
Recognition of the Spanish Sign language alphabet

based on the Leap motion Controller

Gilberto Naranjo García, Valentín de Armas Sosa, Félix B. Tobajas Guerrero.

Institute for Applied Microelectronics (IUMA)

University of las Palmas Gran Canaria (ULPGC), Spain

{gnaranjo, armas, tobajas}@iuma.ulpgc.es

Abstract—The World Health Organization estimates that there is

around 360 million people who suffer from audition deficiency.

In a national level, there is around 1 million people, whom 10%

of those use the sign language to communicate. Accordingly, the

main objective of this paper is to design and develop a unique

platform with capabilities of translating from the Spanish sign

language alphabet into written text. To do so, it was necessary to

carry out studies to determine the parameters that would be

extracted in order to discriminate between the different symbols

of the language and by means of a support vector machine,

ultimately identify the corresponding letter to the symbol

presented.

Keywords: OMS, Spanish sign language, Leap Motion

controller, Hardware/Software platform, Support Vector Machines.

I. INTRODUCTION

The Spanish dactylological language (SDL) is considered to
be an alphabetical system, although it is not international and
therefore each country has its own. [1] On this sense, among
years, there has been many technological developments which
aimed to solve the audition deficiency, being each solution
specific to the region of development. The recognition systems
developed are based in different means of data capture, being
the most common those which use images to sense the depth
and capture the position of hands and figures. [2] Other
systems use external sensors in order to capture data, [3] and
there is also those based in multimodal sensing [4] which use a
combination of techniques to achieve the data recollection.

In a more specific approach, this paper is based on the
development of a platform which uses image processing to
extract relevant data from the Leap Motion Controller (LMC).
[5] The device is able to provide detailed information about the
position of each hand detected within its field of view. [6] The
software that operates the controller is able to recognize the
position of the fingers with a precision of 0.01 mm, bearing a
transmission frequency of up to 100 Hz. [7] Alongside with the
hardware presented, the company developed a Software
Developer Kit (SDK) which allow for the extraction of the
specified data. Therefore, a code had to be developed in order
to enable the extraction of the parameters and subsequently
develop a classifier based on Support Vector Machines (SVM),
that would realize the identification of symbols. The use of this
type of classifiers can increase the recognition rate of each
symbol up to 80% [8].

II. LEAP MOTION CONTROLLER

The LMC is a controller based in gestures [9] for human-
computer interaction. It has the capability of tracking hand and
finger position in real time, enclosed in a tridimensional space
and with a precision of 0.01 mm. It has a working range of 1 m
due to its vision field which is of approximately 150º in its
widest part. The effective range for data capture is directly
above the controller, however, it comes with a preestablished
working position, implying that if the device is not positioned
within the orientation of its working position, the controller
won’t be able to detect the change and adapt to it. [10] There
are two preestablished working positions: the first implies the
controller being laid over a flat surface and necessarily
connected to a computer via USB. Whilst the other position is
mounted to virtual reality glasses, this is possible thanks to an
update of the software’s hardware control, which allows the
interaction with glasses such as Oculus rift. [11]

A. Hardware

The LMC is composed of 3 infrared LED, mainly used to
lighten up the vision field of the controller. Two
monochromatic infrared cameras with a 4 cm separation
between themselves, being capable of capturing a framerate
within the range of 50 up to 200 fps, depending onto which
port is connected. The controller also incorporates the
Macronix 25L320E [12][13] integrated circuit to store the
firmware of the controller, this is a 32 Mbit serial NOR flash.
Alongside with a FX3 SuperSpeed USB 3.0 controller. [14] In
this case the USB CYUSB3014-BZXC [13][15] from Cypress
Semiconductor.

B. SDK

The Software Developer Kit is directly downloadable from

its official webpage. [16] Within the kit is also included an

Application Programming Interface (API) which divides into

data structures. These structures are divided into objects that

represent Hand and are composed of other objects

representing the Fingers and Bones that compose each

detected hand.

Within the files included in the kit there is a main library

that was employed in the development of the software side of

the application. This is named LeapC.h and its organized in a

hierarchical way, being the superior entity, the Frame

captured with the cameras. The Frame entity encompasses the

Hands entity in the same way that Fingers are contained in

Hands. As such demonstrated in Figure 1.

Figure 1. Leap Hierarchy.

III. SVM

There are numerous different options when it comes to

classification. From those, the SVM algorithm was proposed

for this paper. This is mainly based on the fact that once the

classification is made the solution will be global and unique,

also this type of classifier allows for a simplification of the

adjustment parameters that are available.

A. LIBSVM

The classifier was introduced by means of LBISVM [17],

which is a library specifically developed to simplify the

adaptation of this kind of algorithms into other specific

developments, such as the one presented in this paper. The

library is described as simple, efficient and easy to use tool,

that supports: SVC (Support Vector Classification), SVR

(Support Vector Regression), One-class SVM.

In this case, the option chosen corresponds to the SVC,

which allows for multiclass classification, by applying the

“one-against-one” method. Accordingly, this paper focuses on

the classification of 30 different symbols. Because the

symbols are not lineally separable it was necessary to use a

kernel function named RBF (Radial Base Function), this

function includes two main tuning parameters that allow for a

correct calibration of the classifier. The parameters are known

as: C and Gamma. Due to previous studies, such as [18], the

starting value for these two adjustment parameters is the one

showed in Table I.

TABLE I. INITIAL C AND GAMMA

C Gamma

100 0.0001

Once the package is downloaded from the developer’s

webpage [17], the package includes different files. The main

ones utilized in this paper are the main library files that

describe the use of the classifier along with some specific

functions and some precompiled executables to be used

through the windows command line. The library files included

are: svm.h and svm.cpp, these files are to be used in the

development of a project which aims to include the classifier

within its execution. In the same way these include some

specific functions that are required to carry out a classification

with this type of algorithm, being those: scale, train and

predict.

On the other hand, the precompiled files which are

included provide the ability of executing those specific

commands directly through Windows Terminal. The files

included are: svm-scale.exe, svm-train.exe and svm-

predict.exe, along some other ones which are not used in the

development of this work. This type of files are the ones used

to make the experiments and therefore check the variations in

classification alongside the development of the work.

IV. INITIAL DEVELOPMENT

The initial step towards the implementation of the platform
was to decide over the parameters that could be extracted from
the LMC’s SDK. Initially a code was written in C/C++, which
main objective was to dump the results into a log file, giving
the opportunity of analyzing those extracted parameters in a
more in-depth manner. A pull back is that the SDK only
allowed for the extraction of Finger rotation data in form of
quaternions.

A. Quaternions

Quaternions are a way of describing 3D rotations, although

they where introduced in 1844 [19] its use is no very extended

due to the difficulty they present when it comes to

visualization. A quaternion q(q0, q) is composed of a scalar q0

and a vector q = (q1, q2, q3). This way of repressing the

rotation is not useful for the development of the project and

therefore a transformation to Euler’s rotation had to be

applied. On this sense, a rotation matrix had to be introduced

in order to obtain the rotation of the Fingers along Euler’s

theorem. The rotation matrix utilized is as follows in Figure 2.

Figure 2. Rotation matrix.

B. Static symbol recognition

When obtained the rotation matrix, it was possible to
extract the angle of rotation of each finger in degrees by
applying the mathematic transformation of multiplying vectors.
In Figure 3, a representation of how to obtain the angle
corresponding to the flexion of each Bone is shown.

Figure 3. Flex angle. [20]

As already mentioned, to obtain the angle in degrees it was
necessary to apply the formula shown in Figure 4.

Figure 4. Math transformation.

Once obtained the flex angle of each Finger, it was possible
to finally establish the parameters that would be extracted for
the static symbol recognition, and those are as follows in Table
II.

TABLE II. STATIC PARAMETERS

Parameter Description Data Structure

bones.rotation Finger rotation. LEAP_QUATERNION

Flex angle
Flex level of each

finger.
FLOAT

digits.is_extended

Whether a finger is

considered extended or

not.

LEAP_DIGIT

 The extraction of parameters was dumped into a log file, that
later would be used in combination with precompiled binaries
included in the LIBSM. By means of these and following the
strict procedure the developer of the library includes, a
classification could be made. The main objective here was to
obtain the parameters that could discriminate the most between
the different symbols, and therefore simplify the classification,
making it easier for the algorithm to group correct instances.
This first experiment provided a sufficient accuracy level for
the classification, validating the selected parameters for the
static symbol recognition.

C. Dynamic symbol recgonition

When a high enough classification was obtained for the
static symbols, the focus was set in finding some extra
parameters that could discriminate specifically the dynamic
symbols of the SDL.

Due to the specific movement of the hand for this type of
symbols the parameter palm.Velocity had to be introduced, this
identifies the velocity of the palm of a detected Hand within
the system. On the other hand, there are great similarities
between some dynamic letters of the Spanish sign language
alphabet, and therefore another parameter had to be introduced.
In this case it was necessary to control the movement of the
pinky Finger. It was decided to introduce the calculus of the
standard deviation for both the velocity of the palm of the
Hand and the pinky Finger flex angle. Accordingly, if there
was deviation above a threshold level, previously established
for each parameter, it was considered that the result
demonstrated the movement of the Hand and the pinky Finger.

Hereafter, in Table III, the parameters selected for the
recognition of the dynamic symbols is presented.

TABLE III. DYNAMIC PARAMETERS

Parameter Description Data Structure

bones.rotation Finger rotation. LEAP_QUATERNION

Flex angle
Flex level of each

finger.
FLOAT

digits.is_extended

Whether a finger is

considered extended or

not.

LEAP_DIGIT

Palm.Velocity

Standar Deviation

Rate of change of a

Hand.
LEAP_VECTOR

Pinky flex angle

Standard Deviation

Rate of change of pinky

flex angle.
FLOAT

The results derived from the extraction of the parameters
shown above, were dumped into a log file, once again. From
this newly created file, was applied the procedure of
verification stablished previously, this is, by means of the
precompiled headers in the LIBSVM, carry out the
classification of the dynamic symbols. Following, the
procedure stablished by the developer of the library and
accuracy value was obtained. In this case the obtained level
was not sufficient. This triggered another study to find out
another parameter that could help solve this situation.

In the Spanish dactylological language there is a clear
differentiation between symbols executed with the palm
focused towards the LM controller and those which the palm is
directly opposite to the device. Therefore, the parameter that
was later introduces was palm.normal, this parameter obtains
the normal vector of a Hand, allowing to differentiate between
whether a palm is focused downwards or upwards.

Once again, in Table IV, the final parameters that would be
used in the development of the complete system, are presented.

TABLE IV. COMPLETE PARAMETERS

Parameter Description Data Structure

bones.rotation Finger rotation. LEAP_QUATERNION

Flex angle
Flex level of each

finger.
FLOAT

Parameter Description Data Structure

digits.is_exten

ded

Whether a finger is

considered extended or

not.

LEAP_DIGIT

Palm.Velocity

Standar

Deviation

Rate of change of a

Hand.
LEAP_VECTOR

Pinky flex

angle Standard

Deviation

Rate of change of pinky

flex angle.
FLOAT

Palm.normal
Normal axis of the

palm of a Hand.
LEAP_VECTOR

With the introduction of the new parameter the accuracy
level for the classification of the dynamic symbols upgraded,
reaching a level that could be suitable for the development of
the translating platform.

V. FINAL DEVELOPMENT

To continue with the development of the project, it was
necessary to test the completed datasets which were generated
for the 30 symbols that compose the SDL. Once both the static
and dynamic symbols data sets where unified, the experiment
was carried out, with expectations of proving the correct
classification of the complete dactylological alphabet. This
experiment was relatively similar to the one corresponding to
the classification of the complete dynamic dataset, being the
only main differentiation that for the first experiment, only the
dynamic symbol dataset was used whilst for this experiment
the complete dataset was going to be used.

The accuracy level for this experiment was 98.8% of
correct classifications. For this specific case, the result was not
satisfactory, this is mainly due to the fact that for the
development of the real-time translation platform, it was
necessary to obtain an accuracy level of 100%, corresponding
to a correct classification of all the different symbols of the
SDL. Therefore, it was implied that a correction of the tuning
parameters of the classifier had to be applied.

The parameters to be tuned are those related to the kernel
function utilized in the classifier, this are: C and Gamma. A
study was carried out in order to settle the correct value for
these parameters. Finally, it was found out that the parameters
had to be tuned as it can bee seen in Table V.

TABLE V. FINAL C AND GAMMA

C Gamma

90 0.0005

 After tuning the parameters, the same experiment was
carried out. In this case the accuracy level obtained correspond
with complete correct classification of the whole dataset. This
validates the use of the tuned parameters.

VI. FINAL PLATFORM

When the complete classification of the whole dataset was
obtained correctly, the main focus of the project was to create a
unique platform that could encompass all the previously stated,
as well as make real time classification of the DSL.

Along the execution of each experiment, a code had to be
developed in order to obtain the extraction of the parameters of
interest. The code that initially extracted only parameters for
static symbols was developed into another that could not only
extract the required information for all the symbols of the
dactylological language, but also included the algorithm for
classification.

In order to control the platform a menu had to be introduced,
displaying the different options that are available to the user,
from this menu different specific functions can be called and
utilized. These functions are comprised of the instructions and
math transformations required to carry out, from the capturing
and extraction of the desired information to the classification of
the same, and therefore the obtention of the letter
corresponding to the presented symbol.

In Figure 5, it can be observed the menu function for the
final platform.

Figure 5. Menu function

Hereafter in Figure 6, an example of the execution of the
system can be observed.

Figure 6. Complete Execution

VII. RESULTS

In this section the results of each classification realized
through the development is presented. The main evaluation
criteria for classifiers is through the accuracy level, which
represents the total number of correct classifications made.
Visually this can also be represented by means of a confusion
matrix, in which a matrix of n * n dimension is created, where
n represents the number instances. The main column represents
the real instances whilst on the main row, the predicted
instances are represented. This establishes and effective
visually attractive way of verifying the results of the
classification procedure.

Accordingly, the initial experiment was the one
corresponding to the classification of the static symbols. As
result of the experiment the confusion matrix observed in
Figure 7 is obtained.

Figure 7. Static Symbols

In this case the classifier correctly grouped 51 of the 54
available instances, this result corresponds to a 94.4% of
accuracy. The next experiment carried out was the
classification of the dynamic symbols, after the palm.normal
parameter was introduced. In Figure 8, the results are shown.

Figure 8. Dynamic Symbols

For this case the algorithm classified correctly 34 of the 36
possible instances. Once more the accuracy level according to
this classification corresponds with the 94.4%. The experiment
carried out was with the complete dataset, including both the

static and dynamic symbols of the SDL. In Figure 9 the results
are shown.

Figure 9. Complete Symbols

Once both datasets where combined and the experiment
carried out, there was a reduction of the classification errors,
for this specific case, the algorithm correctly arranged 89 of the
90 possible symbols, establishing an accuracy level of 98.8%.
As mentioned before, although this result is pretty good, it is
not sufficient for the development of the platform. Therefore,
the C and Gamma parameters of the kernel function where
tuned, resulting as it shows in Figure 10.

Figure 10. Complete Symbols & tuning

Figure 10 shows a complete correctly classified confusion
matrix, this corresponds to an accuracy level of 100%,
achieving finally the objective of classifying all instances
correctly. This, in combination with the development of a
unique platform that carries out the complete process,
comprises the main objective of the development of the paper.

VIII. CONCLUSIONS

According to the results obtained in each experiment, it can
be established that this work has achieved the main goal of
creating and developing an interactive platform, based on the
Leap Motion Controller, which can translate from the Spanish
sign laguage alphabet into written text.

The platform was designed to be the most user friendly as
possible, making it pretty easy to use it. On the other hand, it
was also degined to have the least possible latency, taking only
a few seconds to complete the whole process.

REFERENCES

[1] Fundación Once, “Datilológico”. [Online] Available:
http://ares.cnice.mec.es/informes/17/contenido/19.htm. [Accessed:
March 2019]

[2] Marcus V. Lamar, Md. Shoail Bhuiyan, Akira Iwata. “Hand alphabet
recognition using morphological PCA and neural networks Neural
Networks”; IJCNN '99. (1999).

[3] "Un guante inteligente que traduce el lenguaje de signos a texto y
audio." 2015. [Online] Available: https://descubrearduino.com/un-
guante-inteligente-que-traduce-el-lenguaje-de-signos-a-texto-y-audio/.
[Accessed: March 2019]

[4] H. Liu, Z. Ju, X. Ji, C. Chan and M. Khoury, “Human Motion Sensing
and Recognition”, 1st ed. Berlin, Heidelberg: Springer. Berlin
Heidelberg, 2017, pp. 1-64. ISBN: 978-3-662-53692-6.

[5] Leap Motion, 201. [Online] Available: http://www.leapmotion.com/.
[Accessed: March 2019]

[6] Mischa Spiegelmock. “Leap Motion Development Essentials”; Packt
Publishing (2013). ISBN-10: 1849697728.

[7] Michał Nowicki, Olgierd Pilarczyk, Jakub Wasikowski, Katarzyna
Zjawin. “Gesture Recognition library for Leap Motion controller”.
Poznan, Polonia, 2014. [Online] Available:
http://www.cs.put.poznan.pl/wjaskowski/pub/theses/LeapGesture_BScT
hesis.pdf [Accessed October 2019].

[8] Makiko Funasaka, Yu Ishikawa, Masami Takata, and Kazuki Joe. “Sign
Language Recognition using Leap Motion Controller”. Nara, Japan
(2015). [Online] Available:
https://pdfs.semanticscholar.org/68ef/18393db775cccfe55d2e806b40a95
dd53f31.pdf [Accessed October 2019].

[9] Jaagrup Irve. “Gesture Evaluation for Leap Motion”. Tallinn 2015.
[Online] Available: https://digi.lib.ttu.ee/i/file.php?DLID=3579&t=1
[Accessed October 2019].

[10] Jaagrup Irve. “Gesture Evaluation for Leap Motion”. Tallinn 2015.
[Online] Available: https://digi.lib.ttu.ee/i/file.php?DLID=3579&t=1
[Accessed October 2019].

[11] Jaagrup Irve. “Gesture Evaluation for Leap Motion”. Tallinn 2015.
[Online] Available: https://digi.lib.ttu.ee/i/file.php?DLID=3579&t=1
[Accessed October 2019].

[12] Candemir Orsan. “What’s Inside? – Vol 1: Leap Motion”. 2014.
[Online] Available: https://medium.com/@candemir/taking-things-apart-
vol-1-leap-motion-36adaa137a0a [Accessed October 2019].

[13] Macronix International Co. “Serial NOR Flash MX25L3206E
Specifications”. [Online] Available: http://www.macronix.com/en-
us/products/NOR-Flash/Serial-NOR-
Flash/Pages/spec.aspx?p=MX25L3206E&m=Serial%20NOR%20Flash
&n=PM1568 [Accessed October 2019].

[14] Cypress Semiconductor. “Leap Motion Selects Cypress's EZ-USB®
FX3™ Solution for Controller Components”. 2013. [Online] Available:
http://www.cypress.com/?rID=74083 [Accessed October 2019].

[15] Macronix International Co. “Serial NOR Flash MX25L3206E
Specifications”. [Online] Available: http://www.macronix.com/en-
us/products/NOR-Flash/Serial-NOR-
Flash/Pages/spec.aspx?p=MX25L3206E&m=Serial%20NOR%20Flash
&n=PM1568 [Accessed October 2019].

[16] Cypress Semiconductor. “EZ-USB FX3 CYUSB3014-BZXC
Specifications”. [Online] Available:
https://www.cypress.com/part/cyusb3014-bzxc [Accessed October
2019].

[17] Leap Motion Developer. “Get Started”. [Online] Available:
https://developer-archive.leapmotion.com/get-started [Accessed October
2019].

[18] Chang C, Lin C. “LIBSVM: A library for support vector machines”.
National Taiwan University. 2011. [Online] Available:
https://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf [Accessed October
2019].

[19] Claudia R. Rivero. “Plataforma para la interpretación del alfabeto
dactilológico de la lengua de signos española basadas en dispositivos
IoT”. Universidad de Las Palmas de Gran Canaria. 2018.

[20] JONGCHAN BAEK, HAYEONG JEON, GWANGJIN KIM, SOOHEE
HAN. “Visualizing Quaternion Multiplication”. [Online] Available:
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7930375
[Accessed October 2019].

[21] P.D.S.H. Gunawardane, Nimali T. Medagedara. “Comparison of Hand
Gesture inputs of Leap Motion Controller & Data Glove in to a Soft
Finger”. [Online] Available:
https://ieeexplore.ieee.org/document/8250099 [Accessed October 2019].

http://ares.cnice.mec.es/informes/17/contenido/19.htm
https://descubrearduino.com/un-guante-inteligente-que-traduce-el-lenguaje-de-signos-a-texto-y-audio/
https://descubrearduino.com/un-guante-inteligente-que-traduce-el-lenguaje-de-signos-a-texto-y-audio/
http://www.leapmotion.com/
http://www.cs.put.poznan.pl/wjaskowski/pub/theses/LeapGesture_BScThesis.pdf
http://www.cs.put.poznan.pl/wjaskowski/pub/theses/LeapGesture_BScThesis.pdf
https://pdfs.semanticscholar.org/68ef/18393db775cccfe55d2e806b40a95dd53f31.pdf
https://pdfs.semanticscholar.org/68ef/18393db775cccfe55d2e806b40a95dd53f31.pdf
https://digi.lib.ttu.ee/i/file.php?DLID=3579&t=1
https://digi.lib.ttu.ee/i/file.php?DLID=3579&t=1
https://digi.lib.ttu.ee/i/file.php?DLID=3579&t=1
https://medium.com/@candemir/taking-things-apart-vol-1-leap-motion-36adaa137a0a
https://medium.com/@candemir/taking-things-apart-vol-1-leap-motion-36adaa137a0a
http://www.macronix.com/en-us/products/NOR-Flash/Serial-NOR-Flash/Pages/spec.aspx?p=MX25L3206E&m=Serial%20NOR%20Flash&n=PM1568
http://www.macronix.com/en-us/products/NOR-Flash/Serial-NOR-Flash/Pages/spec.aspx?p=MX25L3206E&m=Serial%20NOR%20Flash&n=PM1568
http://www.macronix.com/en-us/products/NOR-Flash/Serial-NOR-Flash/Pages/spec.aspx?p=MX25L3206E&m=Serial%20NOR%20Flash&n=PM1568
http://www.macronix.com/en-us/products/NOR-Flash/Serial-NOR-Flash/Pages/spec.aspx?p=MX25L3206E&m=Serial%20NOR%20Flash&n=PM1568
http://www.cypress.com/?rID=74083
http://www.macronix.com/en-us/products/NOR-Flash/Serial-NOR-Flash/Pages/spec.aspx?p=MX25L3206E&m=Serial%20NOR%20Flash&n=PM1568
http://www.macronix.com/en-us/products/NOR-Flash/Serial-NOR-Flash/Pages/spec.aspx?p=MX25L3206E&m=Serial%20NOR%20Flash&n=PM1568
http://www.macronix.com/en-us/products/NOR-Flash/Serial-NOR-Flash/Pages/spec.aspx?p=MX25L3206E&m=Serial%20NOR%20Flash&n=PM1568
http://www.macronix.com/en-us/products/NOR-Flash/Serial-NOR-Flash/Pages/spec.aspx?p=MX25L3206E&m=Serial%20NOR%20Flash&n=PM1568
https://www.cypress.com/part/cyusb3014-bzxc
https://developer-archive.leapmotion.com/get-started
https://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7930375
https://ieeexplore.ieee.org/document/8250099

