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Abstract—Hyperspectral imaging (HSI) is an emerging 
technology in the medical area. HSI is a non-contact, non-ionizing, 
and label-free imaging modality that can assist neurosurgeons 
during brain tumor resection without using any contrast agent. 
This paper describes different methodologies to identify the most 
representative bands in HS images used for brain tumor detection. 
This selection process was carried out through different 
optimization algorithms, specifically Genetic Algorithm (GA) and 
Particle Swarm Optimization (PSO). For the evaluation of the 
selected bands, the supervised Support Vector Machine (SVM) 
classifier was employed. 
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I. INTRODUCTION 

Hyperspectral imaging (HSI) is a technology that combines 
conventional imaging and spectroscopy to obtain 
simultaneously the spatial and the spectral information from an 
object [1]. Hyperspectral (HS) images provide abundant 
information that covers hundreds of spectral bands for each pixel 
of the image [2]. Each pixel contains an almost continuous 
spectrum (radiance, reflectance or absorbance), acting as a 
fingerprint (the so-called spectral signature) that can be used to 
characterize the chemical composition of that particular pixel 
[3].  

HSI is characterized by “the curse of dimensionality” [4], 
having high dimensionality due to the rich amount of data that 
they contain. However, this fact causes that the computing time 
required to process the data is extremely high and also, in some 
cases, the processed data contain redundant information. Thus, 
it is necessary to employ processing algorithms that reduce the 
dimensionality of the HS data without losing the relevant 
information. This dimensional reduction process consists in the 
transformation of the data, characterized by their high 
dimensionality, into a significant representation of such data in 
a reduced dimension. There are two types of methods that allow 
this transformation: feature selection [4] and feature extraction 
[5]. In this research work, after an exhaustive study where 
dimensional reduction was applied to HSI [6], [7], it was decided 
to use the feature selection methodology. The optimization 
algorithms employed to find the most relevant bands were 
Genetic Algorithm (GA), Particle Swarm Optimization (PSO). 

II. METHODOLOGY 

The HS database used in this research work belongs to the 
European HELICoiD project [8], [9]. This database is 
composed by HS images of human brain tissue captured during 
neurosurgical procedures with a customized intraoperative HS 
acquisition system. In the next sections, the different proposed 
approaches are explained. 

A. Basic Processing Framework (BPF) 

The first proposed processing framework has the goal to 
evaluate the results obtained with the band selection algorithm 
(GA and PSO) when employing the entire labeled dataset for the 
training of the SVM classifier. The labeled database was divided 
into training and test data performing a leave-one-patient-out 
cross-validation. Figure 1 shows the detailed procedure. First, 
the training data was employed in the optimization algorithm, 
where the initial bands to be used for the classification are 
randomly selected. After this band selection procedure, a 
classification model is generated and evaluated with the test 
dataset, obtaining a classification result that is evaluated using 
the OAPenalized FoM and FoMPenalized metrics. The procedures of 
the metrics are shown in Equation 1, Equation 2 and Equation 3 
respectively. The value of this metric is stored and then, the 
procedure is iteratively executed using other bands selected by 
the optimization algorithm. The algorithm is executed until 
performs all possible combinations, returning the best metric, or 
when after a high number of iterations, the metric remains 
constant. Once the algorithm finishes the execution, it returns 
the best metric and the identification of the optimal bands to 
obtain this result.  
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Figure 1. Flow diagram of the BPF for the identification of the most 
representative bands for the GA and PSO algorithms. 
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B. Optimized Processing Framework (OPF) 

After performing some experiments with the BPF, it was 
observed that the execution time was really high. Taking into 
account that the number of generations performed was repeated 
per each test image, it was necessary to find some techniques 
that allow reducing the execution time. In order to solve these 
problems, it was decided to use only 4,000 pixels (1,000 pixels 
per class) for training the SVM classifier, thus, balancing all 
classes and dramatically reducing the size of the training 
database (from ~200,000 to 4,000 pixels). This procedure was 
done through a methodology based on the K-means clustering 
algorithm [10]. Figure 2 shows the steps followed to obtain the 
optimized database, in order to eliminate redundant information 
and also to balance the classes of the training dataset. This 
modification was applied in the training dataset and followed the 
same structure as that observed in Figure 1. 
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Figure 2. Flow diagram of the training dataset optimization algorithm. 

C. Evaluation methodology for the BPFand OPF 

Once executed the optimization algorithms in the BPF and 
OPF methods, the optimal selected bands for each test image 
were identified. Then, the evaluation metrics were computed. 
The procedure is the one shown in Figure 3. The evaluation 
metrics used were overall accuracy, sensitivity, specificity and 
Matthews Correlation Coefficient (MCC) for the quantitative 
evaluation and the classification map obtained after processing 
the entire HS cube of the test image for the qualitative 
evaluation.  
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Figure 3. Flow diagram of the evaluation methodology. 

III. RESULTS 

After obtaining the bands selected for each image with the 
different methodologies, the quality of the bands was evaluated. 
The optimization algorithms try to find the best results of the 
OAPenalized, FoM and FoMPenalized metrics, performing different 
combinations at the time of selecting the bands. These 
experiments were divided into the following structure: 1) 
Evaluation of the optimal bands for each test image obtained 
with the GA and PSO algorithms using the BPF (entire dataset) 
and the OPF (reduced dataset) with the OAPenalized, FoM and 
FoMPenalized metrics; 2) Evaluation of the optimal bands for the 
complete test image database using the OPF.  

The last study was carried out with the best case obtained in 
the previous step. The best cases were: OPF-GA-FoM, OPF-
GA-FoMPenalized and OPF-PSO-FoM. The metric OAPenalized 
gave poor results, then they were discarded for the rest of the 
research, and focused on the other metrics. 

Table 1 shows the average and standard deviation of the 
evaluation metrics. It is observed that the results of the OA are 
similar, giving the best case to the OPF-GA-FoMPenalized with 
77.9% and the worst case to the OPF-PSO-FoMPenalized with 
75.9%. In terms of sensitivity, the results of the first two cases 
remain constant, the only more pronounced difference is that in 
the tumor class, the OPF-GA-FoM achieves 52.9% and the 
OPF-GA-FoMPenalized reaches 52.7%. The last case has worse 
results in the normal and tumor tissue classes, with 77.8% and 
47.1%, respectively. Nevertheless, the specificity remains 
constant for all cases. Finally, the MCC metric shows that the 
class with the worst result is the tumor class, with the second 
case having the best result, with 44.4% and the third case having 
the worst result with 38.4%. Regarding the classification maps 
shown in Figure 4, it can be observed that the classification 
maps of the OPF-GA-FoMPenalized (Figure 4.d) present less false 
positives of the tumor class (tumor area surrounded by yellow 
line in the RGB representation). Thus, taking into account all 
the results, the best case obtained was using the GA with the 
FoMPenalized (48 bands) with the coincident bands in at least one 
image.  

Table 1. Average and standard deviation results of the OPF best cases. 

Technique 
(#bands) 

OA 
AVG 
(STD) 

% 

Sensitivity 
AVG (STD)% 

Specificity 
AVG (STD)% 

MCC 
AVG (STD)% 

NT TT HT BG NT TT HT BG NT TT HT BG 

GA-FoM 
(27) 

77.3 
(16.5) 

84.4 
(15.2) 

52.9 
(31.1) 

83.4 
(21.7) 

89.8 
(21.1) 

87.4 
(10.4) 

93.4 
(8.2) 

96.9 
(5.0) 

85.7 
(20.7) 

69.1 
(19.1) 

41.5 
(30.9) 

82.9 
(16.6) 

71.3 
(22.1) 

GA-FoMP 

(48) 
77.9 

(17.0) 
85.1 

(17.6) 
52.7 

(29.8) 
83.5 

(20.9) 
92.5 

(14.2) 
87.3 

(12.2) 
94.6 
(8.3) 

96.7 
(5.1) 

85.3 
(18.0) 

69.0 
(21.0) 

44.4 
(30.9) 

82.4 
(16.7) 

72.7 
(20.2) 

PSO-FoMP 

(62) 
75.9 

(17.3) 
77.8 

(22.2) 
47.1 

(30.6) 
84.5 

(20.1) 
93.1 

(13.0) 
87.0 

(13.3) 
92.9 

(11.5) 
95.9 
(5.7) 

84.6 
(17.2) 

62.5 
(19.5) 

38.4 
(27.7) 

82.1 
(17.4) 

72.2 
(19.9) 

 

Figure 4. OPF best cases classifications maps. (a) Synthetic RGB images 
with a yellow line delineating the area tumor. (b) OPF Reference. (c) OPF-

GA-FoM. (d) OPF-GA-FoMPenalized. (e) OPF-PSO-FoMPenalized. 

IV. CONCLUSIONS 

This work employed HS human brain cancer images 
obtained intraoperatively for the development a processing 
framework able to obtain the most representative spectral bands 
that allows an accurate classification of the tumor. The obtained 
results demonstrate that using only 48 bands the classifier is able 
to improve the classification results. Figure 5 shows the spectral 
signatures of the healthy tissue (green color), the tumor tissue 
(red color), the hypervascularized tissue (blue color) and the 
final bands that were selected (black spots). It can be seen that 
the selected bands are grouped into small regions throughout the 
spectral signature. The most important regions are: 440-466 nm, 
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Figure 5. Normalized average spectral signature and final selected bands. 
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