
 Programming tool and estimation of energy 
consumption for an Autonomous Device of 

Experimentation in Aquaculture 
 

Rómel A. Cabo, Carlos J.Sosa and Juan A. Montiel 
Institute for Applied Microelectronics (IUMA) 

University of Las Palmas de Gran Canaria (ULPGC) 
Las Palmas de Gran Canaria, Spain 

 
 

Abstract—This paper presents the design and implementation of 
a multiplatform graphical user interface (GUI) oriented to 
estimate the energy consumption and program an Autonomous 
Experimentation Device (DAE) in Aquiculture. The DAE 
executes research experiments based on experimental primitives. 
The main key of the GUI is the use of graphical features like 
create, eliminate, drag and drop those experimental primitives. 
This feature provides a Human Interface for non-engineers like 
biologists, geneticists or dieticians in aquaculture. Based on the 
experiment specified by the user and the primitive database, the 
GUI tool estimates the energy consumption and evaluate the 
usage of the batteries resources (time horizon) of the 
Autonomous Experimentation Device (DAE). To materialize the 
objectives were used elements of the methodology of Rational 
Unified Process (RUP) and the UML (Unified Modeling 
Language), the Eclipse integrated development environment, the 
Java programming language and the ZK framework. Finally, 
this work is framed in the Work Package 8 of the European 
project AquaExcel2020. 

Keywords: DAE, RUP, UML, Eclipse, Java, ZK,  MVVM, GUI. 

I.  INTRODUCTION  
In the current context within the field of aquaculture, 

technology is being invested with the implementation of 
electronic systems to improve the production of various species 
as an industrial interest [1]. The DAE allows a user to schedule 
the timed execution of a set of measurement primitives and 
basic mathematical operations on these measurements to form 
fish research experiments [2]. Our mission has been to develop 
software that allows managing and planning such experiments 
implemented by users in aquaculture with the DAE [3]. 

It was determined to select the main guidelines of the RUP 
(Unified Rational Process) methodology to meet the needs in 
the software development process. This is a process guided by 
the architecture, use cases and it worked in conjunction with 
the end user, who will use the application [4]- [6]. The 
methodology will be complemented with UML (Unified Model 
Language) for the description of the different modeling 
diagrams, formalizing the process with its documentation, 
since it provides the artifacts and models for it [6]- [8]. 

For the selection of the language and framework to be used 
in the development of the GUI, it was considered that the 
developer had basic knowledge about the Java programming 
language [9]- [13]. The ZK framework was chosen because it 
fulfilled with the functionalities, tools and resources required to 
obtain the desired final product. In addition, with ZK it was not 
necessary to have knowledge about the JavaScript web 
language, nor about Ajax, which were not mastered and in this 
way the development time could be optimized [14]. 

II. SOFTWARE DESIGN PATTERN 
The application development process has been governed by 

a modern architectural design pattern called MVVM (Model-
View-ViewModel) as part of software engineering (Fig 1). 
This is provided and documented by the ZK framework, 
enabling a better reuse and maintenance of the code [14]. 

Model: Contains the classes with the data and information 
of the application, as well as the business rules [14]. 

     View: It is the user interface layer, defined in the .zul file 
with the ZK components. The interaction of a user with 
components triggers events that are sent to the ViewModel 
[14]. 

     ViewModel: It is responsible of exposing the data of the 
Model to the View and for providing the actions and the 
business logic necessary for the interaction of the users from 
the View. It is an abstraction of the View containing its state 
and behavior, but it must not have references to the 
components of the graphical user interface; the framework 
itself is responsible for the control of communication and 
synchronization between View and ViewModel [14]. 

The "Binder" is the element of the MVVM design pattern 
responsible for the synchronization of data between View and 
ViewModel, ensuring that any changes made to the 
components of the GUI of a View are automatically transferred 
to the ViewModel and vice versa. Application developers only 
must define the data link relationship between the UI 
component attribute and the target object, usually a 
ViewModel, by data link annotation expression [14]. 



 
Fig 1. Design pattern flow MVVM [14] 

 

III. SYSTEM ARQUITECTURE 
      The ZK´s Server + client Fusion architecture provides the 
synchronization of the states of the components between the 
browser and the server automatically and transparently to the 
application. The ZK client engine and the ZK update engine 
simplify the implementation working together with safety, 
efficiency and robustness. The ZK application runs on the 
server accessing back-end resources, assembling the user 
interface with components, shown in Fig 2. In addition, listen 
to the user's interactions to later manipulate the components 
and update the user interface. Optional client-side 
functionality can be added for greater interactivity, such as 
event handling, visual effects personalization, or even 
composition of the user interface without server-side 
encoding. ZK allows uninterrupted mergers that range from 
exclusively server-centric to customer-focused in a productive 
and flexible manner. The communication between layers is 
established with the HTTP protocol (Hypertext Transfer 
Protocol) through Ajax requests and responses (Asynchronous 
JavaScript And XML) [14]-[16]. 

 

 
 

Fig 2. System architecture flow 
 

     The GUI objects are built with a widget and a component 
with a one-to-one relationship, for each widget a component is 
intended. Widgets are JavaScript objects with visual aspect 
that handle events that occur in the browser. These represent 
the UI objects with which the user interacts. A component is a 
Java object that has all the behavior of a UI object, it does not 
have a visual part, it is executed on the server and it is 
manipulated by a Java application [14].  

IV. RESULTS AND VALIDATION 
The tool is developed for programming and estimating 

energy consumption for the use of the DAE at the Aquaculture 
environment. The user stories already implemented and 
functionalities of each modules are demonstrated. The secure 
access of the application and the correct functioning of all 
graphical components are checked at the beginning of the 
session. In addition, the acceptance and validation of the tool 
by end users is achieved. 

The initial interface of the system is the login (Fig 3) where 
a user accesses the application depending on the type of user 
and its corresponding key. The software tool is accessible only 
by two types of user modules, Aquaculture User and 
Aquaculture Administrator. The user passwords are provided 
by the developer of the application, and only he as responsible 
can modify it with the due authorization and agreement with 
the client. 

 

 
Fig 3. Graphical login interface 

 

Once logged in, the user will be redirected to (Fig 4) the 
Aquaculture Administrator or Aquaculture User module, where 
they can use the corresponding interfaces and functionalities 
for each module, related to the programming and management 
of aquaculture experiments based on the energy consumption 
of the autonomous experimentation device. 

 
Fig 4. Graphical user interface for the aquaculture project 

 



      We can export a project that has been made in edition area 
of experiments by the Aquaculture Administrator user, 
obtaining a file with extension .xml in a certain location of the 
computer. Likewise, with a previously exported file, it could be 
imported into a new work project to reuse or edit it having 
access to each of its characteristics and properties in the 
experiment area of editing. 

      If we click on the "New experiment" button, we access to 
(Fig 5) the configuration interface or creation of new 
experiments. In this interface, we configure each experiment 
with its properties and characteristics. 

 
Fig 5. Experiment configuration interface 

 
This tool allows us to add quantities of experiments with 

their consumption parameters, showing us the progress of 
consumption and autonomy limit of the device battery. Once 
the battery is exhausted, the software system notifies us with a 
message as shown below. 

 
Fig 6. Total battery consumption alert 

 
A set of tests have been developed to find errors and 

validate the software tool. This is a contribution to increase the 
study and research of sustainable aquaculture. It is a GUI that 
can be used by any kind of user. 

V. CONCLUTIONS 
The software application has been developed to allows 

users the graphically describe the experiments, according to the 
configuration of their parameters and timing. 

The RUP is complemented with the UML as a 
methodology to achieve the necessary requirements. This 
served as a guide of, organization and model during the phases 
of the software development process. 

An XML interface has been built allowing to abstract the 
implementation details of the primitives of measurement, 
computation and timing. 

The GUI has been implemented to allows users to program 
the DAE parameters intuitively and with a minimum 
knowledge of algorithmic programming. 

The algorithm has been constructed making it possible to 
estimate the energy consumption of the DAE and the execution 
time horizon of the experiments. 

ACKNOWLEDGMENT  
This work has been supported by the Institute for Applied 

Microelectronics (IUMA) and the University of Las Palmas de 
Gran Canaria (ULPGC). 

REFERENCES 
[1] “European research infrastructures (including e-Infrastructures)”, 

HORIZON 2020, Work Programe 2014 – 2015. 
[2] “Selection and Breeding Programs in Aquaculture”, ISBN: 978-1-4020-

3341-4, Springer, 2015. 
[3] http://www.aquaexcel2020.eu/about/overview, last acces: 2019/01/07. 
[4] Ahmad K. Shuja and Jochen Krebs, “IBM Rational Unified Process 

Reference and Certification Guide: Solutions Designer”, 2008. 
[5] https://es.wikipedia.org/wiki/Proceso_Unificado_de_Rational, last 

acces: 2018/11/04. 
[6] https://en.wikipedia.org/wiki/Rational_Software, last acces: 2018/12/15. 
[7] http://www.uml.org/,  last acces: 2018/12/14. 
[8] https://es.wikipedia.org/wiki/Lenguaje_unificado_de_modelado, last 

acces: 2018/12/14. 
[9] Vartan Piroumian “Java Gui Development” August 1999. 
[10] https://es.wikipedia.org/wiki/Interfaz_gráfica_de_usuario, last acces: 

2018/08/04. 
[11] https://java.com/es/, last acces: 2019/01/07. 
[12] http://www.eclipse.org/, last acces: 2019/01/07. 
[13] https://docs.oracle.com/javase/7/docs/api/, last acces: 2018/12/14. 
[14] https://www.zkoss.org, last acces: 2019/01/08. 
[15] Xavier Vilajosana Guillén, Leandro Navarro Moldes “Arquitectura de 

aplicaciones web”, Universidad Oberta de Catalunya, 2007. 
[16] https://es.wikipedia.org/wiki/Cliente-servidor, last acces: 2018/12/14. 

 

 


