PCI EXPRESS
	III. RIFFA
	IV. Bitonic Sorting
	V. Final System
	VI. Conclusions
	References

