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Abstract 

The main objective of this Master Thesis is to study and evaluate different band selection 

algorithms in order to identify the most relevant bands in hyperspectral (HS) images to 

allow an accurate delineation of brain tumors during surgical procedures. The employed 

HS database was composed of 26 HS images of in-vivo human brain obtained during 

neurosurgical procedures. For each image, a certain number of pixels were labeled in 

four different classes in order to create a labeled dataset, employed to develop and 

evaluate a classification model following a leave-one-patient-out cross-validation 

methodology using 6 test HS images. Four types of classes were defined: normal tissue, 

tumor tissue, hypervascularized tissue and background.  

During the development of the project, different methodologies were carried out. 

Firstly, the most representative bands for each test HS image with different optimization 

algorithms were selected. After identifying these bands, all test images were evaluated 

using the coincident bands between the obtained results. The process starts by evaluating 

the test images with all the bands selected, then employing the bands that were repeated 

in at least two test images, and so on until reaching the maximum number of coincident 

levels in each case. Once this extensive evaluation was carried out, it was decided which 

set of bands were the ones that provided the most relevant information. The evaluation 

metrics employed in these experiments were: overall accuracy, sensitivity, specificity, 

Matthews correlation coefficient and the qualitative classification maps. The results 

obtained with the band selection algorithms were compared with the reference results 

employing all the bands in the HS images.  

The results demonstrate that the proposed methodology based on the Genetic 

Algorithm optimization method improves the accuracy results in identifying different 

classes for brain cancer detection application, employing only 48 bands. The most 

relevant spectral ranges identified were: 440.5-465.96 nm, 498.71-509.62 nm, 556.91-

575.1 nm, 593.29-615.12 nm, 636.94-666.05 nm, 698.79-731.53 nm and 884.32-902.51 

nm.   

 





Resumen 

El objetivo principal de este Trabajo Fin de Máster es el de estudiar y evaluar 

diferentes algoritmos de selección de bandas para identificar las bandas más relevantes 

en imágenes hiperespectrales (HS) que permitan una delineación precisa de los tumores 

cerebrales durante los procedimientos quirúrgicos. La base de datos de HS empleada 

estaba compuesta por 26 imágenes de HS de cerebro humano in-vivo obtenidas durante 

procedimientos neuroquirúrgicos. En cada una de las imágenes, se etiquetó un cierto 

número de píxeles en cuatro clases para crear un conjunto de datos etiquetado que se 

empleó para desarrollar y evaluar un modelo de clasificación siguiendo una metodología 

de cross-validation de un paciente con 6 pruebas de imágenes de HS. Se definieron 

cuatro tipos de clases: tejido normal, tejido tumoral, tejido hipervascularizado y 

background. 

Durante el desarrollo del proyecto se llevaron a cabo diferentes metodologías. 

Primero, se seleccionaron las bandas más representativas para cada imagen HS de test 

con diferentes algoritmos de optimización. Después de identificar estas bandas, todas las 

imágenes de test se evaluaron utilizando las bandas coincidentes entre los resultados 

obtenidos. Se comenzó por evaluar las imágenes de test con todas las bandas 

seleccionadas, luego empleando las bandas que se repitieron en al menos dos imágenes 

de test, y así sucesivamente hasta alcanzar el número máximo de niveles coincidentes en 

cada caso. Una vez que se llevó a cabo esta extensa evaluación, se decidió qué conjunto 

de bandas eran las que proporcionaban la información más relevante. Las métricas de 

evaluación empleadas en estos experimentos fueron: overall accuracy, sensibilidad, 

especificidad, Matthews correlation coefficient y mapas de clasificación cualitativos. Los 

resultados obtenidos con los algoritmos de selección de banda se compararon con los 

resultados de referencia empleando todas las bandas en las imágenes de HS. 

Los resultados demuestran que la metodología propuesta basada en el método de 

optimización del algoritmo genético mejoró los resultados de accuracy en la 

identificación de las diferentes clases para la aplicación de detección de cáncer cerebral, 

empleando solo 48 bandas. Los rangos espectrales más relevantes identificados fueron: 

440.5-465.96 nm, 498.71-509.62 nm, 556.91-575.1 nm, 593.29-615.12 nm, 636.94-

666.05 nm, 698.79-731.53 nm y 884.32-902.51 nm. 

 





Acknowledgements 

This section is dedicated to all the people who, in one way or another, have helped me 

to develop this Master Thesis. I would like to thank my tutors, my friends and my family. 

Thanks to my tutors, Gustavo, Himar and Samuel, for their time, patience and work, 

especially patience. Thanks to my family, for all the unconditional support they have 

given me to achieve my goal. Thanks to my friends, both outside and inside the race, for 

the moral support and giving me strength in the most difficult moments. 

 

. 





Contents 

Abstract ............................................................................................................................................................................. i 
Resumen .......................................................................................................................................................................... iii 
Acknowledgements ........................................................................................................................................................... v 
List of Figures ................................................................................................................................................................... 9 
List of Tables .................................................................................................................................................................... 11 
List of Acronyms .............................................................................................................................................................. 13 
Chapter 1: Introduction ................................................................................................................................................... 15 

1.1 Context ................................................................................................................................................................... 15 
1.2 Objectives .............................................................................................................................................................. 16 
1.3 Methodology ......................................................................................................................................................... 16 
1.4 Document organization ........................................................................................................................................ 17 

Chapter 2: State-of-the-art .............................................................................................................................................. 19 
2.1 Introduction .......................................................................................................................................................... 19 
2.2 Hyperspectral images ........................................................................................................................................... 19 
2.3 Dimensional reduction ........................................................................................................................................ 20 

2.3.1 Feature extraction methods .......................................................................................................................... 21 
2.3.2 Feature selection methods ........................................................................................................................... 21 

2.4 Band selection methods for HSI .......................................................................................................................... 21 
2.5 Optimization algorithms ..................................................................................................................................... 24 

2.5.1 Genetic Algorithm ........................................................................................................................................ 24 
2.5.2 Particle Swarm Optimization .......................................................................................................................25 
2.5.3 Ant Colony Optimization............................................................................................................................. 26 

2.6 Support Vector Machine Classifier ...................................................................................................................... 27 
2.7 Summary .............................................................................................................................................................. 28 

Chapter 3: In-Vivo HS Human Brain Image Database .................................................................................................. 29 
3.1 Introduction ......................................................................................................................................................... 29 
3.2 Intraoperative HS Acquisition System ................................................................................................................ 29 
3.3 Acquisition of HS images during surgery ........................................................................................................... 30 

3.3.1 Patient preparation ....................................................................................................................................... 31 
3.3.2 Hyperspectral image capture ...................................................................................................................... 32 
3.3.3 Tissue resection ........................................................................................................................................... 33 
3.3.4 Expert evaluation ........................................................................................................................................ 33 
3.3.5 Samples labelling ......................................................................................................................................... 33 
3.3.6 Complete HS database ................................................................................................................................ 33 

3.4 Summary.............................................................................................................................................................. 36 
Chapter 4: Methodology .................................................................................................................................................. 37 

4.1 Introduction .......................................................................................................................................................... 37 
4.2 Proposed processing frameworks ....................................................................................................................... 38 

4.2.1 Evaluation metrics ....................................................................................................................................... 38 
4.2.2 Basic processing framework (BPF) with GA and PSO ................................................................................ 43 
4.2.3 Optimized processing framework (OPF) with GA and PSO ....................................................................... 43 
4.2.4 Reference results and evaluation methodology for the BPF ...................................................................... 45 
4.2.5 Reference results and evaluation methodology for the OPF ...................................................................... 45 
4.2.6 Band selection using the ACO algorithm .................................................................................................... 46 
4.2.7 Evaluation of test database with the same bands ........................................................................................ 47 

4.3 Summary.............................................................................................................................................................. 48 
Chapter 5: Experimental results .................................................................................................................................... 49 

5.1 Introduction ......................................................................................................................................................... 49 
5.2 Band selection evaluation using BPF .................................................................................................................. 50 

5.2.1 Reference results .......................................................................................................................................... 50 
5.2.2 Genetic Algorithm evaluation ...................................................................................................................... 51 
5.2.3 BPF with PSO evaluation ............................................................................................................................ 54 

5.3 Band selection evaluation using OPF ................................................................................................................... 57 
5.3.1 Reference results ........................................................................................................................................... 57 
5.3.2 OPF with GA evaluation .............................................................................................................................. 58 
5.3.3 OPF with PSO evaluation ............................................................................................................................ 60 

5.4 Comparison of the BPF and OPF results ............................................................................................................. 61 



8 
 

5.5 Band selection using the FoM evaluation metric ................................................................................................ 63 
5.5.1 OPF with FoM evaluation metric ................................................................................................................ 64 
5.5.2 OPF with FoMPenalized evaluation metric ...................................................................................................... 66 

5.6 Comparison of the OPF results ........................................................................................................................... 68 
5.7 Coincident selected bands evaluation .................................................................................................................. 72 

5.7.1 OPF with GA using FoM evaluation ............................................................................................................. 72 
5.7.2 OPF with GA using FoMPenalized evaluation ................................................................................................... 73 
5.7.3 OPF with PSO using FoMPenalized evaluation ................................................................................................. 75 
5.7.4 Comparison of the coincident selected bands results .................................................................................. 76 

5.8 Band selection evaluation using ACO algorithm ................................................................................................ 78 
5.8.1 ACO with the entire training dataset........................................................................................................... 78 
5.8.2 ACO with the reduced training dataset........................................................................................................ 79 
5.8.3 Coincident selected bands evaluation using ACO ...................................................................................... 80 

5.9 Summary .............................................................................................................................................................. 82 
Chapter 6: Conclusions & Future Lines ......................................................................................................................... 87 

6.1 Conclusions .......................................................................................................................................................... 87 
6.2 Future lines .......................................................................................................................................................... 88 

References ....................................................................................................................................................................... 89 
 



 

 

List of Figures 

Figure 2-1. Structure of a hypercube and spectral signatures of a brain tumor [9]. ........................................................... 20 

Figure 2-2. The RMSEP values obtained by SPA, UVE, and BFWA [25]. ........................................................................... 22 

Figure 2-3. The change curve classification accuracy for 3 HSI datasets [30]. ................................................................... 23 

Figure 2-4. Number of selected bands versus number of generations for the GA selection on 50, 100, 150 and 220 bands 

[31]. ................................................................................................................................................................. 24 

Figure 2-5. Recombination and mutation process. ...............................................................................................................25 

Figure 2-6. Simulation of the selection process of the ant colonies of the best route between the nest and the food [40].27 

Figure 2-7. Support Vector Machine linear hyperplane between two classes [46]. ............................................................ 28 

Figure 3-1. HELICoiD demonstrator acquisition platform. (a, b) VNIR and NIR HS cameras mounted on the scanning 

platform; (c-e) Light source QTH connected to the fiber optic system for the transmission of light to obtain 

a light emission on the scanning platform; (f, g) stepper motor coupled to the shaft and connected to the 

stepper motor controller to perform the linear movement of the cameras; (h) Positioning of the camera used 

to identify the position of the field of vision of the cameras (FOV); (i) The Up & Down system used to focus 

the HS cameras; (j) and (k) Manual pan and tilt systems used to correctly orient the scanning platform [48].

 ......................................................................................................................................................................... 30 

Figure 3-2. Data acquisition and labelling procedure [51]. ................................................................................................... 31 

Figure 3-3. Meninges’ structure [53] .................................................................................................................................... 32 

Figure 3-4. IGS system pointer. (a) IGS system pointer over the tumor surface. (b) IGS system screen snapshot with the 

IGS system pointer coordinates [51] .............................................................................................................. 32 

Figure 4-1. Flow diagram of the general process to select the best bands. .......................................................................... 38 

Figure 4-2. Leave-One-Out Cross-Validation method [63]. ................................................................................................ 39 

Figure 4-3. Brain tumor (a) synthetic RGB and (b) classification map. .............................................................................. 42 

Figure 4-4. Graphic of the genetic algorithm generation. .................................................................................................... 42 

Figure 4-5. Flow diagram of the BPF for the identification of the most representative bands for the GA and PSO algorithms.

 ......................................................................................................................................................................... 43 

Figure 4-6. Flow diagram of the training dataset optimization algorithm. ......................................................................... 44 

Figure 4-7. Flow diagram of the OPF for the identification of the most representative bands for the GA and PSO algorithms 

using the reduced training dataset. ................................................................................................................ 44 

Figure 4-8. Flow diagram of the evaluation metrics computation with the (a) entire labelled dataset and (b) with the 

selected bands. ................................................................................................................................................ 45 

Figure 4-9. Flow diagram of the evaluation metrics computation with (a) all bands (reference results) and (b) selected 

bands using the reduced labeled dataset. ....................................................................................................... 46 

Figure 4-10. Flow diagram of the (a) band selection process with the ACO algorithm and the (b) evaluation metrics 

computation with the selected bands. ............................................................................................................. 47 

Figure 5-1. Reference results obtained with all bands and the entire dataset for the SVM training. (a) Synthetic RGB 

representation of the HS cube with the tumor area surrounded by a yellow line. (b) Classification map. ... 51 

Figure 5-2. Resulting classification maps after GA use with 30 generations and the entire dataset for the SVM training. (a) 

Synthetic RGB representation of the HS cube with the tumor area surrounded by a yellow line. (b) Reference 

classification map. (c) Classification Map .......................................................................................................53 

Figure 5-3. Resulting classification maps after GA use with 60 generations and the entire dataset for the SVM training. (a) 

Synthetic RGB representation of the HS cube with the tumor area surrounded by a yellow line. (b) Reference 

classification map. (c) Classification Map ...................................................................................................... 54 

Figure 5-4. Resulting classification maps after PSO use with 30 generations and the entire dataset for the SVM training. 

(a) Synthetic RGB representation of the HS cube with the tumor area surrounded by a yellow line. (b) 

Reference classification map. (c) Classification Map ..................................................................................... 56 



10 
 

Figure 5-5. Resulting classification maps after PSO use with 60 generations and the entire dataset for the SVM training. 

(a) Synthetic RGB representation of the HS cube with the tumor area surrounded by a yellow line. (b) 

Reference classification map. (c) Classification Map ...................................................................................... 57 

Figure 5-6. Reference results obtained with all bands and the reduced dataset for the SVM training. (a) Synthetic RGB 

representation of the HS cube with the tumor area surrounded by a yellow line. (b) Classification map. .. 58 

Figure 5-7. Resulting classification maps after GA use with 60 generations and the reduced dataset for the SVM training. 

(a) Synthetic RGB representation of the HS cube with the tumor area surrounded by a yellow line. (b) 

Reference classification map. (c) Classification Map ..................................................................................... 59 

Figure 5-8. Resulting classification maps after PSO use with 60 generations and the reduced dataset for the SVM training. 

(a) Synthetic RGB representation of the HS cube with the tumor area surrounded by a yellow line. (b) 

Reference classification map. (c) Classification Map ..................................................................................... 60 

Figure 5-9. Boxplot diagram of the (a) overall accuracy and (b) sensitivity of the tumor class of all the evaluated techniques

 ......................................................................................................................................................................... 62 

Figure 5-10. Classifications maps of the test dataset. (a) Synthetic RGB images with a yellow line determining the area 

tumor. (b and c) Reference results with the entire and reduced dataset. (d and e) GA algorithm using 60 

generations with entire and reduced dataset. (f and g) PSO algorithm using 60 generations with entire and 

reduced dataset. .............................................................................................................................................. 63 

Figure 5-11. Resulting classification maps after GA FoM and the reduced dataset for the SVM training. (a) Synthetic RGB 

representation of the HS cube with the tumor area surrounded by a yellow line. (b) Reference classification 

map. (c) Classification Map ............................................................................................................................ 65 

Figure 5-12. Resulting classification maps after PSO FoM and the reduced dataset for the SVM training. (a) Synthetic RGB 

representation of the HS cube with the tumor area surrounded by a yellow line. (b) Reference classification 

map. (c) Classification Map ............................................................................................................................ 66 

Figure 5-13. Resulting classification maps after GA FoMPenalized and the reduced dataset for the SVM training. (a) Synthetic 

RGB representation of the HS cube with the tumor area surrounded by a yellow line. (b) Reference 

classification map. (c) Classification Map ....................................................................................................... 67 

Figure 5-14. Resulting classification maps after PSO FoMPenalized and the reduced dataset for the SVM training. (a) Synthetic 

RGB representation of the HS cube with the tumor area surrounded by a yellow line. (b) Reference 

classification map. (c) Classification Map ...................................................................................................... 68 

Figure 5-15. Boxplot diagram of the overall accuracy (a) and sensitivity of the tumor class (b) of all FoM evaluated 

techniques. ...................................................................................................................................................... 69 

Figure 5-16. Classifications maps of the test dataset. (a) Synthetic RGB images with a yellow line determining the area 

tumor. (b) OPF Reference. (c and d) OPF GA and PSO (e) OPF GA FoM. (f) OPF PSO FoM. (g) OPF GA FoM 

Penalized. (h) OPF PSO FoM Penalized. ..................................................................................................................... 71 

Figure 5-17. Classifications maps of the test dataset using the selected bands by the GA FoM technique .......................... 73 

Figure 5-18. Classifications maps of the test dataset using the selected bands by the GA FoMPenalized technique. .............. 74 

Figure 5-19. Classifications maps of the test dataset using the selected bands by the PSO FoM penalized technique. ...... 76 

Figure 5-20.Best cases classifications maps. (a) Synthetic RGB images with a yellow line determining the area tumor. (b) 

OPF Reference.(c and d) OPF GA FoM and FoMPenalized and (e) OPF PSO FoMPenalized. .................................. 77 

Figure 5-21. Resulting classification maps after ACO and the entire dataset for the SVM training. (a) Synthetic RGB 

representation of the HS cube with the tumor area surrounded by a yellow line. (b) Reference classification 

map. (c) Classification Map. ............................................................................................................................ 79 

Figure 5-22. Resulting classification maps after ACO and the reduced dataset for the SVM training. (a) Synthetic RGB 

representation of the HS cube with the tumor area surrounded by a yellow line. (b) Reference classification 

map. (c) Classification Map ............................................................................................................................ 80 

Figure 5-23. Classifications maps of the test dataset using the selected bands by the ACO algorithm. ............................. 82 

Figure 5-24.Best case classification map. (a) Synthetic RGB images with a yellow line determining the area tumor. (b) OPF 

Reference.(c) OPF GA FoMPenalized L1. ............................................................................................................. 84 

Figure 5-25. Normalized average signature of the classes and final selected bands. .......................................................... 85 

 

 



 

 

List of Tables 

Table 2-1. Classification results for selected wavelength combinations [29]. ..................................................................... 22 

Table 3-1. RGB of hyperspectral dataset............................................................................................................................... 34 

Table 3-2. Ground truth maps of hyperspectral dataset ...................................................................................................... 34 

Table 3-3. HELICoiD labelled pixel train dataset .................................................................................................................35 

Table 3-4. HELICoiD labelled pixel test dataset ...................................................................................................................35 

Table 4-1. Experiments summary ......................................................................................................................................... 48 

Table 5-1. Reference results obtained with all bands and the entire dataset for the SVM training. .................................... 51 

Table 5-2. GA 30 generations results obtained with all bands and the entire dataset for the SVM training. .....................52 

Table 5-3. GA 60 generations results obtained with all bands and the entire dataset for the SVM training. .................... 54 

Table 5-4. PSO 30 generations results obtained with all bands and the entire dataset for the SVM training. ................... 55 

Table 5-5. PSO 60 generations results obtained with all bands and the entire dataset for the SVM training. ................... 56 

Table 5-6. Reference results obtained with all bands and the reduced dataset for the SVM training. ............................... 58 

Table 5-7. GA results obtained with all bands and the reduced dataset for the SVM training. .......................................... 59 

Table 5-8. PSO results obtained with all bands and the reduced dataset for the SVM training. ........................................ 60 

Table 5-9. OPF GA FoM results obtained with all bands and the reduced dataset for the SVM training. ......................... 64 

Table 5-10. OPF PSO FoM results obtained with all bands and the reduced dataset for the SVM training. ...................... 65 

Table 5-11. GA FoMPenalized results obtained with all bands and the reduced dataset for the SVM training. ........................ 67 

Table 5-12. PSO FoMPenalized results obtained with all bands and the reduced dataset for the SVM training. .................... 68 

Table 5-13. Average and standard deviation of accuracy, sensitivity, specificity and MCC using GA FoM of all images. .. 72 

Table 5-14. Average and standard deviation of accuracy, sensitivity, specificity and MCC using GA FoMPenalized of all images.

 .......................................................................................................................................................................... 74 

Table 5-15. Average and standard deviation of accuracy. sensitivity. specificity and MCC using PSO FoMPenalized of all 

images. ............................................................................................................................................................. 75 

Table 5-16. Best cases average and standard deviation of accuracy. sensitivity. specificity and MCC. ............................... 77 

Table 5-17. Accuracy, sensitivity, specificity and MCC results using the entire dataset with ACO. .................................... 78 

Table 5-18. Accuracy, sensitivity, specificity and MCC results using the reduced dataset with ACO. ................................ 80 

Table 5-19. Average and standard deviation of accuracy, sensitivity, specificity and MCC using ACO. .............................. 81 

Table 5-20. Accuracy, sensitivity, specificity and MCC results using OPF-GA-FoMPenalized L1. ........................................... 84 

Table 5-21. Accuracy, sensitivity, specificity and MCC results using OPF-GA-FoMPenalized L1. ........................................... 85 

 

 

 

 





 

 

List of Acronyms 

Acronym Meaning 
ACO Ant Colony Optimization 

AI Artificial Intelligent 
ALO Ant Lion optimizer 

BFWA Binary Firework Algorithm 
BPF Basic Processing Framework 
FA Factor Analysis 

FWA Firework Algorithm 
GA Genetic Algorithm 
HSI Hyperspectral Image 

LOOCV Leave-One-Out Cross-Validation 
MCC Matthews Correlation Coefficient  
MDS Multidimensional Scalar 
OA Overall Accuracy 

OPF Optimized Processing Framework 
PCA Principal Component Analysis 
PSO Particle Swarm Optimization 

RMSEP Root Mean Squared Error of Prediction 
SAM Spectral Angle Mapper 
SPA Successive Projection Algorithm 
SVM Support Vector Machine 
UVE Uninformative Viable Elimination 

WSVM Wavelet Support Vector Machine 

 

 

 

 

 

 

 





 

 

Chapter 1: Introduction 

1.1 Context 

This Master Thesis is developed within the research line of hyperspectral imaging 

(HSI) acquisition and processing for medical applications that is currently carried out by 

the Division of Integrated Systems (DSI) of the University Institute for Applied 

Microelectronics (IUMA) of the University of Las Palmas de Gran Canaria (ULPGC), 

specifically in the field of intraoperative brain cancer diagnosis. 

In addition, IUMA has been involved in projects financed by both public and private 

entities, in the field of processing HS images in different areas. Among these projects are:  

 HELICoiD Project (CNET-ICT-618080) 

This Master Thesis will use the HELICoiD project database. HellicoiD was a 

European collaboration project between four universities (ULPGC, Imperial College of 

Science, Technology and Medicine of London, Polytechnic University of Madrid, 

Assosiation pour la Recherche et le Développement des Methodes et Processus 

Industriels de Paris - Armines), three industrial partners (Medtronic Iberica SA, General 

Equipment for Medical Imaging S.A., Virtual Angle B.V.) and two hospitals (Canary 

Foundation for Research and Health, University Hospital of Southampton NHS 

Foundation Trust), financed by the Executive Research Agency (REA) of the European 

Union. 

The purpose of this project was to develop a demonstrator capable of differentiating 

between healthy and tumor tissue in real time during neurosurgery interventions by 

means of hyperspectral images, thus enabling real-time resection of tumor tissue to be 

confirmed in real time, avoiding excessive resection of adjacent healthy tissue and 

indeterminations due to displacement of brain mass. 

The ITHaCA project is the continuation of the HELICoiD project, since it ended in 

December 2016. 

 ITHaCA Project (ProID2017010164) 

This Master Thesis is framed within the ITHaCA project (IndenTificación 

Hiperespectral de tumores CerebrAles), funded by the Canarian Agency for Research, 
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Innovation and the Information Society of the Canary Islands Government1. This is a 

multidisciplinary project that integrates engineers, neurosurgeons and pathologists. Its 

main objective is to perform a real-time accurate differentiation and classification by 

using hyperspectral images of different types of brain tumors. This fundamental research 

project is promoted by the IUMA (University Institute of Applied Microelectronics) of 

the University of Las Palmas de Gran Canaria and FUNCANIS (Canarian Foundation for 

Health Research), the research management foundation of the University Hospital of 

Gran Canaria Doctor Negrín (HUGCDN). 

1.2 Objectives 

The main objective of this Master Thesis is to study and evaluate different band 

selection algorithms in order to identify the most relevant bands in HSI that allow an 

accurate delineation of brain tumors during surgical procedures. This relevant band 

identification will allow reducing the HS camera size as well as reducing the 

computational cost of processing the HS data. Thus, specific HS sensors for brain tumor 

detection could be developed. Specifically, the specific objectives that must be reached to 

achieve the main objective are the following ones:  

 To study different band selection algorithms employed for HS images. 

 To apply supervised classification techniques using HS cubes that have been 

reduced in bands as input data. 

 To evaluate how each band selection algorithm affects the final classification 

result in terms of quantitative and qualitative evaluation. 

 To determine the band selection technique that offers the best relationship 

between the accuracy of the results and the minimum number of bands employed. 

1.3 Methodology 

The methodology followed in this research work is tightly related with the objectives 

described before. This methodology can be summarized as follows.  

1. To study the basic concepts about HS images related to dimensional reduction 

techniques. 

2. To research the different optimization algorithms for the selection of bands to 

be used for HS images analysis. 

3. To research the different evaluation metrics to be used for the experimental 

procedures. There are several types of evaluation metrics, so, after an 

exhaustive study, some of them were selected for the evaluation of the results. 

4. To develop an algorithm to find the most suitable optimization method and 

identify the most relevant bands for this particular application.  

                                                        
 

 

1 https://ithaca.iuma.ulpgc.es/ 
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5. To analyze and evaluate the final results obtained. 

1.4 Document organization 

This document has been structured in six chapters that are organized as follow:  

Chapter 1: Introduction. In the present chapter, the context and objectives that 

have led to the development of this Master Thesis are described. In 

addition, the structure of the document is presented. 

Chapter 2: State-of-the-art. In this chapter, the necessary knowledge to develop 

this Master Thesis is explained. It makes a study of the previous works 

carried out where band selection techniques are used in HSI as well as the 

explanation of the algorithms employed in this work.  

Chapter 3: In-Vivo HS Human Brain Image Database. This chapter describes 

the intraoperative HS acquisition system employed to acquire the in-vivo 

HS human brain database employed in this work. In addition, the 

procedure followed to intraoperatively capture the HS images during the 

surgical procedures is explained. 

Chapter 4: Methodology. In this chapter, the different proposed processing 

methods for the identification of the most representative bands of the HS 

images are described. 

Chapter 5: Experimental results. In this part of the document, the results 

obtained after processing the HS images, with the different methods 

explained in Chapter 4, are shown. 

Chapter 6: Conclusions and future lines. This last chapter exposes the 

conclusions that have been drawn after analyzing in depth the results 

obtained. In addition, the on-going works are described. 

 





 

 

Chapter 2: State-of-the-art 

2.1 Introduction 

In this Master Thesis, the use of optimization algorithms to reduce the 

dimensionality of hyperspectral (HS) images is proposed. This chapter describes the 

background knowledge necessary for the development of the work. Firstly, a brief 

introduction of Hyperspectral Imaging (HSI) is presented, due to this type of images will 

conform the database to be used. Secondly, two of the most-extended techniques that 

has been proposed in the literature to reduce the high dimensionality of these types of 

images will be explained. Besides, several studies where these techniques are applied in 

different HSI applications will be analyzed. Finally, the basic functioning of the three 

main optimization algorithms selected is explained: Genetic Algorithm (GA), Particle 

Swarm Optimization (PSO) and Ant Colony Optimization (ACO). These algorithms will 

be used in the development of the project in the last section. 

2.2 Hyperspectral images 

Hyperspectral imaging (HSI) is a technology that combines conventional imaging 

and spectroscopy to obtain simultaneously the spatial and the spectral information from 

an object [1]. HSI provides abundant information that covers hundreds of spectral bands 

for each image pixel [2]. Thanks to the sensors that HS cameras employ, hyperspectral 

(HS) images show the radiance of the materials within each pixel area, which have a large 

number of spectral wavelengths, exploiting the fact that all materials reflect, absorb or 

emit electromagnetic energy in certain wavelengths. Each pixel contains an almost 

continuous spectrum (radiance2, reflectance3 or absorbance4), acting as a fingerprint (the 

so-called spectral signature) that can be used to characterize the chemical composition 

of that particular pixel. In other words, it can be used to identify the captured objects in 

a certain scene with high precision and quality.  

                                                        
 

 

2 Measure of the amount of electromagnetic radiation leaving or arriving at a point on a surface.  
3 Measure of the ability of a surface to reflect light or other electromagnetic radiation. 
4 Measure of the light-absorbing ability of an object. 
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As a result of spatial and spectral sampling, HS image sensors produce a three-

dimensional (3D) data structure with spatial and spectral components, called a HS cube. 

In Figure 2-1, it can be seen that the spectral signatures change when different objects 

are analyzed. For example, if all the pixels are extracted in the same spatial location and 

we represent their spectral values as a function of the wavelength, the result is the 

average spectrum of all the materials in the resolution cell. In this case, it can be observed 

in Figure 2-1 the spectral signatures of a brain tumor [3], [4]. 

This type of imaging technique was created for remote sensing applications, however, 

over the years its development and fields of application have been extended to other 

areas such as food quality [5], art conservation [6], archaeology [7], biomedicine [8], etc. 

In this project, HSI is used in the medical field, specifically as an aid tool for the detection 

of human brain tumors.  

 

 

Figure 2-1. Structure of a hypercube and spectral signatures of a brain tumor [9]. 

2.3 Dimensional reduction 

HS images are characterized by “the curse of dimensionality” [10] having a high 

dimensionality due to the rich amount data of information they contain. However, this 

fact causes that the computing time required to process the data is extremely high and 

also, in some cases, the processed data contain redundant information. Thus, it is 

necessary to employ processing algorithms that reduce the dimensionality of the HS data 

without losing the relevant information.  

This dimensional reduction process consists on the transformation of the data, 

characterized by their high dimensionality, into a significant representation of such data 

in a reduced size. Ideally, this low-dimensional representation should be composed by 

the minimum number of parameters necessary to take into account the fundamental 

characteristics of the data [11]. In consequence, there are two types of methods that allow 

this transformation: feature selection [12] and feature extraction [13]. In this Master 

Thesis, the main goal is to apply feature selection algorithms to reduce the 
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dimensionality of the HS human brain data for brain cancer identification. Although this 

same study is also valid for any type of HS images.  

2.3.1 Feature extraction methods 

Feature extraction algorithms are able to reduce, scale and rotate the original feature 

space of the HS data through a transformation matrix. This transformation optimizes a 

given criterion on the training data so, it can be formulated as a linear transformation 

which projects feature vectors on a transformed subspace defined by relevant directions 

[14]. Some of the algorithms that allow this type of transformation are Principal 

Component Analysis (PCA) [15], Factor Analysis (FA) [16], or Multidimensional Scalar 

(MDS) [17], among others.  

2.3.2 Feature selection methods 

The feature selection algorithms applied to the HSI, aim to find the optimal subset of 

these images, making all possible combinations that allows the image. This process 

reduces the dimensionality of the data by selecting the most discriminant bands of the 

dataset [14]. Some of the algorithms that allow carrying out this process are optimization 

algorithms such as the Genetic Algorithm (GA) [18], Particle Swarm Algorithm (PS) 

[19], Ant Colony Optimization (ACO) [20], etc.  

2.4 Band selection methods for HSI 

As commented in section 2.2, the use of HS images has increased considerably in 

different industrial and research areas. One of the main field of application is remote 

sensing [21], however, other applications such as military , agronomic [23], or medical 

[24], are gaining strength.  

Because of this growth, it is becoming extremely necessary the reduction of the 

dimensionality of the HS images in order to provide cost-effective sensors for real-time 

execution applications. Thus, different algorithms are currently have been studied in the 

literature with the goal of making this reduction in the best possible way. In this section, 

some of the most relevant studies found in the literature are presented, where different 

techniques are analyzed in order to identify which wavelengths in the HS images provide 

more information for certain applications.   

The most common applications where HS images have been used in combination 

with feature selection algorithms are in the food quality area. In [25], Yu et al. focus their 

research on detecting the amount of moisture found in soybeans using the spectral region 

over 400-1000 nm. This work performs a comparative study of the following algorithms: 

Binary Firework Algorithm (BFWA) [26], Successive Projections Algorithm (SPA) [27] 

and Uninformative Variable Elimination Algorithm (UVE) [28]. Figure 2-2 shows that 

the best result is obtained with the BFWA algorithm, since with four spectral bands 

(wavelengths), the Root Mean Squared Error of Prediction (RMSEP5) is lower than 6%. 

                                                        
 

 

5 Measure of the difference between predicted values and the actual values.  
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However, in the other cases, the RMSEP increases to 10% and 14% using the SPA and 

UVE algorithms, respectively. It is observed that if the number of bands increases, the 

RMSEP decreases, nevertheless, BFWA continues to give the best result with only four 

bands. However, the researchers decided to select 12 bands, to prevent the model to be 

unstable at some point. The 12 wavelengths selected were 457.95, 509.48, 567.44, 

586.76, 612.52, 657.6, 696.24, 747.76, 773.52, 850.8, 908.76 and 934.52 nm.  

 

Figure 2-2. The RMSEP values obtained by SPA, UVE, and BFWA [25]. 

Another study performed by Nagasubramanian et al., also focused on the food quality 

inspection through HSI, has the goal to detect the state of rot in soybeans [29]. In this 

case, instead of making a comparative with different algorithms, authors employed the 

Genetic Algorithm (GA) combined with the Support Vector Machine (SVM) classifier. 

The study concludes that the most suitable number of wavelengths for this application 

was 6 (from 240 spectral bands), which 3 of them were the RGB wavelengths (475.56 

(B), 548.91 (G) and 652.14 (R) nm) and the other 3 selected by the GA, being 516.31, 

720.05 and 915.64 nm. The results obtained after performing the combinations of 

selected wavelengths are shown in Table 2-1. The F1-Score6 and the overall classification 

accuracy obtained after using only the RGB wavelengths were 0.79 and 76.92%, 

respectively. However, when the 6 wavelengths selected by the classifier were used, the 

F1-Score and the overall classification accuracy were 0.97 and 97%, respectively, 

significantly improving the results.  

Table 2-1. Classification results for selected wavelength combinations [29]. 

Band 
Combination 

Confusion 
Matrix 

Precision Recall 
F1-

Score 

Healthy 
Acc.** 

(%) 

Infected 
Acc.** 

(%) 

Overall 
Accuracy 

(%) 

3 (RGB) 
TP=17; FP=8 
FN=1; TN=13 

0.68 0.94 0.79 92.85 68.00 76.92 

6 
TP=18; FP=1 
FN=0;TN=20 

0.94 1.00 0.97 100.00 94.00 97.00 

**Accuracy per class  

                                                        
 

 

6 Harmonic mean between precision and recall. Statistical measure to rate performance. 
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Other main area that uses HS images is remote sensing. In these applications, one of 

the main requirements is that the size of the data should not be high to avoid high delays 

in the transmission of the data. In this sense, there are several studies performed on how 

to efficiently reduce the dimensionality of the data. In the study performed by Wang et 

al., a modified Ant Lion Optimization (ALO) and Wavelet Support Vector Machine 

(WSVM) was proposed [30]. The objective of this method is to select the lowest number 

of bands as accurately as possible. The ALO algorithm is combined with the WSVM to 

improve the stability of the classification result. To evaluate the algorithm, several public 

standardized databases are used, Botswana with 145 bands, KSC with 176 bands and 

Indian Pines with 185 bands (acquired by the NASA EO-1 satellite, Kennedy Space Center 

(KSC) and AVIRIS respectively). The range of these databases ranges from 0.4 to 2.5 µm. 

Figure 2-3, shows the precision change curve of each of the databases. It can be seen that, 

the precision when selecting more bands is stabilized. This fact can be observed when 

selecting the 125, 141 and 153 main bands for the Botswana, KSC and Indian Pines 

datasets. For the worst case, the accuracy is 85.3%, while in the rest it is higher than 93%. 

 
Number of selected bands 

Figure 2-3. The change curve classification accuracy for 3 HSI datasets [30]. 

On the other hand, in the study performed by Yu et al., also related with remote 

sensing, they used the GA algorithm combined with the K-Nearest Neighbor (KNN) 

algorithm for the selection of features, reducing the computation time and improving or 

maintaining the accuracy of the automatic classifiers [31]. As in the previous case, the 

researchers employed the same public HS images. The goal was to find the most relevant 

bands that provides the best classification results. Several experiments were performed. 

These consisted in reducing the number of bands while maintaining the classification 

error below 10%. The first experiment evaluates from the database the first 50 bands 

through GA with 100 generations. The next experiment is the same process with the first 

100 bands. The third and last experiment was to repeat the same procedure with the first 

150 bands and with all the bands of the database, respectively. Figure 2-4 shows on the 

Y-axis the number of selected bands reduced and the X-axis the number of generations 

performed to find the most significant bands. It can be seen that with the original HS 

cube, composed by 220 bands, the best result was obtained after performing 90 

generations in the GA and a number of bands somewhat lower than 35. With 150 bands, 

after performing the generation 70, the number of optimized bands is maintained with a 

number of 15-16 bands. This result is repeated when evaluating only 50 bands after 

generation 50. However, with a database of 100 bands, upon reaching generation 78, the 

number of bands is reduced to less than 10. 
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Number of generations 

Figure 2-4. Number of selected bands versus number of generations for the GA selection 
on 50, 100, 150 and 220 bands [31]. 

2.5 Optimization algorithms 

In this section, the different optimization algorithms used to carry out this Master 

thesis are explained. The optimization algorithms are aimed to find the best combination 

of elements from an initial set of available elements. Normally, these type of algorithms 

are focused on reaching the global minimum of the function to be analyzed. Next, the 

GA, PSO and ACO algorithms will be explained.  

2.5.1  Genetic Algorithm 

The Genetic Algorithm (GA) is an optimization algorithm that mimics the process of 

natural selection. GA tries to find the optimal solution (usually the global minimum) of 

the function to be studied. The main advantage of this algorithm is its great ability to 

work with a large number of variables [32], [33].  

The objective of this algorithm is to optimize a series of parameters (genes) that will 

be then concatenated with each other, when necessary, those that provide the best results 

(chromosome). In order to find these most important values, it is necessary to generate 

populations in a random manner whose size is chosen by the user. This population allows 

to improve the performance of the algorithm [34]. Once these parameters are defined, 

the GA must perform the following steps:  

1) Initialization: In this step, the selection of the population is performed in a 

random way. 

2) Evaluation: The goal is to study the results obtained from the initial population 

(parents) and each of the descendant generations (children). 

3) Selection: This point is responsible for keeping the best result obtained during 

the evaluation process. 
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4) Recombination: In this step, the combination of the different initial 

contributions (parents) for the creation of better solutions (children) is 

performed. This crossing is performed by dividing the populations in two (or 

more) parts and exchanging part of those populations with each other, in the way 

that is observed in the Figure 2-5.a. 

5) Mutation: This technique is performed in the same way as in recombination step. 

However, instead of exchanging parts of the populations among themselves, a 

single value of each of the populations is modified, as shown in Figure 2-5.b. 

6) Replacement: After performing the recombination and mutation, these 

generations (children) replace the initial populations (parents).  

The steps 2 to 6 are repeated as many times as are necessary until the best solution 

is found [18]. 

  

a) b) 

Figure 2-5. Recombination and mutation process. 

2.5.2 Particle Swarm Optimization 

The Particle Swarm optimization (PSO) algorithm is a stochastic technique that is 

based on the behavior of bee swarms. This algorithm highlights its effectiveness in 

multidimensional optimization problems [35]. This methodology is based on the 

survival of some living beings. In this case, the algorithm is inspired by the procedure 

carried out by bees to find the place with the major quantity of flowers. At first, the 

bees begin to move randomly and each bee remembers where they located the most 

flowers. In addition, the bee, somehow, knows where the rest of the bees have found 

more flowers, so that, with no prior knowledge about which place has the highest 

density of flowers, the bee chooses a place between those two points. However, the 

bee can find another area with more flowers between these two points, so it repeats 

the same process and instead of choosing one of the two points, choose a middle point. 

This process is repeated by each bee as many times as necessary until they find the 

area with the most quantity of flowers [36].  

As well as the genetic algorithm, PSO is initialized with a random initial population. 

However, in this case, each possible solution, known as particle, has also assigned a 

random velocity [19]. Each particle updates and stores the best position found for far 

(pbest) and also stores and updates the best position of the rest of the swarm (gbest). To 

represent the velocity update, the algorithm uses the next equation: 

𝑣𝑖(𝑡 + 1) = 𝛼𝑣𝑖 + 𝑐1 ∗ 𝑟𝑎𝑛𝑑 ∗ (𝑝𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖(𝑡)) + 𝑐2 ∗ 𝑟𝑎𝑛𝑑 ∗ (𝑔𝑏𝑒𝑠𝑡(𝑡) − 𝑥𝑖(𝑡)) (2.1) 

where 𝑣𝑖 is the velocity vector, 𝑥𝑖 is the position vector, 𝛼 is the weight of the particle 

that controls the recognition of the place, 𝑐1 and 𝑐2 are the acceleration constants of the 

particles (usually take a value of 2 by default), and 𝑟𝑎𝑛𝑑 is a random number between 0 

and 1 [35]. 
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Once the parameters that conform the algorithm are obtained, the swarm is 

generated by means of the following steps: 

1) Initialization: This step initializes a random population with different positions 

and velocities. 

2) Selection: In this step, each particle evaluates the best location found and the 

best position found by the rest of the swarm.  

3) Evaluation: Here, a comparison of all the results and selection of the pbest is 

performed. The same process is applied to find the best gbest.  

4) Replacement: In this last step, the new results replace the initial population and 

the process is repeated up to a maximum number of generations established by 

the user or until the solution converges [37].  

2.5.3 Ant Colony Optimization 

The 2.5.3 Ant Colony Optimization (ACO) algorithm is based on a metaheuristic 

procedure, which aims to obtain acceptable solutions in problems of combinatorial 

optimizations in a reasonable computational time.  

As the name suggests, this algorithm is based on the composition of the ant colonies. 

The ants, when searching for food, separate and begin to make trips in a random way. 

Once an ant gathers food, while carrying the food to the nest, it expels pheromones along 

the way. Depending on the quality or quantity of the food found, the amount of 

pheromones will vary. On the other hand, the evaporation of the pheromones causes the 

pheromones to disappear, so that, if these routes are not reinforced, they end up 

disappearing. This process is repeated until you find the best possible route.[38], [39]. 

In Figure 2-6, an example of the selection process of the best path through a group of 

ants is presented. Figure 2-6.a shows the initial case, without pheromones in the 

environment, while Figure 2-6.b shows that the group is separated by choosing random 

paths to find the food. During the path, ants start to expel pheromones, as it can be seen 

Figure 2-6.c, and, then, the most ants return by the shortest route, increasing the amount 

of pheromones in the short path (Figure 2-6.d). Finally, after some time, the pheromones 

of the long path will evaporate [40].  

Taking into account this selection process, the algorithm is characterized by having 

a main component, the pheromone model. This model is a parameterized probabilistic 

model, which consists of a vector of parameters that indicate the trajectory followed by 

pheromones. These values are updated until the minimum values of the problem are 

reached [38]. 
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a) b) 

  
c) d) 

Figure 2-6. Simulation of the selection process of the ant colonies of the best route between 

the nest and the food [40]. 

2.6 Support Vector Machine Classifier 

In this Master Thesis, apart from techniques of “band selection” techniques, the 

Support Vector Machine (SVM) classifier will be used throughout the study. 

The Support Vector Machine classifier is a binary classification algorithm. Its 

objective is to find out the best hyperplane that allows to separate the different data with 

a maximum margin [41]. 

To perform the calculation of the hyperplane, it is necessary to have a dataset 𝑥𝑖 

where 𝑥𝑖𝜖 ℝ
𝑑 ( d is the dimension of each sample), and labels associated with these data 

𝑦𝑖 where 𝑦𝑖𝜖 ℝ [42].Each label provides information about the data 𝑥𝑖, if 𝑦𝑖 = 1 , the class 

is positive and if 𝑦𝑖 = −1 , the class is negative. According to the data input 𝑥𝑖, it can be 

written as follows:  

ŷ = 𝑥𝑖 · 𝑤 + 𝑏 (2-2) 

Where ŷ is the predicted class for instance 𝑥𝑖, and the parameters 𝑤 and 𝑏 define the 

hyperplane which has the maximum margin as a characteristic (𝑤 𝜖 ℝ𝑑) and (𝑏 𝜖 ℝ). The 

values of these parameters are obtained through a training set, which is based on an 

ordered sequence of data and labels (𝑥𝑖 , 𝑦𝑖) [43]. In Figure 2-7 an example of a 

hyperplane found by SVM is presented.  

For the development of this Master Thesis, it is necessary to use the SVM multiclass 

classifier. Since the SVM is a binary classifier, it is necessary to perform transformations 

for the identification of all classes. The most used method is the one-vs-one [44]. This 

method finds and generates linear hyperplanes (k-1) between different classes (k) [45]. 
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Figure 2-7. Support Vector Machine linear hyperplane between two classes [46]. 

2.7 Summary 

In this chapter, a state of the art has been presented, where the purpose of HS images 

and their basic characteristics has been explained. On the other hand, taking into account 

that these images can exhibit redundant information, the main goal is to reduce its size 

without losing information by means of dimensional reduction techniques, specifically 

through the selection of features, which can lead in cheaper instrumentation for a given 

application. Several articles have been analyzed that make use of these types of 

procedures. Finally, three optimization algorithms were selected to identify which bands 

that conform the HS image are the most relevant ones. 

 



 

 

Chapter 3: In-Vivo HS Human Brain 

Image Database 

3.1 Introduction  

This chapter will describe the database used during the realization of this Master 

Thesis. This database is composed by HS images of human brain tissue. This research 

work will aim to find the most relevant bands of the HS images by using this database. 

In addition, a general description of the procedure carried out to obtain the HS 

images during the execution of the European HELICoiD project (from where the data 

were obtained) will be provided. 

The HELICoiD project was a European collaborative project funded by the Executive 

Research Agency (REA), through the Future and Emerging Technologies program (FET-

Open), within the framework of the 7th Framework Program of the European Union [47]. 

HELICoiD aimed to generate a demonstrator capable of differentiating between healthy 

tissue and tumor tissue in real-time during neurosurgical operations using HSI. During 

the development of the HELICoiD project, an intraoperative experimental system was 

developed [48], which provided to neurosurgeons in surgical-time a thematic map where 

the boundaries of the tumor were identified with the goal of performing an accurate 

resection of the tumor [49]. 

3.2 Intraoperative HS Acquisition System 

To carry out the process of acquisition of the database, it was decided to use a custom 

intraoperative HS acquisition system [47], [48], [50]. This system was developed within 

the HELICoiD research project. 

Figure 3-1, shows the platform of the intraoperative HS acquisition system used 

during a neurosurgery operation at the Doctor Negrín University Hospital in Las Palmas, 

Gran Canaria, Spain [51]. This system consists of two pushbroom cameras: a 

Hyperspec® VNIR A-Series camera (Figure 3-1.a), which covers the spectral range from 

400 to 1000 nm. It has a dispersion of 0.74 nm and a spectral resolution of 2-3 nm (with 

a 25 μm slit), and is capable of capturing 826 spectral bands and 1004 spatial pixels, and 

a Hyperspec® NIR 100 / U camera (Figure 3-1.b), which covers the spectral range from 
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900 to 1700 nm. It has a dispersion per pixel of 4.8 nm and a resolution of 5 nm (with a 

25 μm slit), 172 spectral channels and 320 spatial pixels [48].  

On the other hand, this system also has a light source (Figure 3-1.c and Figure 3-1.e), 

composed of a QTH lamp (Quartz-Tungsten-Halogen) connected to a cold light emitter 

through a fiber optic cable (Figure 3-1.d). This lighting system prevents the high 

temperatures emitted by the light source from reaching the surface of the brain. Finally, 

the cameras are fixed to a scanning platform (Figure 3-1.f and Figure 3-1.g), covering a 

useful area of 230 mm. This displacement is necessary since the cameras, being 

pushbroom type, only capture a single spatial dimension. 

 

Figure 3-1. HELICoiD demonstrator acquisition platform. (a, b) VNIR and NIR HS cameras 
mounted on the scanning platform; (c-e) Light source QTH connected to the fiber optic 
system for the transmission of light to obtain a light emission on the scanning platform; (f, 
g) stepper motor coupled to the shaft and connected to the stepper motor controller to 
perform the linear movement of the cameras; (h) Positioning of the camera used to identify 
the position of the field of vision of the cameras (FOV); (i) The Up & Down system used to 
focus the HS cameras; (j) and (k) Manual pan and tilt systems used to correctly orient the 
scanning platform [48]. 

3.3 Acquisition of HS images during surgery 

The process to follow for a correct labeling of the samples can be observed in Figure 

3-2 where the procedure to be followed is shown. The following subsections explain these 

steps [52]. First, Figure 3-2.a shows the acquisition system for intraoperative HS imaging 

that is used in the Hospital Doctor Negrín during a neurosurgery operation. Second, 

Figure 3-2.b and Figure 3-2.c show the spectral range with which the camera works, from 

400 to 1000 nm, capturing 826 spectral bands and 1004 pixels per line. Third, Figure 

3-2.d shows the RGB image with the two markers indicating which tissue is tumor (left) 

and which healthy tissue (right), and Figure 3-2.e and Figure 3-2.f show the 

histopathological analysis of surface tissue samples that are within the markers. Fourth, 

the Figure 3-2.g shows golden map where some pixels have been labelled and checked 

by the surgeon. In this case, there are four classes: the healthy tissue being the green 

color (class 1), the tumoral tissue with the red color (class 2), the hypervascularized 
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represented with the blue color (class 3) and the background with the black color (class 

4). Finally, Figure 3-2.h shows the mean and standard deviation of the spectral 

signatures of the four classes that make up the image. 

 

 

Figure 3-2. Data acquisition and labelling procedure [51]. 

3.3.1 Patient preparation 

Time before performing the operation, the patient is given an image guide 

stereotactic7 (IGS), composed of the MRI (Magnetic Resonance Imaging) and the CT 

(Computed Tomography) scan. Once the previous procedure has been carried out, the 

patient is generally subjected to general anesthesia, the skull is exposed and drilled by 

                                                        
 

 

7 System that allows finding the exact position of a particular part inside the body before an operation. 
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means of a high-speed drill. Next, a craniotomy is inserted into the hole created and a 

craniotomy8 with a craniotome is performed. Once a part of the skull has been removed, 

the last step is to extract the dura9 to be able to start operating.  

3.3.2 Hyperspectral image capture  

The capture process is performed between the extraction of the dura mater and the 

rupture of the arachnoid and pia mater. If the tumor is located on the surface, a series of 

sterilized markers, usually two, are placed according to the surgeon’s instructions for the 

correct identification between healthy tissue and tumor. The exact location of the 

markers is by means of the IGS system pointer to identify the location of the markers on 

the brain. This pointer allows knowing the position of the markers with respect to an 

MRI or CT previously performed. Figure 3-3 and Figure 3-4 show the structure of the 

three meninges and the use of the IGS system pointer, respectively. 

Using the HELICoiD demonstrator, several images were captured with and without 

markers. Thanks to the markers, the process of labeling the pixels becomes easier, since 

this labeling can be compared with the results of histopathological analysis, because a 

biopsy is performed inside said markers that will be analyzed by pathology [51]. 

 

Figure 3-3. Meninges’ structure [53] 

 

  
(a) (b) 

Figure 3-4. IGS system pointer. (a) IGS system pointer over the tumor surface. (b) IGS 
system screen snapshot with the IGS system pointer coordinates [51] 

                                                        
 

 

8 Surgical removal of part of the skull to expose the brain. 
9 Fibrous membrane forming the outer of the central nervous system.  
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3.3.3 Tissue resection  

Once the HS image is obtained, the neurosurgeons begin with the resection of the 

tumor tissue. First, a biopsy is performed and sent to pathology in a container labeled as 

HELICoiD. These samples will be the gold reference for performing a proper labeling and 

then the correct development of the algorithm. When possible, a new HS image is 

captured during the resection process.  

3.3.4 Expert evaluation 

Samples sent to pathology are subjected to two standard processes: first, the sample 

is fixed with formalin and then stained by means of hematoxylin10-eosin11 and any other 

dye if necessary to establish a correct diagnosis. The pathologists are the only ones that 

can determine the type of tissue that the sample belongs to. These results are classified 

as tumor or normal (healthy) tissue. In addition, the tumor samples are divided in the 

type of tumor and its corresponding malignancy degree [54]. 

3.3.5 Samples labelling 

After the pathological result confirmation is obtained, the labeling process is carried 

out by using a semi-automatic labeling tool developed to this end based on the Spectral 

Angle Mapper (SAM) algorithm [51]. These pixels are labeled into four classes related 

with a certain color: healthy tissue (class 1 - green), tumor tissue (class 2 - red), 

hypervascularized tissue (class 3 - blue) and background (class 4 - black). 

3.3.6 Complete HS database 

The final HS database employed in this Master Thesis is composed by 26 HS cubes 

belonging to 16 different patients, obtained at the University Hospital Doctor Negrín of 

Las Palmas de Gran Canaria. This database consists of Glioblastoma primary brain 

tumors.  

This database was divided into two sets, one part for training and another for testing. 

However, due to the experiments performed were done using a leave-one-patient-out 

methodology (that will be explained in Chapter 4:), the remaining test HS images are 

also included in the training database. The selection of the test database was made taking 

into account that in these images some pixels with the four classes to be predicted are 

labelled 

Table 3-1 and Table 3-2 show the RGB images and the gold reference of the test 

group, respectively. Table 3-3 and Table 3-4 show the number of pixels labeled from the 

training and test datasets, respectively.   

 

                                                        
 

 

10 Acid coloring matter obtained from the Wood of a tree. 
11 Any of a class of rose-colored stains or dyes, all being bromine derivatives of fluorescein. 
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Table 3-1. RGB of hyperspectral dataset 
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Table 3-2. Ground truth maps of hyperspectral dataset 
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Table 3-3. HELICoiD labelled pixel train dataset 

Patient 

ID 

Image 

ID 

Size 

(width x height x 

bands) 

#Labeled Pixels 

Normal Tumor Hypervascularized Background 

4 2 389 x 345 x 128 4.681 0 686 1.746 

5 1 483 x 488 x 128 5.937 0 1.709 18.960 

7 1 582 x 400 x 128 7.449 0 1.033 0 

8 
1 460 x 549 x 128 2.225 964 1.204 550 

2 480 x 553 x 128 1.895 92 834 6.997 

10 3 371 x 461 x 128 10.303 0 2.230 3.275 

12 
1 443 x 497 x 128 4.365 820 8.495 1.306 

2 445 x 498 x 128 6.413 3.115 5.407 7.200 

13 1 298 x 253 x 128 1.735 0 82 455 

14 1 317 x 244 x 128 0 0 1 1.715 

15 1 376 x 494 x 128 1.176 1.936 3.924 454 

16 

1 335 x 323 x 128 3.944 0 185 9.723 

2 335 x 326 x 128 345 0 0 2.546 

3 315 x 321 x 128 566 0 192 1.343 

4 383 x 297 x 128 1.110 64 970 705 

5 414 x 292 x 128 2.591 0 377 4.292 

17 1 441 x 399 x 128 1.240 57 39 2.171 

18 
1 479 x 462 x 128 13.196 0 451 9.552 

2 510 x 434 x 128 4.614 0 919 5.427 

19 1 601 x 535 x 128 6.437 0 1.267 1.743 

20 1 378 x 330 x 128 1.541 3.439 1.370 2.180 

21 

1 452 x 334 x 128 3.165 0 720 4.406 

2 448 x 324 x 128 2.112 0 391 1.518 

5 433 x 340 x 128 832 0 1.423 1.088 

22 
1 597 x 527 x 128 2.803 0 936 3.436 

2 611 x 527 x 128 8.100 0 563 0 

16 26   98.775 10.487 35.408 92.788 

Total: 237.458 

 

Table 3-4. HELICoiD labelled pixel test dataset 

Patient 

ID 

Image 

ID 

Size 

(width x height x 

bands) 

#Labeled Pixels 

Normal Tumor Hypervascularized Background 

8 
1 460 x 549 x 128 2.225 964 1.204 550 

2 480 x 553 x 128 1.895 92 834 6.997 

12 
1 443 x 497 x 128 4.365 820 8.495 1.306 

2 445 x 498 x 128 6.413 3.115 5.407 7.200 

15 1 376 x 494 x 128 1.176 1.936 3.924 454 

20 1 378 x 330 x 128 1.541 3.439 1.370 2.180 

4 6  17.615 10.366 21.234 18.687 

Total: 67.902 
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3.4 Summary 

This chapter has explained the procedure necessary for a correct acquisition of HS 

brain tissue images during surgical operations that were carried out to obtain the 

database employed in this work. The database is divided in two sets, one set to train 

(Table 3-3) and another to test (Table 3-4). The training set consists of 26 in-vivo images 

of the brain surface of 16 patients. In the case of the test folder, it is composed by 6 

captures of 6 patients. In each of the images, under the supervision of surgeons, it has 

been made the process of labeling of some of the pixels that compose the HS images. This 

labeling process is divided into four classes: normal tissue, tumor tissue, 

hypervascularized and background. In Table 3-3 and Table 3-4, the number of pixels 

labeled in each of the classes is observed for all the HS images that compose the training 

and test sets. It is observed that the training set is composed of more than 200,000 

labeled pixels, while the test set is composed of nearly 68,000 labeled pixels. 



 

 

Chapter 4: Methodology 

4.1 Introduction 

This section explains the different approaches proposed for the selection of the most 

representative bands in this work. 

First, a general methodology is proposed in order to evaluate the classification with 

the bands selected by the GA and PSO algorithms. Once the results obtained have been 

evaluated, some drawbacks were found, so some modifications were proposed to solve 

these problems. One of the main drawbacks of the proposed structure was the excessive 

computation time per image. In addition, our dataset is unbalanced in terms of classes. 

An excessive number of labeled pixels for the training of the supervised classifier can 

produce misclassifications between the different classes in the dataset. As a solution, it 

was decided to develop an algorithm based on the unsupervised k-means algorithm for 

obtaining a reduced and balanced labeled dataset. With this algorithm, the training 

database is processed, reducing its size containing the most relevant information and 

balancing the classes (having the same number of labelled pixels in each class). In this 

way, it was possible to significantly reduce the computation time, and also to solve the 

problem of the unbalance of the labeled pixels between the classes. 

Once the training dataset was reduced using k–means and verified, it was integrated 

into the initial general structure, generating a new framework. This new framework was 

evaluated with the same objective: the selection of the most representative bands with 

the GA and PSO algorithms. Then, once both procedures were evaluated, it was necessary 

to compare them with some reference results that allowed verifying if such procedures 

really improved the classification results. Therefore, the next step was to evaluate the use 

of all the bands with the entire and reduced labelled dataset. 

Next, after analyzing the results obtained, it was decided to study another 

optimization algorithm based on the ant colony methodology (ACO algorithm). This 

algorithm was studied independently because its internal structure is quite different 

from the other two optimization algorithms.  

Finally, the results obtained were analyzed with the same evaluation metrics: overall 

accuracy, sensitivity, specificity, custom Figures of Merit (FoM), Matthews Correlation 

Coefficient (MCC) and classification maps. 
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4.2 Proposed processing frameworks  

In this section, we carefully explain the initial methodology that was followed during 

the development of this Master Thesis to find the most relevant bands of the HS images 

in order to provide an accurate classification of brain tumors. In general, all the proposed 

processing frameworks are composed by four main steps: relevant bands selection, 

supervised classifier training, supervised classification prediction and results evaluation 

(Figure 4-1).  

Dataset
Band 

Selection
Supervised

Class
Results

Evaluation

 

Figure 4-1. Flow diagram of the general process to select the best bands. 

For the development and evaluation of the proposed processing frameworks, it was 

required the use of the labeled dataset presented in Chapter 3:. However, due to the 

quantity of execution iterations that has to be performed in each experiment for each 

proposed algorithm for the training of the supervised classifier, a specific approach to 

train the classifier using a reduced labeled dataset is proposed (Section 4.2.3).   

The supervised classifier chosen to develop the model is the SVM algorithm. This 

algorithm has been already employed in several works to classify the in-vivo human brain 

HS image database employed in this study [55]. In this Master Thesis, no other classifiers 

have been employed since the main focus of this work was to study the different 

optimization algorithms. This classifier has been selected because, after an exhaustive 

analysis of different studies, where several optimization algorithms were evaluated, the 

classifier with the best results was the SVM algorithm [56]–[59]. For this project, the 

LIBSVM [60] public library was used for the implementation of the SVM algorithm. 

4.2.1 Evaluation metrics 

The evaluation metrics are used to evaluate the performance of an algorithm, in our 

case, the quality of the classification is evaluated with a determined number of selected 

bands used as input of a classifier. Many of these metrics tend to generate somewhat 

deceptive results, so it is necessary to evaluate the results with different methods. In 

addition, for all the experiments performed in this work, a cross-validation methodology 

was followed. In the next sections, each of the evaluation metrics used in this work are 

explained in detail. 

4.2.1.1 Leave-One-Patient-Out Cross-Validation  

Cross-validation is a statistical method of evaluation and comparison of learning 

algorithms. This method divides the data into two segments: one used to train a model 

and the other used to validate the model. The process that uses cross-validation is as 

follows: in each iteration, the algorithm uses n -1 data folds to learn one or more models, 

and then the learned models are asked to make predictions about the data in the 

validation fold. The performance of each learning algorithm in each iteration is tracked 

using a certain evaluation metric [61]. 



Chapter 4: Methodology 

 

39 
 

There are several techniques to be used within the cross-validation: holdout, k-fold 

and leave-one-out. In this work we employed the leave-one-out methodology to evaluate 

the results. 

The Leave-One-Out Cross-Validation (LOOCV) is a statistical estimation technique 

that is currently applied in machine learning and bioinformatics. This technique involves 

the partition of the original data set into n subsets of equal size. The model is trained n 

times (n is the number of instances), using each subset in turn as a test set, and the 

remaining subsets as the training set, as it can be seen in Figure 4-2. The general accuracy 

can be obtained by averaging the precision values calculated in each subset [62].  

 

Figure 4-2. Leave-One-Out Cross-Validation method [63]. 

4.2.1.2 Overall Accuracy, Sensitivity and Specificity 

To clearly explain the functioning of the sensitivity and specificity evaluation metrics, 

our case study is used as an example to determine if a certain pixel in an HS image 

represents cancer or not. For this purpose, it is necessary to previously introduce the 

following terms: true positive (TP), the pixel is cancer and the test is positive; false 

positive (FP), the pixel is not cancer and the test is positive; true negative (TN), the pixel 

is not cancer and the test is negative; and false negative (FN), the pixel is cancer but the 

test is negative [64]. 

4.2.1.2.1 Overall Accuracy 

The Overall Accuracy (OA) indicates, in this example, the general detection of pixels 

with or without cancer. This metric shows how many pixels with and without cancer 

could be identified correctly [65]. Equation 4.1 shows the procedure to perform the 

calculation of the overall accuracy.  

In addition to the standard OA, another metric has been proposed for the 

identification of the best results obtained with the optimization algorithms but taking 

into account also the number of selected bands. This 𝑂𝐴𝑃𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑 is based on the OA 

presented in Equation 4.1 but including a penalty in the case that a high number of bands 

is used. Equation 4.2 presents the mathematical expression to compute this 𝑂𝐴𝑃𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑, 

where 𝜆 is the number of bands selected by the algorithm and 𝜆𝑚𝑎𝑥 is the total number of 

bands in the original dataset. 

OA has a value range between 0 to 1, where 0 represents a completely wrong 

prediction and 1 indicates a completely correct prediction. Otherwise,  𝑂𝐴𝑃𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑 has 

the same range value, but 1 represents a completely wrong prediction and 0 indicates a 
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completely correct prediction, due to the objective of the algorithms is to find the global 

minimum.  

𝑂𝐴 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

(4.1) 

𝑂𝐴𝑃𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑 =  1 −
𝑂𝐴

1 +
𝜆

𝜆𝑚𝑎𝑥

 
(4.2) 

 

4.2.1.2.2 Sensitivity 

Sensitivity represents, in this example, the correct percentage of identification of 

pixels with cancer. Equation 4.3 shows the necessary procedure to calculate the 

sensitivity of a model [66]. This metric ranges between values of 0%-100%, where 0% 

indicates that no pixels with cancer have been identified and 100% that all pixels with 

cancer have been correctly identified. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(4.3) 

4.2.1.2.3 Specificity 

Specificity represents, in this example, the correct percentage of identification of 

pixels without cancer. Equation 4.4 shows the necessary procedure to calculate the 

specificity of a model [66]. This metric ranges between values of 0%-100%, where 0% 

indicates that no pixels without cancer have been identified and 100% that all pixels 

without cancer have been correctly identified. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

(4.4) 

4.2.1.3 Matthews Correlation Coefficient (MCC) 

The Matthews correlation coefficient (MCC) is mainly used to analyze classifiers that 

work with unbalanced data [67]. This metric indicates the correlation coefficient between 

the observed and the predicted values. MCC has a value range between -1 to 1, where -1 

represents a completely wrong prediction and 1 indicates a completely correct prediction. 

Equation 4.5 shows the procedure necessary to calculate the MCC metric [68]. 

𝑀𝐶𝐶 =  
𝑇𝑃 𝑥 𝑇𝑁 − 𝐹𝑃 𝑥 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

(4.5) 

4.2.1.4 FoM for balanced accuracy per class  

The specific FoM employed to obtain the most relevant bands with the optimization 

algorithms in the OPF has the goal of finding the most balanced accuracy results for each 

class, as observed in Equation 4.5, where 𝑛 is the number of classes, 𝑖 and 𝑗 are the indices 

of the classes that are being calculated. The mathematical expression of the 𝐴𝐶𝐶𝑝𝑒𝑟𝐶𝑙𝑎𝑠𝑠  

in a multiclass classification is obtained by dividing the total number of successful results 
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(𝑇𝑃) for a particular class by the total population of this class (𝑇𝑃 + 𝐹𝑁). This expression 

is equal to the sensitivity of a certain class in a multiclass classification problem. 

Equation 4.6 shows the mathematical expression of the 𝐴𝐶𝐶𝑝𝑒𝑟𝐶𝑙𝑎𝑠𝑠.  

In addition to the previously presented FoM, another metric has been proposed for 

the identification of the best results obtained with the optimization algorithms but taking 

into account also the number of selected bands. This 𝐹𝑜𝑀𝑃𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑 is based on the 𝐹𝑜𝑀 

presented in Equation 4.7 but including a penalty in the case that a high number of bands 

is used. Equation 4.8 presents the mathematical expression to compute this 

𝐹𝑜𝑀𝑃𝑒𝑛𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛, where 𝜆 is the number of bands selected by the algorithm and 𝜆𝑚𝑎𝑥 is the 

total number of bands in the original dataset. 

𝐹𝑜𝑀 has a value range between 0 to 1, where 0 represents a completely wrong 

prediction and 1 indicates a completely correct prediction. Otherwise,  𝐹𝑜𝑀𝑃𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑 has 

the same range value, but 1 represents a completely wrong prediction and 0 indicates a 

completely correct prediction, due to the objective of the algorithms is to find the global 

minimum.  

𝐹𝑜𝑀 =
1

2
·

(

 
 
∑

𝐴𝐶𝐶𝑖 + 𝐴𝐶𝐶𝑗

|𝐴𝐶𝐶𝑖 − 𝐴𝐶𝐶𝑗| + 1

𝑛

𝑖,𝑗
𝑖<𝑗 )

 
 
· (
𝑛
2
)
−1

 

(4.6) 

𝐴𝐶𝐶𝑝𝑒𝑟𝐶𝑙𝑎𝑠𝑠 = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(4.7) 

𝐹𝑜𝑀𝑃𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑 =  1 −
𝐹𝑜𝑀

1 +
𝜆

𝜆𝑚𝑎𝑥

 
(4.8) 

4.2.1.5 Classification Map 

This evaluation metric allows to visually identify where each of the different classes 

are located. This metric is employed to visually evaluate the classification results 

obtained when the entire HS cube is processed, including labeled and non-labeled pixels. 

After performing the classification of the HS cube, a certain color is assigned to each 

class. This process allows mainly evaluating the results obtained in the prediction of non-

labeled pixels. 

In our case, the colors that are represented in the classification map are the following: 

the green color was assigned to the first class (healthy tissue); the red color was assigned 

the second class (tumor tissue); the blue color was assigned to the third class 

(hypervascularized tissue); the black color was assigned to the fourth class (background). 

Figure 4-3 shows an example of a RGB image transformed to the classification map.  
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(a) (b) 

Figure 4-3. Brain tumor (a) synthetic RGB and (b) 
classification map. 

4.2.1.6 GA and PSO number of generations rule  

The optimization algorithms GA and PSO perform a determined number of 

generations that is calculated in the following way: 100 * numberOfVariables. In this 

case, we have 128 variables, so we had to perform 12,800 generations. In our case, the 

average time at the time of making a generation was about 4 hours. Very long time to 

calculate 12800 generations per image. Therefore, it was decided in the beginning to 

carry out 30 generations. However, taking into account the obtained results, by using 

only 30 generations, was decided to increase the number of generations due to in some 

cases the results did not converge.  

Figure 4-4 shows the evaluation of the GA generation, where it is clearly observed 

that with 30 generations it does not converge, and when the generations double, the 

values of the generations come to converge. As can be seen, when 30 generations are 

evaluated, the best 𝑂𝐴𝑃𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑 is 0.492, and with 60, it is 0.47. As the difference is not 

remarkable, it is decided to evaluate both generations. 

 

Figure 4-4. Graphic of the genetic algorithm generation. 
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4.2.2 Basic processing framework (BPF) with GA and PSO 

The first proposed processing framework has the goal to evaluate the results obtained 

with the band selection algorithm (GA and PSO) when employing the entire labeled 

dataset for the training of the SVM classifier.  

Figure 4-5 shows the flow diagram of this method, where the database is divided in 

two performing a leave-one-patient-out cross-validation. In this method, the labeled 

data of one patient is employed to test the algorithm and the remaining data from the 

other patients is used to train and generate the classification model. The detailed 

procedure is as follows. First, the training data are employed in the optimization 

algorithm, where the initial bands, to be used for the classification, are randomly 

selected. After this band selection procedure, a classification model is generated and 

evaluated with the test dataset, obtaining a classification result that is evaluated using 

the 𝑂𝐴𝑃𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑 metric. The value of this metric is stored and then, the procedure is 

iteratively executed using other bands selected by the optimization algorithm. The 

algorithm is executed until performs all possible combinations, returning the best metric, 

or when after a high number of iterations, the metric remains constant. Once the 

algorithm finishes the execution, it returns the best metric and the identification of the 

optimal bands to obtain this metric. At the end, the previously presented procedure is 

performed for each test HS image following the leave-one-patient-out cross-validation 

methodology. 

Train 
(16 patients / 26 

captures)

Test
(6 patients / 6 

captures)

SVM
Classification

train
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Classification
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Optimization

Leave-one-patient-out 
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Figure 4-5. Flow diagram of the BPF for the identification of the most representative 

bands for the GA and PSO algorithms.  

4.2.3 Optimized processing framework (OPF) with GA and PSO  

After performing some experiments with the BPF, it was observed that the execution 

time was very high, reaching in some cases around four hours for execute only one 

generation in the GA or PSO.  

Taking into account that the number of generations performed was done per test 

image, it was necessary to find some techniques that allowed reducing the execution 

time. Another problem was using all the pixels that compose the hyperspectral image as 

the labeled samples were unbalanced. This was due to the fact that, in the training base, 

there are patients who did not have a brain tumor, significantly reducing the number of 
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samples labeled of the tumor class with respect to the rest of the classes. This difference 

in level can be seen in Table 3-3. 

In order to solve these problems, it was decided to use only 4,000 pixels (1,000 pixels 

per class) for training the SVM classifier, thus balancing all classes and dramatically 

reducing the size of the training database (from ~200,000 to 4,000 pixels). This 

procedure was done through a methodology based on the K-means clustering algorithm 

[69]. This algorithm aims to find and group K groups of data (called clusters) by means 

of the evaluation of a similarity metric among the samples. Therefore, similar elements 

(in our case spectral signatures from the pixels of the HS image) will be grouped in the 

same cluster.  

Centroids 
Identification

K-Means
(100 clusters 

per class)

Reduced training 
dataset

(100×10×#Classes)

Train 
(16 patients / 26 

captures)

Train 
database

Training dataset optimization 

SAM
(10 most similiar 

pixels per centroid)

 
Figure 4-6. Flow diagram of the training dataset optimization algorithm. 

Following the steps observed in Figure 4-6, the training dataset optimization 

algorithm has the goal of reducing the training dataset in order to eliminate redundant 

information. First, through the K-means algorithm, 100 clusters are identified for each 

class group (4 classes in our case). Then, the centroids of each cluster are employed as a 

reference pixel to compute the Spectral Angle Mapper (SAM) algorithm in order to detect 

the most similar pixels to the centroid of each cluster. In our case, the 10 most similar 

pixels were selected for each centroid. SAM algorithm measures the spectral similarity 

between two spectra. In this case, the spectrum is obtained as a vector in an n-

dimensional space, where n is the number of bands. This algorithm allows to determine 

how similar the spectra are to each other by calculating the angle formed by the two 

spectra [70].  

Finally, after the execution of the training dataset reduction algorithm, the reduced 

training dataset composed by 1,000 pixels per class (4,000 pixels in total) is obtained. 

This dataset contains the most important information available in the training dataset 

that will be used to perform the experiments dramatically reducing the execution time of 

the algorithms.  

In Figure 4-7, it can be observed the modification performed to include the training 

dataset optimization algorithm in the complete procedure for band selection.  
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Figure 4-7. Flow diagram of the OPF for the identification of the most representative 

bands for the GA and PSO algorithms using the reduced training dataset.  
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4.2.4 Reference results and evaluation methodology for the BPF 

As explained before, in the proposed methodology two different optimization 

algorithms were used: Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). 

Before analyzing the results obtained with each of the algorithms in the BPF, the 

performance of the SVM classifier was evaluated employing the HS dataset without 

removing any band (Figure 4-8). These results will be employed as a reference results for 

the comparison of the results employing the band selection algorithms and also to find 

out if there really are improvements in tumor detection using a smaller number of bands. 

The evaluation metrics used were overall accuracy, sensitivity, specificity and 

MCC for the quantitative evaluation and the classification map obtained after 

processing the entire HS cube of the test image for the qualitative evaluation.  

Once the initial results were obtained, the optimization algorithms were executed in 

the BPF and the optimal selected bands for each test image were identified. Then, the 

evaluation metrics were computed. The procedure is the same as the one shown in Figure 

4-8.a. However, when the database is loaded, the bands to be analyzed are directly 

selected, as it can be seen in Figure 4-8.b. 
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(b) 

Figure 4-8. Flow diagram of the evaluation metrics computation with the (a) entire 
labelled dataset and (b) with the selected bands.  

4.2.5 Reference results and evaluation methodology for the OPF 

For the generation of the reference results and the evaluation of the results obtained 

with the OPF, the same methodology as the one presented in the previous section was 

carried out. In the following figure, Figure 4-9, the flow diagrams are shown where the 

integration of the database reduction step is included.  
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Once completed, the first two cases of study, the results obtained were analyzed. 

Therefore, the best cases are re-evaluated by making a series of changes in the FoM. This 

change consisted in returning in the output a balanced FoM between all the classes 

within the SVM classifier, with and without penalty of the use of the number of bands. 

 

4.2.6 Band selection using the ACO algorithm 

Finally, the ACO algorithm was analyzed. This algorithm was evaluated with the 

database with the entire and reduced labeled database as was done with the other 

optimization algorithms. Figure 4-10 shows the flow diagrams, where the band selection 

process and the evaluation process of these bands is respectively performed.  
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Figure 4-9. Flow diagram of the evaluation metrics computation with (a) all bands 
(reference results) and (b) selected bands using the reduced labeled dataset. 
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Figure 4-10. Flow diagram of the (a) band selection process with the ACO algorithm and 
the (b) evaluation metrics computation with the selected bands. 

4.2.7 Evaluation of test database with the same bands 

After obtaining and evaluating each of the combinations performed in the 

experiments, the four best cases obtained were selected for the following evaluation. In 

this case, all the images from the test database were evaluated using the same selected 

bands to generate and evaluate the classification model. This process is divided into a 

series of sub-levels.  

 First level: all the bands that have been selected for each one of the test images 

were used to generate and evaluate the results.  

 Second level: the bands that have been repeated in at least two test images were 

used to generate and evaluate the results.  

 Third level: the bands that have been repeated in at least three test images were 

used to generate and evaluate the results. 

 Fourth level: the bands that have been repeated in at least four test images were 

used to generate and evaluate the results. 

 Fifth level: the bands that have been repeated in at least five test images were 

used to generate and evaluate the results. 

 Sixth level: the bands that have been repeated in the six test images available in 

the test database were used to generate and evaluate the results. 
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4.3 Summary  

In this chapter, the methodology followed throughout this Master Thesis to perform 

the experiments and evaluate the results has been described. Firstly, the band selection 

process using the entire and the reduced labeled dataset for the GA and PSO algorithms 

has been shown. Then, the evaluation process of the selected bands using the entire and 

the reduced labeled dataset has been presented. Finally, the developed approach to select 

the most representative bands by means of the ACO algorithm has been described. On 

the other hand, each one of the evaluation metrics used for the analysis of the results 

were detailed. 

Table 4-1 summarizes all the experiments carried out to evaluate the different 

optimization algorithms with the entire and the reduced labeled dataset. First, all bands 

are evaluated with the complete and reduced database. Then, by means of the GA and 

PSO algorithms, the most representative bands are identified conditioned by the 

𝑂𝐴𝑃𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑, both for the complete dataset and for the reduced one. After observing the 

results, for the best cases the same procedure is repeated but conditioned by FoM and 

𝐹𝑜𝑀𝑃𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑. Finally, the most important bands are calculated independently by using the 

ACO algorithm, both for the complete database and for the reduced database.  

After comparing the results with the reference ones, it is observed that, for some 

cases, there are improvements when using a certain number of bands. However, each HS 

test image had different bands, so it was decided to evaluate the test images with the 

same bands obtained in the best cases. This procedure was divided into different 

coincidence levels. Initially, the patients were evaluated with all of the bands that were 

selected by the algorithm. Then, they were evaluated with all the bands that were found 

to be repeated in at least two patients, and so on.  

 Table 4-1. Experiments summary 

 

 

 

 

Processing 
Framework 

Type 
Reference 

GA 
(#Generations) 

PSO 
(#Generations) 

ACO 
(#Iterations) 

BPF All Bands 
30 (𝑂𝐴𝑃𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑) 30 (𝑂𝐴𝑃𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑) 

600 
60 (𝑂𝐴𝑃𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑) 60 (𝑂𝐴𝑃𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑) 

OPF All Bands 

60 (𝑂𝐴𝑃𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑) 60 (𝑂𝐴𝑃𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑) 

600  60 (𝐹𝑜𝑀) 60 (𝐹𝑜𝑀) 

60 (𝐹𝑜𝑀𝑃𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑) 60 (𝐹𝑜𝑀𝑃𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑) 



 

 

Chapter 5: Experimental results 

5.1 Introduction 

In this section, the results obtained with each optimization algorithm and its different 

variations are presented. Optimization algorithms try to find the best result of OAPenalized 

and FoM metrics, performing combinations at the time of selecting the bands. These 

experiments will be divided into the following structure: 

1. Evaluation of the optimal bands for each test image obtained with the GA and PSO 

algorithms using the BPF (entire dataset) and the OAPenalized metric. 

2. Evaluation of the optimal bands for each test image obtained with the GA and PSO 

algorithms using the OPF (reduced dataset) and the OAPenalized metric. 

3. Evaluation of the optimal bands for each test image obtained with the GA and PSO 

algorithms evaluated with the designed FoM. This process is analyzed with the 

best cases obtained in the previous steps. 

4. Evaluation of the optimal bands for the complete test image database using the 

OPF. This study is carried out with the best case obtained in the previous step. 

5. Evaluation of the ACO algorithm for the band selection using the BPF and OPF 

methods. 

For each case, these results were evaluated using the following evaluation metrics: 

OA, sensitivity, specificity, MCC and the classification map. These metrics were already 

explained in Chapter 4.2.1. 

The first evaluation metric, in this case OA, is based on analyzing the correct 

prediction of reality. It is a global average of the results obtained for all the classes to be 

analyzed. The second evaluation metric, sensitivity, is responsible for indicating the 

percentage of success of the true positives for each of the classes. The third evaluation 

metric, specificity, otherwise the sensitivity, is responsible for indicating the percentage 

of true negatives for each of the classes. The fourth evaluation metric, Matthews 

Correlation Coefficient (MCC), has the same purpose as the second metric (sensitivity); 

however, this metric takes into account the differences in the size of the classes. Finally, 

the classification map is responsible for presenting the qualitative results, visualizing the 

RGB image when the entire HS test image is classified. The map is represented in four 

colors (green, red, blue and black) that are related to the four classes employed in the 

labeling process. The green color corresponds to class 1 and indicates healthy tissue, the 

red color corresponds to class 2 and indicates the tumor tissue, the blue color 
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corresponds to class 3 and indicates the hypervascularized tissue and finally, the black 

color corresponds to class 4 and indicates the background. 

As discussed in Chapter 3, the test database consists of six HS images that belong to 

4 different patients. A leave-one-patient-out cross-validation methodology was followed 

in order to obtain the classification results. 

5.2  Band selection evaluation using BPF 

In this section, the reference results obtained using all bands (128) and the results 

obtained after the evaluation of the most representative bands selected by the GA and 

PSO optimization algorithms, employing the OAPenalized metric to obtain the optimized 

results, are presented. 

5.2.1 Reference results 

The six HS images were evaluated with the 128 bands that compose the HS cubes for 

performing a comparison with the band selection algorithm results. The purpose of this 

is to find out if there are improvements using only a certain number of bands. 

Table 5-1 shows the OA, sensitivity, specificity and MCC results obtained processing 

the HS test images with all the bands using the SVM algorithm. Observing the results, 

some of the most important aspects to highlight are the OA, which is around 79%, a 

relatively good result considering that no transformation was made. However, in the 

sensitivity results, the class with the worst result is the tumor class, where only 28% of 

pixels were detected correctly, being a very low result. This mainly occurs due to the 

unbalancing of the classes in the SVM training dataset. Regarding to the specificity, its 

percentage of success by classes is high, reaching in some cases 100%. Finally, if the MCC 

metric is observed, the success rate of the tumor class increases slightly (34%) because it 

takes into account the different sizes of the classes.  

The qualitative results obtained with this reference method are shown in Figure 5-1, 

where the synthetic RGB images of each test image, with the tumor area surrounded by 

a yellow line, and the classification maps are presented. Looking at these results, only 

the Op15C1 image clearly visualizes the area where the brain tumor is located. As for the 

other images, in some cases, such as Op12C1 and Op12C2, some tumor is visualized in a 

specific area, providing some idea of where the tumor is located. Op20C1 image shows 

no tumor and the rest of the images have some tumor pixels scattered in several different 

areas of the classification map. 
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Table 5-1. Reference results obtained with all bands and the entire dataset for the SVM 

training. 

Patient 
ID 

OA 
Sensitivity Specificity MCC 

NT TT HT BG NT TT HT BG NT TT HT BG 

Op8C1 58.2% 67.9% 15.5% 60.9% 100% 80.4% 89.7% 80.2% 72.8% 48.4% 7.1% 40.6% 53.8% 

Op8C2 95.1% 96.6% 34.1% 98.5% 95.4% 96.1% 99.1% 99.8% 97.3% 89.1% 33.6% 98.0% 90.8% 

Op12C1 93.3% 99.4% 46.8% 93.5% 99.5% 92.3% 100.0% 97.6% 99.8% 87.6% 67.1% 90.6% 98.6% 

Op12C2 79.3% 97.2% 4.0% 98.2% 79.9% 86.7% 99.8% 82.6% 98.5% 79.1% 15.2% 73.5% 81.6% 

Op15C1 88.3% 99.7% 67.6% 93.6% 98.0% 86.7% 100.0% 100.0% 99.4% 70.7% 77.8% 93.2% 95.9% 

Op20C1 58.4% 97.2% 0.2% 79.8% 99.7% 49.8% 100.0% 99.8% 95.9% 37.7% 3.2% 85.8% 95.3% 

AVG 78.8% 93.0% 28.0% 87.4% 95.4% 82.0% 98.1% 93.3% 93.9% 68.8% 34.0% 80.3% 86.0% 

*NT: Normal Tissue; TT: Tumor Tissue; HT: Hypervascularized Tissue; BG: Background. 
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Figure 5-1. Reference results obtained with all bands and the entire dataset for the SVM training. (a) 

Synthetic RGB representation of the HS cube with the tumor area surrounded by a yellow line. (b) 
Classification map. 

5.2.2 Genetic Algorithm evaluation 

At the time to analyze the genetic algorithm, this algorithm was executed twice, with 

30 and 60 generations. This is due to the fact that with 30 generations the global 

minimum was not found. Therefore, it was decided to double the number of generations 

in order to guarantee the identification of the global minimum and compare the results 

obtained with both number of generations. In this case, the results are observed after the 

evaluation of the optimal bands determined for each test image. 

5.2.2.1 Genetic Algorithm evaluation using 30 generations 

Once the genetic algorithm is generated, it shows which bands were selected for each 

image. Using these optimal selected bands, the evaluation metrics were computed using 

the SVM algorithm. Table 5-2 illustrates the results obtained with these bands after their 

evaluation. 
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Table 5-2. GA 30 generations results obtained with all bands and the entire dataset for the 

SVM training. 

Patient 
ID 

OA 
Sensitivity Specificity MCC 

NT TT HT BG NT TT HT BG NT TT HT BG 

Op8C1 65.8% 77.4% 44.7% 49.1% 100.0% 77.9% 87.1% 91.4% 82.7% 55.3% 34.1% 45.7% 64.6% 

Op8C2 93.3% 97.1% 7.3% 97.2% 93.2% 94.2% 98.5% 100.0% 97.7% 85.7% 5.2% 98.3% 87.9% 

Op12C1 90.5% 98.3% 42.2% 89.5% 99.3% 88.4% 99.9% 98.3% 99.4% 81.5% 62.5% 87.0% 97.2% 

Op12C2 67.5% 97.6% 8.5% 95.4% 47.0% 65.5% 99.9% 81.7% 98.7% 57.8% 25.9% 72.3% 56.1% 

Op15C1 70.2% 96.7% 0.0% 92.8% 96.1% 66.1% 100.0% 99.6% 98.0% 45.9% NaN 89.3% 89.9% 

Op20C1 55.8% 91.5% 0.0% 71.6% 99.4% 48.5% 99.7% 97.6% 92.6% 32.3% -3.4% 75.2% 91.8% 

AVG 73.9% 93.1% 17.1% 82.6% 89.2% 73.4% 97.5% 94.7% 94.8% 59.7% 24.9% 78.0% 81.2% 

AVG ¥ 
(Ref) 

78.8% 93.0% 28.0% 87.4% 95.4% 82.0% 98.1% 93.3% 93.9% 68.8% 34.0% 80.3% 86.0% 

*NT: Normal Tissue; TT: Tumor Tissue; HT: Hypervascularized Tissue; BG: Background. 

¥ Average reference results (employing 128 bands with the BPF method). 

From the results obtained in this method it is possible to emphasize that the OA 

decreases slightly compared to the reference results, specifically from 78.8% to 73.9%. 

Besides, if the average sensitivity of class 2 (tumor class) is examined, it is clearly 

observed that the number of successfully classified pixels of this class has notably 

worsened, reaching 17%. It should be noted that the Op15C1 image goes from a sensitivity 

of 67% (reference results) to 0%. This fact may be due to the number of generations is 

very small and is not able to find the optimal combination of spectral bands. In terms of 

specificity, the success rate is still high but lower than the reference results, with the 

worst case being the normal tissue class with 73.4%. 

Another aspect to highlight is in the MCC metric, where, like in the rest of the metrics, 

the tumor class has the worst rate of success. Its percentage of success goes down from 

34% to 24.9%. Particularly, in the OP15C1 image the tumor class gives an 

indetermination. This is because no pixels have been predicted as true positive or false 

positive in the tumor class, giving equation 4.5 an indetermination. In Op8C2, Op15C1, 

Op20C1 images the tumor class is really low, reaching in one case a negative success rate.  

Figure 5-2 shows the classification maps after the evaluation of the most 

representative bands obtained through GA with 30 generations. Looking at each one of 

the classification maps and taking into account the reference maps, it is observed that 

the visualization of the location of the brain tumor worsens in general. Two image results 

to be highlighted are Op8C1 and Op15C1. The first one, after using the optimization 

algorithm, improves the identification of the area affected by the tumor. Otherwise, GA 

has completely eliminated the tumor class on the Op15C1 image, worsening significantly 

with respect to the reference map. 
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Figure 5-2. Resulting classification maps after GA use with 30 generations and the entire dataset for the 
SVM training. (a) Synthetic RGB representation of the HS cube with the tumor area surrounded by a 

yellow line. (b) Reference classification map. (c) Classification Map 

5.2.2.2 GA evaluation using 60 generations 

Once finished evaluating the GA algorithm with 30 generations, the same procedure 

was repeated with 60 generations. The resulting selected bands were not the same, so 

the evaluation metrics were computed again, providing the results shown in Table 5-3. It 

can be observed that the OA increases slightly after doubling the number of generations, 

from 73.9% to 75.9%. If the sensitivity is observed, it should be noted that all classes 

also increase their accuracy as the number of generations increase. However, in the case 

of the Op8C2 image, the sensitivity in the tumor class worsens, getting to be eliminated 

completely. On the other hand, in the case of the Op15C1, where previously the worst 

case of sensitivity in the tumor class occurred, increases again to 38.9%. As for the 

Op20C1, the tumor class is still not detected.  

With regard to specificity, all classes increase their success rate, where the worst 

case occurs in the normal tissue class with 81.2%. Regarding the MCC metric, as in the 

previous cases, the class with the worst success rate is the tumor class with 32.8%. From 

this metric it is worth mentioning the indetermination of the Op8C2 image, due to not 

classifying any pixel as tumor class (no true and false positives), and the low success rate 

of the Op20C1 image, independently of the slight improvement after using 60 

generations. 

Figure 5-3 shows the classification maps after the evaluation of the most 

representative bands obtained through GA with 60 generations. It should be noted that 

the fifth image (Op15C1) once again indicates where the brain tumor zone is clearly 

located. However, it also has some areas with false positives. Furthermore, the Op20C1 

image begins to show small groups of tumor pixels scattered randomly. It also shows 

some pixels of background in the middle of the classification maps where previously the 

normal class was identified and where, in fact, corresponds with the tumor area. The rest 

of patients more or less offer the same classification maps previously observed. 
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Table 5-3. GA 60 generations results obtained with all bands and the entire dataset for the 

SVM training. 

Patient 
ID 

OA 
Sensitivity Specificity MCC 

NT TT HT BG NT TT HT BG NT TT HT BG 

Op8C1 63.4% 76.6% 36.2% 48.2% 100.0% 74.3% 87.2% 89.6% 81.7% 50.9% 26.2% 42.0% 63.7% 

Op8C2 93.0% 96.9% 0.0% 96.7% 93.1% 94.8% 100.0% 97.6% 97.1% 86.7% NaN 87.5% 87.3% 

Op12C1 91.8% 98.6% 43.7% 91.6% 99.1% 90.2% 99.8% 98.1% 99.6% 84.1% 62.9% 89.0% 97.8% 

Op12C2 68.6% 97.1% 5.7% 95.2% 51.6% 67.9% 99.8% 81.4% 98.4% 59.5% 19.9% 71.6% 59.2% 

Op15C1 80.6% 96.2% 38.9% 93.3% 97.4% 79.1% 99.8% 97.3% 98.6% 58.5% 55.9% 90.3% 92.3% 

Op20C1 57.9% 95.1% 0.0% 79.6% 100.0% 81.0% 100.0% 99.1% 48.7% 69.6% -0.8% 84.1% 47.2% 

AVG 75.9% 93.4% 20.7% 84.1% 90.2% 81.2% 97.8% 93.8% 87.3% 68.2% 32.8% 77.4% 74.6% 

AVG ¥ 
(Ref) 

78.8% 93.0% 28.0% 87.4% 95.4% 82.0% 98.1% 93.3% 93.9% 68.8% 34.0% 80.3% 86.0% 

*NT: Normal Tissue; TT: Tumor Tissue; HT: Hypervascularized Tissue; BG: Background. 

¥ Average reference results (employing 128 bands with the BPF method). 
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Figure 5-3. Resulting classification maps after GA use with 60 generations and the entire dataset for the 
SVM training. (a) Synthetic RGB representation of the HS cube with the tumor area surrounded by a 

yellow line. (b) Reference classification map. (c) Classification Map 

5.2.3 BPF with PSO evaluation 

Similarly, to the GA evaluation, the PSO algorithm was evaluated twice, with 30 and 

60 generations. Evaluating only with 30 generations there was no possible to find the 

global minimum, so employing the 60 generations the algorithm was able to find the 

convergence. 

5.2.3.1 PSO evaluation using 30 generations 

After making the selection of the most representative bands with 30 generations, the 

SVM classification results were obtained using these selected bands. Table 5-4 shows the 

results obtained after the evaluation. 
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Table 5-4. PSO 30 generations results obtained with all bands and the entire dataset for the 

SVM training. 

Patient 
ID 

OA 
Sensitivity Specificity MCC 

NT TT HT BG NT TT HT BG NT TT HT BG 

Op8C1 58.4% 69.8% 21.8% 52.7% 100.0% 70.0% 88.8% 87.1% 75.1% 39.8% 13.5% 42.5% 56.5% 

Op8C2 93.5% 97.1% 31.9% 97.8% 93.0% 95.3% 97.9% 99.6% 98.4% 87.8% 21.8% 97.0% 88.2% 

Op12C1 90.9% 98.9% 46.2% 89.5% 99.5% 88.8% 99.9% 98.1% 99.7% 82.5% 66.1% 86.9% 98.2% 

Op12C2 67.6% 97.0% 4.9% 95.9% 48.4% 67.6% 99.0% 80.0% 98.4% 59.4% 11.3% 70.9% 56.7% 

Op15C1 82.6% 99.7% 47.9% 92.0% 98.4% 80.1% 100.0% 99.3% 99.4% 61.9% 63.4% 90.3% 96.2% 

Op20C1 57.1% 95.6% 0.0% 74.7% 99.5% 49.6% 99.9% 99.4% 90.6% 36.5% -2.3% 81.5% 89.7% 

AVG 75.0% 93.0% 25.5% 83.8% 89.8% 75.2% 97.6% 93.9% 93.6% 61.3% 29.0% 78.2% 80.9% 

AVG ¥ 
(Ref) 

78.8% 93.0% 28.0% 87.4% 95.4% 82.0% 98.1% 93.3% 93.9% 68.8% 34.0% 80.3% 86.0% 

*NT: Normal Tissue; TT: Tumor Tissue; HT: Hypervascularized Tissue; BG: Background. 

¥ Average reference results (employing 128 bands with the BPF method). 

After observing each one of the results obtained, it should be noted that the OA is 

slightly reduced compared to the reference results (Table 5-1), going down from 78.9% 

to 75%. Regarding sensitivity, the second class (tumor tissue) is again the one with the 

lowest success rate with 25.5%, decreasing also respect to the reference result (28%). The 

worst cases are observed in the fourth image (Op12C2) with 4.9%, and in the last image 

(Op20C1) without any successfully tumor pixel identification. The rest of the images 

improved slightly the results, giving the best result the Op15C1 with 47.9%. 

On the other hand, the specificity of each class in general is high, with class 1 with 

75.2% as the worst result. These results also slightly reduce their success, where 

originally it was 82%. As for the MCC, class 2 returns to have the worst result compared 

to the rest, with 29%. The first, fourth and the sixth images are those who have a minor 

success, reaching 13.5% and the best case is the third image, with a 66.1%. 

After looking at the classification maps shown in Figure 5-4, it should be noted 

that the Op15C1 image is the one that most clearly shows where the brain tumor is 

located. The rest of the maps, however, show some small groups of pixels of the tumor 

class spread over the area where the brain tumor is found, such as images Op12C1 and 

Op12C2. As for the last image, it does not show a single tumor pixel. 
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Figure 5-4. Resulting classification maps after PSO use with 30 generations and the entire dataset for the 
SVM training. (a) Synthetic RGB representation of the HS cube with the tumor area surrounded by a 

yellow line. (b) Reference classification map. (c) Classification Map 

5.2.3.2 PSO evaluation using 60 generations 

Once the PSO algorithm was evaluated with 30 generations, the same process was 

repeated with 60 generations. Then, the bands obtained were evaluated quantitatively 

and qualitatively using the evaluation metrics that are observed in Table 5-5 and Figure 

5-5. 

Table 5-5. PSO 60 generations results obtained with all bands and the entire dataset for the 

SVM training. 

Patient 
ID 

OA 
Sensitivity Specificity MCC 

NT TT HT BG NT TT HT BG NT TT HT BG 

Op8C1 61.1% 72.9% 29.7% 51.4% 100.0% 80.5% 87.0% 85.3% 76.9% 53.3% 19.3% 38.5% 57.8% 

Op8C2 93.5% 96.6% 33.3% 98.1% 93.1% 95.2% 98.3% 99.4% 97.8% 87.4% 24.8% 96.2% 87.9% 

Op12C1 90.9% 98.8% 40.6% 90.1% 99.4% 88.7% 99.9% 98.2% 99.6% 82.4% 61.5% 87.5% 98.1% 

Op12C2 67.2% 96.3% 2.7% 95.9% 48.8% 67.3% 98.7% 80.3% 98.0% 58.5% 4.0% 71.3% 56.2% 

Op15C1 82.5% 99.1% 47.5% 92.2% 98.4% 80.2% 100.0% 98.6% 99.4% 61.6% 63.1% 89.9% 96.2% 

Op20C1 57.0% 95.2% 0.1% 74.2% 99.7% 50.2% 99.9% 99.3% 88.3% 36.7% -0.2% 81.0% 87.4% 

AVG 75.4% 93.1% 25.6% 83.7% 89.9% 77.0% 97.3% 93.5% 93.3% 63.3% 28.8% 77.4% 80.6% 

AVG ¥ 
(Ref) 

78.8% 93.0% 28.0% 87.4% 95.4% 82.0% 98.1% 93.3% 93.9% 68.8% 34.0% 80.3% 86.0% 

*NT: Normal Tissue; TT: Tumor Tissue; HT: Hypervascularized Tissue; BG: Background. 

¥ Average reference results (employing 128 bands with the BPF method). 

If the results obtained after the evaluation of the 60 generations are carefully 

observed, it is possible to see that the average of each one of the results is practically the 

same than the PSO 30 generations results. The greatest change is in the specificity of 

the normal class, where there is an increment of 1.8% with respect to the result obtained 

with 30 generations. The OA metric increases only a 0.4% and the sensitivity of the 

tumor class increases 0.1%, where the Op12C2 and Op20C1 images are the ones with the 

worst rate of success. In this case, Op12C2 gets worse, going down from 4.9% to 2.7% 

and the Op20C2 image increases just a 0.1%. Regarding the MCC metric, the tumor class 

decreases a 0.2% while the normal class increases a 2%. The results for the rest of the 

classes remain more or less constant. 
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Figure 5-5 shows the classification maps of the six images to be evaluated, where is 

possible to notice that the Op15C1 clearly indicates where the brain tumor is located and 

its shape. However, some false positives are displayed in the upper left part of the image. 

As for the other images, Op8C1 and Op8C2 show different small areas where there 

may be brain tumor. In these cases, it is not possible to clearly identify the location of the 

tumor and its size. Regarding Op12C1 and Op12C2, small amounts of pixels of the tumor 

class are observed in the same area, giving a slight idea where the tumor is located. As 

for the Op20C1 image, no pixel with the tumor class is observed, being impossible to find 

out its location and its form. 
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Figure 5-5. Resulting classification maps after PSO use with 60 generations and the entire dataset for the 
SVM training. (a) Synthetic RGB representation of the HS cube with the tumor area surrounded by a 

yellow line. (b) Reference classification map. (c) Classification Map 

5.3 Band selection evaluation using OPF 

In this section, the same structure proposed in Section 5.2 is followed. The reference 

values (128 bands) and the results obtained after the generation of the GA and PSO 

algorithms, employing the OAPenalized metric to obtain the optimized results, are 

presented. 

5.3.1 Reference results 

The HS images were evaluated with the 128 bands that compose the HS cubes for 

performing a comparison with the band selection algorithm results. The purpose of this 

is to find out if there are improvements using only a certain number of bands. 

Table 5-6 shows the accuracy, sensitivity, specificity and MCC results obtained as 

reference results with the OPF methodology. Observing these results, it should be noted 

that when balancing the number of pixels per class, the OA rate drops by around 4% 

(74.3%) when compared with the reference results with the entire dataset (78.8%). 

However, it is worth noticing that in terms of sensitivity, the class that has the worst 

result is the tumor class, with 44.8%. Comparing this result with the Table 5-1 (reference 

results of the BPF), the success rate increases significantly, specifically a 16.8%. 

Nevertheless, there are still images with a minimum success rate in identifying the tumor 

class, such as the Op20C1 with a 1.6%.  
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Otherwise, all the results of the specificity are high, giving the worst case the 

background class with 77%. With respect to the MCC metric, the class with the worst 

result is the tumor class with 42.5%, again giving the worst result the Op20C1 image with 

9.3%.  

After analyzing the quantitative results, an analysis of the classification maps 

obtained was carried out. From Figure 5-6, it should be noted that the Op15C1 and Op8C1 

images clearly show the location and shape of the brain tumor, although they have some 

false positives. On the other hand, Op12C1 and Op12C2 do not clearly show the shape 

and size of the tumor, but indicate where the tumor is located. In the case of Op8C2, the 

pixels of the tumor class are distributed throughout the classification map, preventing 

the determination of the shape and location of the brain tumor. Finally, the Op20C1 

image is still unable of performing the identification of the brain tumor location. 

Table 5-6. Reference results obtained with all bands and the reduced dataset for the SVM 

training. 

Patient 
ID 

OA 
Sensitivity Specificity MCC 

NT TT HT BG NT TT HT BG NT TT HT BG 

Op8C1 45.3% 32.2% 49.1% 38.6% 100.0% 87.1% 78.5% 97.6% 46.0% 22.8% 28.3% 47.5% 32.2% 

Op8C2 93.5% 89.3% 47.8% 88.8% 96.3% 98.9% 96.7% 99.6% 92.8% 90.4% 26.2% 91.7% 88.6% 

Op12C1 89.9% 79.8% 76.1% 94.6% 99.6% 95.2% 99.5% 98.8% 93.1% 77.1% 82.3% 92.6% 77.3% 

Op12C2 69.9% 59.4% 13.3% 98.7% 78.2% 88.1% 98.3% 81.0% 79.3% 49.6% 22.9% 74.0% 56.8% 

Op15C1 91.0% 88.3% 80.7% 95.6% 98.7% 95.1% 99.6% 99.8% 94.7% 79.1% 86.0% 95.2% 77.6% 

Op20C1 56.3% 83.3% 1.6% 79.9% 100.0% 61.8% 99.9% 99.4% 61.3% 37.7% 9.3% 85.0% 60.5% 

AVG 74.3% 72.0% 44.8% 82.7% 95.5% 87.7% 95.4% 96.0% 77.9% 59.4% 42.5% 81.0% 65.5% 

*NT: Normal Tissue; TT: Tumor Tissue; HT: Hypervascularized Tissue; BG: Background. 
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Figure 5-6. Reference results obtained with all bands and the reduced dataset for the SVM training. (a) 

Synthetic RGB representation of the HS cube with the tumor area surrounded by a yellow line. (b) 
Classification map. 

5.3.2 OPF with GA evaluation 

Once the genetic algorithm is generated, it shows which optimal bands were selected 

for each test image. Therefore, the GA is executed with 60 generations. For this case, the 

observed results show the evaluation of the bands selected for each image by the 

optimization algorithm in Table 5-7. 
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Table 5-7. GA results obtained with all bands and the reduced dataset for the SVM training. 

Patient 
ID 

OA 
Sensitivity Specificity MCC 

NT TT HT BG NT TT HT BG NT TT HT BG 

Op8C1 67.7% 58.9% 90.3% 46.8% 100.0% 95.5% 74.9% 98.3% 80.8% 58.8% 57.8% 57.6% 61.1% 

Op8C2 92.5% 98.4% 26.1% 91.9% 92.1% 95.5% 97.6% 98.3% 98.8% 89.2% 16.8% 87.5% 87.2% 

Op12C1 89.7% 80.1% 83.0% 93.6% 99.0% 94.5% 94.0% 99.1% 99.3% 76.2% 58.3% 91.7% 96.5% 

Op12C2 72.0% 85.9% 31.3% 98.4% 57.8% 76.0% 96.5% 84.9% 97.1% 57.0% 37.4% 78.2% 62.1% 

Op15C1 94.7% 98.5% 88.9% 96.3% 94.8% 95.4% 99.4% 98.5% 99.6% 86.3% 91.3% 94.7% 95.2% 

Op20C1 58.0% 94.2% 0.0% 83.2% 99.1% 87.6% 99.5% 98.9% 46.7% 77.5% -4.6% 86.3% 44.0% 

AVG 79.1% 86.0% 53.3% 85.0% 90.5% 90.7% 93.6% 96.3% 87.0% 74.2% 42.8% 82.7% 74.3% 

AVG ¥ 
(Ref) 

74.3% 72.0% 44.8% 82.7% 95.5% 87.7% 95.4% 96.0% 77.9% 59.4% 42.5% 81.0% 65.5% 

*NT: Normal Tissue; TT: Tumor Tissue; HT: Hypervascularized Tissue; BG: Background. 

¥ Average reference results (employing 128 bands with the OPF method). 
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Figure 5-7. Resulting classification maps after GA use with 60 generations and the reduced dataset for the 
SVM training. (a) Synthetic RGB representation of the HS cube with the tumor area surrounded by a 

yellow line. (b) Reference classification map. (c) Classification Map 

Comparing the results of the genetic algorithm with the reference results, it can be 

observed that the OA increases by 4.8% using GA. The sensitivity of the tumor class 

goes from 44.8% to 53.3%, with the worst case in the image Op20C1 that does not re-

label the tumor class. As for the specificity, these remain practically the same, giving 

the worst result the background class with 87%. Finally, the MCC slightly improved in 

the tumor class, specifically from 42.5% to 42.8%, giving as a worse result the Op20C1 

with -4.6%. 

Next, Figure 5-7 after the evaluation of the most representative bands obtained 

through GA with 60 generations. 

Observing the classification maps of Figure 5-7, it can be seen that Op20C1 does 

not show tumor, only some pixels distributed throughout the classification map. The 

Op8C1 and Op8C2 images show where the brain tumor is located (top right corner) and 

many false positives throughout the classification map. Op12C1 and Op12C2, like 

previous patients, show without having a clear form where the tumor is located, however, 

they also possess some pixels of the tumor class spread over the classification map. As 
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for the image Op15C1, it clearly shows the location and shape of the tumor. However, it 

also has a high number of false pixels of the tumor class on the left side of the 

classification map. 

5.3.3 OPF with PSO evaluation 

Like the GA, PSO is executed with 60 generations. Once the algorithm is generated, 

Table 5-8 shows the results obtained with the optimal bands selected for each test image. 

Table 5-8. PSO results obtained with all bands and the reduced dataset for the SVM training. 

Patient 
ID 

OA 
Sensitivity Specificity MCC 

NT TT HT BG NT TT HT BG NT TT HT BG 

Op8C1 57.2% 44.5% 81.1% 36.9% 100.0% 91.8% 69.6% 97.6% 68,4% 41,3% 46,0% 47,1% 49,1% 

Op8C2 92,1% 93,7% 33,3% 89,2% 93,2% 98.4% 94.6% 99.7% 96.1% 92.2% 13.6% 92.4% 86.4% 

Op12C1 89.7% 80.0% 60.1% 95.8% 99.5% 96.1% 95.1% 95.7% 98.2% 78.8% 47.0% 91.3% 92.5% 

Op12C2 64.9% 76.1% 32.9% 97.5% 45.6% 70.1% 93.7% 83.2% 92.9% 42.6% 32.0% 76.7% 45.1% 

Op15C1 89.6% 96.0% 68.9% 96.5% 98.7% 90.6% 99.9% 99.3% 97.3% 74.9% 78.5% 95.5% 87.2% 

Op20C1 56.5% 88.0% 0.0% 80.0% 99.7% 68.0% 99.9% 98.3% 55.1% 48.5% -2.4% 82.8% 53.8% 

AVG 75.0% 79.7% 46.1% 82.6% 89.5% 85.8% 92.1% 95.6% 84.7% 63.0% 35.8% 81.0% 69.0% 

AVG ¥ 
(Ref) 

74.3% 72.0% 44.8% 82.7% 95.5% 87.7% 95.4% 96.0% 77.9% 59.4% 42.5% 81.0% 65.5% 

*NT: Normal Tissue; TT: Tumor Tissue; HT: Hypervascularized Tissue; BG: Background. 

¥ Average reference results (employing 128 bands with the OPF method). 
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Figure 5-8. Resulting classification maps after PSO use with 60 generations and the reduced dataset for the 
SVM training. (a) Synthetic RGB representation of the HS cube with the tumor area surrounded by a 

yellow line. (b) Reference classification map. (c) Classification Map 

Comparing the results obtained with the Table 5-6, the results slightly vary. The OA 

only increases 0.7%. In terms of sensitivity, the tumor class is again the lowest with the 

same percentage of success, specifically 46.1%. However, if it is observed that the results 

of all the images of this class, more or less takes remain constant, except for the first 

image, Op8C1, which improves almost 32% in the identification of the tumor. 

Respecting to specificity, the results remain practically the same. Finally, with 

respect to the MCC metric, as in the previous metrics, the results remain constant, except 

the tumor class, that get worse, specifically 35.8%. However, with the image Op8C1, 

improves by around 28%. 
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Observing the classification maps, it should be noted that the results obtained are 

practically the same as those shown in Figure 5-6. Therefore, as previously commented 

the Op15C1 image is the one that most clearly shows where the brain tumor is located. 

The rest of the maps, show different areas of tumors spread over the classification map. 

Nevertheless, it can be observed that this tumor is located where there is higher 

concentration of pixels of the tumor class, with the exception of the last patient, who does 

not indicate where the brain tumor is located, because it shows some small pixels spread 

over the classification map. 

5.4 Comparison of the BPF and OPF results  

In this section, a comparison of the OA and sensitivity of the tumor class results 

obtained in all the evaluations presented previously is performed. In order to determine 

which methodologies are the best ones, boxplots have been employed (Figure 5-9). In 

this comparison, only the results of 60 generations have been included for the GA and 

PSO algorithms. 

Figure 5-9.a shows the OA of all the results obtained so far. It should be noted that all 

are between the same ranges, from 55% to 92-93%. Analyzing each of the developed 

techniques, it can be observed that among the patients many results vary. For example, 

observing the reference results with the reduced dataset (OPF Reference), there is one 

patient with an accuracy of 91% and another patient with an accuracy of 55%. In this 

case, we look for the algorithm that generates good and similar results for all the images. 

Taking this approach into account, it was decided that the two best cases, analyzing only 

the OA, are the GA with the reduced dataset (OPF-GA) and the PSO with the complete 

dataset (BPF-PSO) followed very closely by the PSO algorithm with the reduced dataset 

(OPF-PSO). 

Regarding Figure 5-9.b, it can be clearly seen that the techniques that use the reduced 

dataset have better sensitivity results, reaching in the best case around 90%, as it is in 

the case of GA (OPF-GA). The next best case is the PSO algorithm with the reduced 

dataset (OPF-PSO), reaching 80% at some point. As for the rest of the methods, it can be 

seen that the best cases of sensitivity do not exceed 50. Looking at the two graphs at the 

same time, it is observed that one of the models that best OA has, is one that has worse 

sensitivity (BPF-GA). Therefore, another metric is needed to select the best model.  

Figure 5-10 illustrates all the classification maps obtained so far. These maps allow a 

better visualization of the results. Figure 5-10.a shows the RGB images indicating the 

location of the tumor with a yellow circle. Taking these images as reference, it is observed 

that the techniques that use the complete database (BPF method), Figure 5-10 .b, d and 

e, are only able to detect the tumor in the image Op15C1. As for the techniques using the 

reduced database (OPF method), Figure 5-10.c, e and g, are able to show where the tumor 

is in the images, although false positives exist in almost all the images. Finally, it is 

observed that the Op20C1 image does not identify the tumor for any of the cases. 

Making a combination of the results observed in these metrics, it was decided to 

evaluate both optimization algorithms (GA and PSO) using a new proposed metric (the 

FoM presented in Section 4.2.1) and only employing the OPF method. 
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(a) 

 

(b) 

Figure 5-9. Boxplot diagram of the (a) overall accuracy and (b) sensitivity of the tumor class of 
all the evaluated techniques 
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Figure 5-10. Classifications maps of the test dataset. (a) Synthetic RGB images with a yellow line 
determining the area tumor. (b and c) Reference results with the entire and reduced dataset. (d 

and e) GA algorithm using 60 generations with entire and reduced dataset. (f and g) PSO 
algorithm using 60 generations with entire and reduced dataset. 

5.5 Band selection using the FoM evaluation metric  

In this section, the optimization algorithms of GA and PSO with 60 generations are 

analyzed again using as evaluation metric the FoM explained in section 4.2.1. This metric 

is proposed, because with 𝑂𝐴𝑃𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑 a method with better OA does not imply that it also 

obtained a better sensitivity in the identification of the tumor class. Therefore, FoM and 

𝐹𝑜𝑀𝑃𝑒𝑛𝑎𝑙𝑖𝑧𝑒𝑑are based on finding more balanced results among the four classes. This 

FoM has the goal of finding the most balanced accuracy per class results. After the 

execution, it was observed that a high number of bands were obtained. Therefore, it was 

decided to re-evaluate this process with a metric called FOMPenalized, whose purpose is the 

same as the FoM, but penalizing the use of a large number of bands. 
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5.5.1 OPF with FoM evaluation metric  

Next, the OPF band selection algorithm is evaluated by means of the GA and PSO 

optimization algorithms taking into account the FoM to find the most suitable bands for 

an accurate classification. 

5.5.1.1 OPF with GA and FoM 

Once the GA is generated, it shows which bands were selected for each test image. 

Table 5-9 shows the results obtained with these bands after their evaluation. Observing 

the results obtained and comparing it with the reference results in Table 5-6, it should 

be noticed that OA improves more than 6% respect to the reference results. In the case 

of sensitivity, the success rate of the classes, with the exception of the tumor class, is 

higher than 80%. The sensitivity of the tumor class is 66%, being much higher than the 

reference result (44.8%). However, the image Op20C1 still does not offer good results 

(0.1%). 

Regarding the specificity, the results are high, having as a worst class the class of 

normal tissue with 86.9%. In the case of the MCC metric, the success rate of all the 

classes improves with respect to the reference ones. However, if the tumor class is 

observed, it should be noted that the image OP20C1 returns to give bad results, only 2% 

is correct. 

Figure 5-11 shows the classification maps obtained in this experiment. It should 

be noted that the Op8C1 image shows tumor throughout the classification map. The 

images Op12C1 and Op12C2 show where the brain tumor is located, although it has 

certain pixels that indicate tumor in areas that are not correct. This happens also with 

the image Op8C2. As for the Op15C1 image, it shows almost perfectly the location, size 

and shape of the brain tumor. With respect to the Op20C1 image, some pixels of the 

tumor class are displayed distributed by the classification map, although it does not show 

the tumor area. 

Table 5-9. OPF GA FoM results obtained with all bands and the reduced dataset for the SVM 

training. 

Patient 
ID 

OA 
Sensitivity Specificity MCC 

NT TT HT BG NT TT HT BG NT TT HT BG 

Op8C1 69.2% 62.2% 92.0% 45.8% 100.0% 98.2% 70.3% 97.3% 88.1% 65.1% 53.8% 54.5% 72.4% 

Op8C2 92.8% 94.0% 61.6% 85.8% 93.9% 99.4% 94.4% 99.7% 96.0% 94.8% 26.1% 90.5% 87.5% 

Op12C1 92.9% 89.5% 86.7% 94.0% 99.4% 95.1% 98.0% 99.2% 98.1% 84.2% 78.0% 92.5% 92.1% 

Op12C2 72.7% 88.5% 59.6% 94.3% 50.6% 72.9% 97.3% 91.5% 95.3% 55.8% 64.6% 83.3% 53.5% 

Op15C1 97.6% 98.2% 97.9% 97.0% 99.4% 97.8% 99.9% 99.9% 99.5% 92.5% 98.4% 96.9% 97.0% 

Op20C1 58.4% 92.2% 0.1% 86.1% 100.0% 57.7% 100.0% 98.4% 74.1% 40.9% 2.3% 87.4% 72.7% 

AVG 80.6% 87.4% 66.3% 83.8% 90.5% 86.9% 93.3% 97.7% 91.8% 72.2% 53.8% 84.2% 79.2% 

AVG ¥  
(Ref) 

74.3% 72.0% 44.8% 82.7% 95.5% 87.7% 95.4% 96.0% 77.9% 59.4% 42.5% 81.0% 65.5% 

*NT: Normal Tissue; TT: Tumor Tissue; HT: Hypervascularized Tissue; BG: Background. 

¥ Average reference results (employing 128 bands with the OPF method). 
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Figure 5-11. Resulting classification maps after GA FoM and the reduced dataset for the SVM training. (a) 
Synthetic RGB representation of the HS cube with the tumor area surrounded by a yellow line. (b) 

Reference classification map. (c) Classification Map 

5.5.1.2 OPF with PSO and FoM 

Once the PSO is executed, the most representative bands were obtained for each 

image. Table 5-10 shows the results obtained with these bands after their evaluation. 

Analyzing the results obtained in this experiment, it should be noticed that the average 

OA is slightly lower than the one obtained in the reference results (Table 5-6). The same 

trend can be observed with the sensitivity, having only 43.3% success on the tumor 

class, compared to 44.8% with the reference one. It is clearly observed that the image 

Op20C1 does not have any correct pixel of that class. As for the specificity, the results 

are high, giving as a worst result the background class with 83.7%. With respect to the 

MCC, the class with the worst success rate is the tumor class, where only 27% were 

correctly identified. 

From the classification maps presented in Figure 5-12, it is generally pointed out that 

only the Op15C1 image clearly provides the location of the brain tumor. However, in this 

case, there is an area along the left side of the classification map that shows false positives 

of tumor pixels. The image op20C1 still does not show any tumor and for the rest, there 

are different areas on all classification maps that show possible locations where the 

tumor may be. 

Table 5-10. OPF PSO FoM results obtained with all bands and the reduced dataset for the 

SVM training. 

Patient 
ID 

OA 
Sensitivity Specificity MCC 

NT TT HT BG NT TT HT BG NT TT HT BG 

Op8C1 55.9% 49.3% 60.6% 41.9% 100.0% 86.3% 76.4% 95.2% 65.7% 38.2% 35.3% 46.5% 46.7% 

Op8C2 92.8% 96.6% 32.6% 90.7% 93.1% 98.6% 94.5% 99.8% 97.8% 94.6% 13.1% 93.8% 87.8% 

Op12C1 79.8% 41.3% 64.7% 97.6% 98.5% 97.5% 81.8% 95.0% 99.8% 51.2% 26.1% 92.6% 98.4% 

Op12C2 60.2% 56.4% 34.0% 97.0% 47.1% 69.9% 84.1% 81.7% 96.3% 24.6% 17.1% 75.7% 51.3% 

Op15C1 89.9% 98.4% 67.9% 96.9% 98.4% 89.4% 99.9% 99.7% 98.8% 74.3% 77.8% 96.3% 93.2% 

Op20C1 56.7% 89.4% 0.0% 81.7% 98.2% 91.8% 98.6% 98.5% 43.8% 79.6% -7.4% 84.5% 40.7% 

AVG 72.5% 71.9% 43.3% 84.3% 89.2% 88.9% 89.2% 95.0% 83.7% 60.4% 27.0% 81.6% 69.7% 

AVG ¥ 
(Ref) 

74.3% 72.0% 44.8% 82.7% 95.5% 87.7% 95.4% 96.0% 77.9% 59.4% 42.5% 81.0% 65.5% 

*NT: Normal Tissue; TT: Tumor Tissue; HT: Hypervascularized Tissue; BG: Background. 

¥ Average reference results (employing 128 bands with the OPF method). 



Chapter 5: Experimental results 

 

66 
 

 

 Op8C1 Op8C2 Op12C1 Op12C2 Op15C1 Op20C1 
(a

) 
S

y
n

th
et

ic
 R

G
B

 

      

(b
) 

R
ef

er
en

ce
 M

a
p

 

      

(c
) 

C
la

ss
if

ic
a

ti
o

n
 M

a
p

 

      

 #Bands: 39 15 14 8 16 6 

Figure 5-12. Resulting classification maps after PSO FoM and the reduced dataset for the SVM training. (a) 
Synthetic RGB representation of the HS cube with the tumor area surrounded by a yellow line. (b) 

Reference classification map. (c) Classification Map 

5.5.2 OPF with FoMPenalized evaluation metric  

This section presents the OPF band selection algorithm evaluated using the GA and 

PSO optimization algorithms taking into account the FoMPenalized that offer a penalization 

when the optimization algorithm employs a high number of bands. 

5.5.2.1 OPF with GA and FoMPenalized 

Once the genetic algorithm is generated, it shows which bands were selected for each 

test image taking into account the penalization of the number of bands. Table 5-11 shows 

the results obtained with these bands after their evaluation. Observing the results 

obtained and comparing it with the reference results in Table 5-6, it should be noted that 

the OA slightly improve more than 4% the reference result. However, the sensitivity 

improves in a general way. The tumor class, although it has the worst rate of success, is 

the one that improved the most compared to the reference data, specifically from 44.8% 

to 64.2%, although it still has an image, Op20C1, which does not identify this class. The 

specificity remains constant and with high results, the worst result is observed in the 

normal tissue class with 84.6%. As for MCC, these results improve slightly, although the 

tumor class still has a low success rate (45.6%).  

Figure 5-13 shows the classification maps obtained in this experiment where it 

should be noted that the Op8C1 and Op12C1 images show tumor throughout the 

classification map. The image Op12C2 shows where the brain tumor is located, although 

it has certain pixels that indicate tumor in areas that are not correct, as it also happens 

with the image Op8C2. As for the Op15C1 image, it shows almost perfectly the location, 

size and shape of the brain tumor. With respect to the Op20C1 image, some pixels of the 

tumor class are displayed distributed by the classification map, although it does not show 

the tumor area. 

Observing the Table 5-9 and Figure 5-11, and comparing them with the Table 5-11 

and Figure 5-13, it is visualized that the results are similar. However, the number of 

bands to be used is considerably reduced. Passing on to obtain 74 bands selected in the 
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Op8C2 image with the OPF GA FoM technique to 18 bands selected with the OPF GA 

FoMPenalized technique. 

Table 5-11. GA FoMPenalized results obtained with all bands and the reduced dataset for the 

SVM training. 

Patient 
ID 

OA 
Sensitivity Specificity MCC 

NT TT HT BG NT TT HT BG NT TT HT BG 

Op8C1 71,0% 66,6% 90,8% 46,7% 100,0% 95,9% 75,1% 98,0% 86,7% 65,8% 57,8% 56,9% 69,4% 

Op8C2 92,2% 95,9% 68,8% 87,9% 92,1% 98,2% 94,2% 99,4% 98,8% 93,3% 28,7% 90,0% 87,0% 

Op12C1 83,2% 59,4% 88,3% 92,1% 98,8% 93,3% 87,0% 99,8% 99,6% 57,8% 46,2% 89,9% 97,7% 

Op12C2 70,8% 89,2% 46,6% 91,9% 51,2% 70,9% 97,7% 88,3% 96,4% 54,5% 55,7% 77,0% 55,8% 

Op15C1 94,3% 96,2% 90,4% 95,3% 96,6% 95,4% 99,6% 98,3% 99,1% 85,0% 92,7% 93,5% 93,2% 

Op20C1 57,6% 88,1% 0,0% 91,7% 96,8% 53,8% 98,5% 95,7% 87,2% 33,8% -7,7% 86,3% 83,3% 

AVG 78,2% 82,6% 64,2% 84,3% 89,2% 84,6% 92,0% 96,6% 94,6% 65,0% 45,6% 82,3% 81,1% 

AVG ¥ 
(Ref) 

74.3% 72.0% 44.8% 82.7% 95.5% 87.7% 95.4% 96.0% 77.9% 59.4% 42.5% 81.0% 65.5% 

*NT: Normal Tissue; TT: Tumor Tissue; HT: Hypervascularized Tissue; BG: Background. 

¥ Average reference results (employing 128 bands with the OPF method). 
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Figure 5-13. Resulting classification maps after GA FoMPenalized and the reduced dataset for the SVM 
training. (a) Synthetic RGB representation of the HS cube with the tumor area surrounded by a yellow line. 

(b) Reference classification map. (c) Classification Map 

5.5.2.2 OPF with PSO and FoMPenalized 

Once the PSO is executed, the most representative bands are obtained for each image. 

Table 5-12 shows the results obtained with these bands after their evaluation. Analyzing 

the results obtained with the reference method, it should be noted that the OA is slightly 

higher than the one obtained in the reference (Table 5-6). The same happens with the 

sensitivity, having only 48.8% success of the tumor class, compared to 44.8% with the 

reference one. It is clearly observed that the image Op20C1 does not have any correct 

pixel of that class. As for the specificity, the results are high, giving as a worst result the 

background class with 84.5%. With respect to the MCC, the class with the worst success 

rate is the tumor class, where only 37.4% have been correctly identified. 

From the classification maps observed in Figure 5-14, the results show that the 

Op8C1 image present false positives of the tumor throughout the classification map. The 

images Op12C1 and Op12C2 identify where the brain tumor is located, although it has 

pixels that indicate tumor in areas that are not correct, as it also happens with the image 
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Op8C2. The Op15C1 image shows almost perfectly the location, size and shape of the 

brain tumor. Regarding to the image Op20C1, some pixels of the tumor class are 

displayed distributed by the classification map, although it does not show tumor. 

Table 5-12. PSO FoMPenalized results obtained with all bands and the reduced dataset for the 

SVM training. 

Patient 
ID 

OA 
Sensitivity Specificity MCC 

NT TT HT BG NT TT HT BG NT TT HT BG 

Op8C1 55,3% 42,1% 73,3% 40,4% 100,0% 91,1% 71,8% 97,7% 64,0% 38,1% 41,6% 50,0% 45,1% 

Op8C2 92,7% 96,9% 37,0% 88,8% 93,1% 98,0% 94,8% 99,6% 98,6% 93,5% 15,7% 91,4% 88,3% 

Op12C1 89,9% 78,0% 66,8% 96,5% 99,3% 96,7% 93,9% 96,6% 98,9% 78,3% 47,5% 92,8% 95,0% 

Op12C2 69,4% 75,2% 49,2% 95,1% 54,5% 75,2% 93,4% 88,3% 93,0% 46,8% 45,8% 80,0% 53,0% 

Op15C1 89,6% 97,6% 66,5% 97,0% 98,9% 90,7% 99,9% 99,2% 97,1% 76,3% 76,9% 96,0% 86,4% 

Op20C1 56,6% 88,7% 0,0% 79,7% 99,5% 67,2% 99,8% 99,0% 55,6% 48,2% -3,0% 84,1% 54,1% 

AVG 75,6% 79,8% 48,8% 82,9% 90,9% 86,5% 92,3% 96,7% 84,5% 63,5% 37,4% 82,4% 70,3% 

AVG ¥ 
(Ref) 

74.3% 72.0% 44.8% 82.7% 95.5% 87.7% 95.4% 96.0% 77.9% 59.4% 42.5% 81.0% 65.5% 

*NT: Normal Tissue; TT: Tumor Tissue; HT: Hypervascularized Tissue; BG: Background. 

¥ Average reference results (employing 128 bands with the OPF method). 
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Figure 5-14. Resulting classification maps after PSO FoMPenalized and the reduced dataset for the SVM 
training. (a) Synthetic RGB representation of the HS cube with the tumor area surrounded by a yellow line. 

(b) Reference classification map. (c) Classification Map 

5.6 Comparison of the OPF results 

Below, a comparison of the results obtained with the OPF method with the FoM and 

with the two best techniques selected in Section 5.4 is presented.  

Figure 5-15.a shows the accuracy of the OPF reference, OPF GA and PSO, OPF GA 

FoM and FoMPenalized and OPF PSO FoM and FoMPenalized. It can be seen that, the results 

are very similar, but in the case of the use of OPF GA FoM, is the one that has the best 

accuracy with one of the images and also, the one that has the best result with its worst 

image. It is also visualized that the next best technique is OPF GA FoMPenalized. 

In the case of sensitivity of the tumor class, Figure 5-15.b shows that cases in which 

OPF GA are used again have a higher success rate than with the OPF PSO algorithms. 
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However, in this case, there is more difference between the use of OPF GA FoM and 

FoMPenalized. Specifically, the best case of OPF GA FoM is around 98%, while OPF GA 

FoMPenalized is only 90%. As for the worst case, all the techniques have an image (Op20C1) 

that has not been able to identify the kind of tumor. 

 

(a) 

 

(b) 

Figure 5-15. Boxplot diagram of the overall accuracy (a) and sensitivity of the tumor class (b) 
of all FoM evaluated techniques. 

Regarding the classification maps observed in Figure 5-16, the first impression is that 

the results are very similar. In all the images, with the exception of the image Op20C1, 

the tumor area is detected. Analyzing the images one by one, the classification maps of 

the Op8C1 image that have their best visualization, are those that use the OPF GA 

FoMPenalized and OPF PSO FoMPenalized techniques. Regarding the Op8C2 image, the best 

results are observed with the same techniques. With respect to images Op12C1 and 

Op12C2, the best results are obtained by using OPF GA FoM and OPF PSO FoMPenalized 

techniques. The Op15C1 image provides the best visualization in all the techniques, 

although the best visualization of the tumor is observed with the OPF GA FoM technique. 

The last image, Op20C1, as previously commented, no tumor is detected with any 

technique. 

After conducting a thorough analysis, it is decided that the best techniques are the 

OPF GA FoM, OPF GA FoMPenalized and the OPF PSO FoMPenalized. These three techniques 

are selected because, although OPF GA FoM and FoMPenalized give better results in the 
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graphs, the OPF PSO FoMPenalized technique in the classification maps gives very good 

results. Until now, the process that has been followed is to evaluate each of the images 

with their best bands. In the next section, the best cases are selected and all images are 

evaluated with the same bands. 
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Figure 5-16. Classifications maps of the test dataset. (a) Synthetic RGB images with a yellow 
line determining the area tumor. (b) OPF Reference. (c and d) OPF GA and PSO (e) OPF GA 

FoM. (f) OPF PSO FoM. (g) OPF GA FoM Penalized. (h) OPF PSO FoM Penalized. 
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5.7 Coincident selected bands evaluation 

In this section, all test images are evaluated employing the same selected bands. The 

techniques that were selected to identify the most representative bands are the OPF with 

GA using the FoM and the FoMPenalized for the evaluation and the OPF with PSO using the 

FoMPenalized. When these algorithms selected the bands, they identified different bands 

for each test image. The process followed in this section is to first evaluate all the bands 

together that were selected in all the test images (level 1 – L1), then evaluate the bands 

that were repeated in at least two images (level 2 – L2), then evaluate the bands that were 

repeated in at least three images (level 3 – L3) and thus successively until reach the 

possible six coincidences. This methodology was already explained in Section 4.2.7. 

5.7.1 OPF with GA using FoM evaluation 

Table 5-13 shows the average and the standard deviation results of the images at 

different band levels. In this case, it can be observed that the best OA is obtained in level 

4 (L4) with 77.3%, closely followed by L2 and L3 with 76%. In terms of sensitivity, if 

only the tumor class is observed, L5 is the one that has the best result with 61.8%, 

however in this level, the sensitivity of the hypervascularized class is quite low (40.5%). 

Then it is followed by L4 and L3 with 52.9% and 50.6%, respectively. The specificity 

remains constant except for the last level, which worsens in the hypervascularized class. 

Finally, the MCC as in the specificity, the results remain constant except for levels 5 and 

6, giving as a worse result the normal tissue class with a 22.8 and a -18.3 respectively. 

Figure 5-17 illustrates the classification maps of all the test images after the 

evaluation of the different levels. It can be seen that in the last levels (L5 and L6), the 

initial form of the image is not clearly shown and it has a large number of 

misclassifications when identifying the different classes. Regarding the rest of the levels, 

the one that best shows the classification maps is L4, where the brain tumors are well 

delineated in almost all the cases. It should be noted that at L4, a few tumor pixels in the 

Op20C1 image are detected correctly. 

After this analysis of all the metrics, it was determined that the best case obtained in 

this method is L4 that is composed by 27 bands. 

Table 5-13. Average and standard deviation of accuracy, sensitivity, specificity and MCC 

using GA FoM of all images. 

Level 
(#bands) 

OA 
AVG 

(STD)
% 

Sensitivity 
AVG(STD)% 

Specificity 
AVG(STD)% 

MCC 
AVG(STD)% 

NT TT HT BG NT TT HT BG NT TT HT BG 

L1(121) 
74.4 

(20.7) 
72.7 

(23.3) 
45.4 

(30.9) 
82.4 

(22.5) 
95.4 
(8.7) 

88.1 
(11.7) 

95.3 
(8.2) 

95.9 
(6.8) 

77.3 
(21.9) 

60.0 
(28.2) 

42.5 
(31.5) 

80.6 
(18.5) 

65.7 
(21.5) 

L2(102) 
76.0 

(19.3) 
78.0 

(22.6) 
47.4 

(31.1) 
83.3 

(20.5) 
95.0 
(9.6) 

87.6 
(13.3) 

95.3 
(8.5) 

95.9 
(6.6) 

81.5 
(19.0) 

63.7 
(25.4) 

43.7 
(31.6) 

81.2 
(17.4) 

70.0 
(21.0) 

L3(62) 
76.3 

(17.2) 
81.6 

(18.8) 
50.6 

(29.6) 
83.2 

(21.5) 
91.6 

(16.6) 
85.6 

(14.3) 
94.3 
(8.5) 

96.3 
(6.1) 

85.0 
(16.1) 

64.3 
(23.7) 

42.1 
(29.2) 

82.0 
(16.9) 

70.4 
(20.9) 

L4(27) 
77.3 

(16.5) 
84.4 

(15.2) 
52.9 

(31.1) 
83.4 

(21.7) 
89.8 
(21.1) 

87.4 
(10.4) 

93.4 
(8.2) 

96.9 
(5.0) 

85.7 
(20.7) 

69.1 
(19.1) 

41.5 
(30.9) 

82.9 
(16.6) 

71.3 
(22.1) 

L5(5) 
55.3 

(21.0) 
56.6 

(38.1) 
61.8 

(38.9) 
40.5 

(28.1) 
90.2 

(18.2) 
70.7 

(13.6) 
73.7 

(28.7) 
96.0 
(6.0) 

77.5 
(18.8) 

22.8 
(42.3) 

30.4 
(26.3) 

42.2 
(31.3) 

63.9 
(23.3) 

L6(2) 
36.7 

(21.1) 
11.4 

(15.9) 
48.7 

(28.3) 
50.7 

(34.0) 
70.8 

(44.3) 
73.8 

(15.6) 
61.6 

(37.5) 
59.5 

(34.0) 
87.6 

(16.2) 
-18.3 
(22.9) 

11.4 
(28.3) 

13.5 
(39.1) 

55.7 
(46.6) 
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5.7.2 OPF with GA using FoMPenalized evaluation  

In this case, the number of levels is only three, because some bands are only repeated 

in a maximum of three images.  

Table 5-14 shows the results obtained using the OPF method with GA and the 

FoMPenalized for the evaluation of the different coincidence levels. In this case, the number 

of levels is only three, because some bands are only repeated in a maximum of three 

images. These results are the mean and standard deviation of the six test images. In terms 

of OA, it is observed that the best result was obtained in L1, with 77.9%, followed very 

closely by L2 with 77.0%. However, L3 worsens notably the results, achieving only a 54%. 
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Figure 5-17. Classifications maps of the test dataset using the selected bands by the GA FoM 

technique 
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With respect to sensitivity, L1 and L2 remain practically the same for all classes. 

Nevertheless, L3 worsens, especially in the normal tissue class and in the 

hypervascularized class. The specificity follows the same line as in sensitivity, L1 and 

L2 with similar results and L3 bear off from these results in the normal tissue class and 

in the tumor class. Regarding the MCC metric, it shows that the tumor class is the most 

affected, with 44.4% in L1 and L2, and 23.6% in level 3. This last level also worsens 

considerably in normal tissue and hypervascularized classes. 

Regarding to the classification maps, Figure 5-18 shows all the test images in the 

different levels, where it is observed that L3 provides many faults, as for example in the 

images Op12C1 and Op12C2, which shows a large number of tumor pixels (left side). 

Regarding L1 y L2, the results are very similar, where the only difference is found in L2, 

which shows the image Op12C1 many pixels that are false positives. 

After this analysis, all the metrics in L1 and L2 give the same results. So it is decided 

to choose L1 as the best case due to this level has less false positives in Op12C1.  

Table 5-14. Average and standard deviation of accuracy, sensitivity, specificity and MCC 

using GA FoMPenalized of all images. 

Level 
(#bands) 

OA 
AVG 

(STD)
% 

Sensitivity 
AVG(STD)% 

Specificity 
AVG(STD)% 

MCC 
AVG(STD)% 

NT TT HT BG NT TT HT BG NT TT HT BG 

L1(48) 
77.9 

(17.0) 
85.1 

(17.6) 
52.7 

(29.8) 
83.5 

(20.9) 
92.5 

(14.2) 
87.3 

(12.2) 
94.6 
(8.3) 

96.7 
(5.1) 

85.3 
(18.0) 

69.0 
(21.0) 

44.4 
(30.9) 

82.4 
(16.7) 

72.7 
(20.2) 

L2(22) 
77.0 

(16.8) 
83.7 

(19.9) 
57.0 

(32.6) 
81.9 

(23.0) 
90.1 

(20.1) 
85.2 

(13.4) 
91.2 

(14.4) 
97.1 
(4.9) 

87.7 
(17.6) 

65.5 
(21.8) 

44.4 
(29.1) 

81.8 
(16.9) 

74.7 
(21.1) 

L3(2) 
53.8 

(21.2) 
52.8 

(42.6) 
57.6 

(36.5) 
48.8 

(26.4) 
84.8 
(27.1) 

72.9 
(13.2) 

70.3 
(30.8) 

93.1 
(8.0) 

80.0 
(21.1) 

20.4 
(45.4) 

23.6 
(23.6) 

45.5 
(29.1) 

61.4 
(28.8) 
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 Figure 5-18. Classifications maps of the test dataset using the selected bands by the GA 
FoMPenalized technique. 
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5.7.3 OPF with PSO using FoMPenalized evaluation 

Table 5-15 the results obtained in this experiment where the OPF method configured 

with the PSO is employed using the FoMPenalized as the evaluation metric. In this case, as 

in the previous section, only three levels were found. 

In the results, it can be observed that the best OA is obtained in the L1 with 75.9%, 

followed closely by L2 with 74.1%. However, L3 reaches only 58%. The sensitivity for 

all the classes of the first two levels remains practically the same and the L3 worsens in 

all their classes. In terms of specificity, the same line follows, L1 and L2 have similar 

results and L3 has worse results in all its classes. Finally, with respect to the MCC metric, 

the L3 is the worst result in all classes. In L1 and L2, the normal and hypervascularized 

tissue class are constants. However, if the rest of the classes are observed, they get worse 

in the second level, passing the tumor class from 38.4% to 34.3% and the background 

class from 72.2% to 68.7%. 

Regarding the classification maps observed in Figure 5-19, it is observed that the 

L3 presents the worst results, since in the images Op8C1 and Op12C1 tumor is visualized 

in a large part of the map out of the tumor area. Analyzing the two remaining levels, they 

give slightly different results, although in the first level there are less false positives in 

the tumor class. This is observed in the images Op8C1, Op12C1 and Op12C2, where more 

pixels that are erroneous are observed identifying the tumor class than in level two. Thus, 

taking into account each of the metrics, it was decided that the best case using the PSO 

is L1. 

Table 5-15. Average and standard deviation of accuracy. sensitivity. specificity and MCC 

using PSO FoMPenalized of all images. 

Level 
(#bands) 

OA 
AVG 

(STD)
% 

Sensitivity 
AVG(STD)% 

Specificity 
AVG(STD)% 

MCC 
AVG(STD)% 

NT TT HT BG NT TT HT BG NT TT HT BG 

L1(62) 
75.9 

(17.3) 
77.8 

(22.2) 
47.1 

(30.6) 
84.5 

(20.1) 
93.1 

(13.0) 
87.0 

(13.3) 
92.9 
(11.5) 

95.9 
(5.7) 

84.6 
(17.2) 

62.5 
(19.5) 

38.4 
(27.7) 

82.1 
(17.4) 

72.2 
(19.9) 

L2(28) 
74.1 

(16.9) 
73.8 

(23.4) 
47.8 

(28.7) 
83.7 

(21.5) 
91.6 

(16.1) 
88.9 

(88.5) 
91.1 

(10.7) 
96.5 
(5.2) 

82.1 
(22.3) 

61.3 
(20.0) 

34.3 
(27.4) 

82.5 
(16.9) 

68.7 
(23.1) 

L3(4) 
57.6 

(18.6) 
59.4 

(29.2) 
42.3 

(23.9) 
69.4 

(29.3) 
77.6 

(33.5) 
74.7 

(16.1) 
84.5 

(18.4) 
84.1 

(11.9) 
79.5 

(26.3) 
30.7 

(29.1) 
22.5 

(30.7) 
49.3 

(28.0) 
52.6 

(32.1) 
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5.7.4 Comparison of the coincident selected bands results 

Once selected the best cases of the combinations developed for the band selection 

algorithms, we made a brief comparison and identified the best case of the three 

methodologies.  

The quantitative results obtained are shown in Table 5-16. In this case it is observed 

that the results of the OA are similar, giving the best case to the OPF-GA-FoMPenalized with 

77.9% and the worst case to the OPF-PSO-FoMPenalized with 75.9%. In terms of 

sensitivity, the results of the first two cases remain constant, the only more pronounced 

difference is that in the tumor class, the OPF-GA-FoM achieves 52.9% and the OPF-GA-

FoMPenalized reaches 52.7%. The last case has worse results in the normal and tumor tissue 

classes, with 77.8% and 47.1%, respectively. Nevertheless, the specificity remains 

constant for all cases. Finally, the MCC metric shows that the class with the worst result 

is the tumor class, with the second case having the best result, with 44.4% and the third 

case having the worst result with 38.4%. 

Regarding the classification maps shown in Figure 5-20, it is observed as the first 

impression that the results in all cases are very similar. Analyzing the images one by one, 

in the case of the first image, Op8C1, it is observed that using either the OPF-GA-FoM or 

the OPF-PSO-FoMPenalized the results are more accurate with less false positives. The best 

cases that visualizes the image Op8C2 is the OPF-GA-FoM and OPF-GA-FoMPenalized, 

since it is observed in the area of the tumor, a higher number of tumor pixels. As for the 

images Op12C1 and Op12C2, the classification maps of the OPF-GA-FoMPenalized has less 

false positives of the tumor class. With respect to the Op15C1 image, it is the one with the 
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 Figure 5-19. Classifications maps of the test dataset using the selected bands by the PSO FoM 
penalized technique. 
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greatest changes among the cases. The OPF-GA-FoM clearly shows where the tumor is 

located, although it has a small group of false positives of the tumor class in the upper 

left image. The OPF-GA-FoMPenalized, gives practically the same classification map as the 

previous case, although the group of false positives is higher. In the case of the OPF-PSO-

FoMPenalized, that group of false positives disappears, but also pixels of the tumor class 

where the tumor is found are lost. Finally, the image Op20C1 gives practically the same 

result in all three cases, although OPF-GA-FoM correctly shows some pixels of the tumor 

class. 

After this analysis, it is worth noting that OPF-GA-FoM and OPF-GA-FoMPenalized are 

the ones that give the best results, being practically the same. Having to choose one of 

the cases, after a general balance of the metrics, it is decided that the OPF-GA-FoMPenalized 

is the most complete case using 48 bands. 

Table 5-16. Best cases average and standard deviation of accuracy. sensitivity. specificity and 

MCC. 

Technique 
(#bands) 

OA 
AVG 

(STD)% 

Sensitivity 
AVG(STD)% 

Specificity 
AVG(STD)% 

MCC 
AVG(STD)% 

NT TT HT BG NT TT HT BG NT TT HT BG 
GA-FoM 

(27) 
77.3 

(16.5) 
84.4 

(15.2) 
52.9 

(31.1) 
83.4 

(21.7) 
89.8 
(21.1) 

87.4 
(10.4) 

93.4 
(8.2) 

96.9 
(5.0) 

85.7 
(20.7) 

69.1 
(19.1) 

41.5 
(30.9) 

82.9 
(16.6) 

71.3 
(22.1) 

GA-FoMPen 

(48) 
77.9 

(17.0) 
85.1 

(17.6) 
52.7 

(29.8) 
83.5 

(20.9) 
92.5 

(14.2) 
87.3 

(12.2) 
94.6 
(8.3) 

96.7 
(5.1) 

85.3 
(18.0) 

69.0 
(21.0) 

44.4 
(30.9) 

82.4 
(16.7) 

72.7 
(20.2) 

PSO-FoMPen 

(62) 
75.9 

(17.3) 
77.8 

(22.2) 
47.1 

(30.6) 
84.5 

(20.1) 
93.1 

(13.0) 
87.0 

(13.3) 
92.9 
(11.5) 

95.9 
(5.7) 

84.6 
(17.2) 

62.5 
(19.5) 

38.4 
(27.7) 

82.1 
(17.4) 

72.2 
(19.9) 
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Figure 5-20.Best cases classifications maps. (a) Synthetic RGB images with a yellow line 
determining the area tumor. (b) OPF Reference.(c and d) OPF GA FoM and FoMPenalized and (e) 

OPF PSO FoMPenalized. 
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5.8 Band selection evaluation using ACO algorithm  

This section will present the results obtained with the band selection methodology 

based on the ACO algorithm. This algorithm is evaluated independently due to its 

structure and work procedure is different from the other two optimization algorithms. 

The experimental procedure carried out is as follows: Initially, the first 20 most 

important bands, which were identified by the ACO algorithm, were selected and 

evaluated with the entire and reduced training database. Then, once the results were 

compared, it was selected which method offered the best result and the six test images 

were then evaluated with the coincident bands. 

5.8.1 ACO with the entire training dataset 

Table 5-17 shows the results obtained with the band selection procedure with each 

image independently using the entire training dataset to obtain the most relevant bands. 

It is observed that the average OA obtained is 74.8%. Sensitivity is high in all classes 

with the exception of the tumor class, with 19.6%. It is worth noticing that the images 

Op12C1, and Op20C1 were not been able to detect any pixel of this class correctly. In 

terms of specificity, the results are high, except for the normal tissue class, which only 

reaches 76%. Finally, the class with the worst result in the MCC metric is again the tumor 

class with 18.7%. This class has a very small success rate in all images with the exception 

of the Op15C1 image. 

On the other hand, Figure 5-21 shows the classification maps of all the images. 

Op8C1, op12C1, Op12C2 and Op20C1 show no tumor in the resulting map. Only the 

image Op15C1 clearly shows the location of the tumor, although it has false positives on 

the left side of the classification map. 

Table 5-17. Accuracy, sensitivity, specificity and MCC results using the entire dataset with 

ACO. 

Patient 
ID 

OA 
Sensitivity Specificity MCC 

NT TT HT BG NT TT HT BG NT TT HT BG 

Op8C1 54.4% 62.1% 20.9% 50.5% 100.0% 69.8% 86.5% 85.4% 70.1% 31.9% 9.1% 38.3% 52.1% 

Op8C2 94.0% 98.2% 31.2% 97.3% 93.4% 97.5% 96.6% 99.8% 98.1% 93.2% 16.5% 97.2% 88.6% 

Op12C1 91.3% 97.9% 0.0% 95.3% 99.6% 90.1% 100.0% 97.6% 99.1% 83.5% -0.3% 92.4% 96.0% 

Op12C2 64.8% 93.2% 2.8% 85.5% 51.5% 62.3% 99.9% 82.7% 96.1% 50.9% 13.2% 65.1% 55.0% 

Op15C1 86.7% 96.5% 62.7% 93.8% 97.6% 86.8% 100.0% 99.9% 97.0% 69.0% 74.4% 93.1% 85.7% 

Op20C1 57.6% 95.8% 0.0% 77.1% 100.0% 50.0% 100.0% 99.3% 91.9% 36.89% -0.9% 82.9% 91.4% 

AVG 74.8% 90.6% 19.6% 83.2% 90.4% 76.1% 97.1% 94.1% 92.1% 60.9% 18.7% 78.2% 78.1% 

AVG ¥ 
(Ref) 

73.9% 93.1% 17.1% 82.6% 89.2% 73.4% 97.5% 94.7% 94.8% 59.7% 24.9% 78.0% 81.2% 

* NT: Normal Tissue; TT: Tumor Tissue; HT: Hypervascularized Tissue; BG: Background. 

¥ Average reference results (employing 128 bands with the BPF method). 
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Figure 5-21. Resulting classification maps after ACO and the entire dataset for the SVM training. (a) 
Synthetic RGB representation of the HS cube with the tumor area surrounded by a yellow line. (b) 

Reference classification map. (c) Classification Map. 

5.8.2 ACO with the reduced training dataset 

After the evaluation of the results using the entire dataset, the same procedure is 

performed again with the reduced dataset. In this case, Table 5-18 shows that the average 

OA does not exceed 70%, although in two images an OA of more than 92% is achieved. 

In terms of sensitivity, the tumor class is the lowest with respect to the rest with 44%. 

However, respect to the previous method where the entire training dataset is employed, 

the tumor class accuracy has an improvement of 24.4%. Similarly, to the previous case, 

the image Op20C1 does not identify any pixel of tumor class. Regarding to the 

specificity, the results are high, giving the worst result to the background class with 

82.3%. Finally, with respect to MCC, the tumor class has the worst result, with 26.8%, 

where only one image, Op15C1, has a success rate of 88% and the rest of images does not 

exceed 23%. 

Regarding the classification maps of the obtained for each test image shown in Figure 

5-22, with the exception of the image Op20C1, they show a large number of tumor pixels. 

Specifically, the images Op8C1 and Op12C1 show more pixels of the erroneous tumor 

class than correct ones. The remaining images, Op8C2, Op12C2 and OpC1, although they 

also have pixels that indicate tumor where it is not correct, there is a greater number of 

correct pixels of that class. 
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Table 5-18. Accuracy, sensitivity, specificity and MCC results using the reduced dataset with 

ACO. 

Patient 
ID 

OA 
Sensitivity Specificity MCC 

NT TT HT BG NT TT HT BG NT TT HT BG 

Op8C1 42.3% 26.4% 48.0% 37.3% 100.0% 85.1% 64.8% 92.8% 48.7% 14.1% 12.1% 37.4% 35.7% 

Op8C2 92.4% 97.5% 33.3% 87.3% 92.6% 98.7% 94.0% 99.7% 98.5% 95.4% 12.6% 91.0% 87.5% 

Op12C1 71.1% 9.7% 75.1% 97.1% 99.2% 98.3% 71.5% 94.8% 99.7% 18.5% 22.9% 90.9% 98.7% 

Op12C2 59.3% 76.8% 24.5% 95.1% 33.8% 61.2% 93.4% 78.4% 95.2% 34.7% 22.9% 70.2% 38.2% 

Op15C1 93.3% 97.0% 83.2% 96.2% 99.0% 94.1% 99.9% 100.0% 98.0% 82.6% 88.4% 96.0% 89.6% 

Op20C1 57.7% 92.1% 0.0% 82.1% 99.8% 72.1% 99.9% 98.6% 53.9% 56.4% -2.23% 85.0% 52.2% 

AVG 69.3% 66.6% 44.0% 82.5% 87.4% 84.9% 87.2% 94.1% 82.3% 53.4% 26.8% 78.4% 67.0% 

AVG ¥ 
(Ref) 

74.3% 72.0% 44.8% 82.7% 95.5% 87.7% 95.4% 96.0% 77.9% 59.4% 42.5% 81.0% 65.5% 

*NT: Normal Tissue; TT: Tumor Tissue; HT: Hypervascularized Tissue; BG: Background. 

¥ Average reference results (employing 128 bands with the OPF method). 

 

 Op8C1 Op8C2 Op12C1 Op12C2 Op15C1 Op20C1 

(a
) 

S
y

n
th

et
ic

 R
G

B
 

      

(b
) 

R
ef

er
en

ce
 M

a
p

 

      

(c
) 

C
la

ss
if

ic
a

ti
o

n
 M

a
p

 

      

 #Bands: 20  20 20 20 20 20 

Figure 5-22. Resulting classification maps after ACO and the reduced dataset for the SVM training. (a) 
Synthetic RGB representation of the HS cube with the tumor area surrounded by a yellow line. (b) 

Reference classification map. (c) Classification Map 

 

5.8.3 Coincident selected bands evaluation using ACO 

After analyzing the results obtained with the ACO algorithm, it was decided that the 

best results were obtained with the reduced training dataset. Therefore, as in section 5.7, 

the test images were evaluated again but using the coincident bands in the different 

levels. In this case, the bands were repeated in four images, generating four levels to be 

evaluated. 

Table 5-19 shows the average results and standard deviation of the different levels. In 

this case, the best case of OA is obtained in L1, with 76.4%, although L2 has a slightly 

lower OA, specifically with 73.7%. In the sensitivity, for all levels, the class with the 

worst rate of success is the tumor class. Observing this class, L1 is the one that achieves 

the best result (47.6%), followed very closely by L2. In terms of specificity, the results 

remain constant, with the exception of the normal and tumor tissue classes of the last 

level 61.2% and 43.9%, respectively. In the MCC metric, it can be observed again that 
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the tumor class has the worst result at all levels, reaching in the last level to -20.4% 

accuracy. 

With respect to the maps observed in Figure 5-23, L3 and L4 produce many errors 

when identifying the different classes. Regarding L1 and L2, classification maps improve 

and provide similar results. If these classification maps are observed in detail, it is 

visualized that the images Op12C1 and Op12C2 of L1 have greater precision than in L2. 

In L2, there is a greater number of false positives for the tumor class (left side of the 

classification maps). 

Taking into account all the metrics, it was decided that the best case is to use L1, that 

is, all the bands that were selected among the six images (81 bands). 

Table 5-19. Average and standard deviation of accuracy, sensitivity, specificity and MCC 

using ACO. 

Level 
(#bands) 

OA 
AVG 

(STD)
% 

Sensitivity 
AVG(STD)% 

Specificity 
AVG(STD)% 

MCC 
AVG(STD)% 

NT TT HT BG NT TT HT BG NT TT HT BG 

L1(81) 
76.4 

(18.7) 
80.2 

(22.8) 
47.6 

(26.2) 
83.6 
(21.1) 

94.3 
(9.5) 

87.4 
(14.7) 

93.8 
(10.1) 

96.6 
(4.7) 

83.8 
(18.1) 

65.3 
(24.4) 

40.7 
(29.7) 

82.1 
(18.4) 

71.8 
(19.5) 

L2(32) 
73.7 

(18.9) 
77.3 

(24.2) 
42.9 

(27.6) 
83.5 

(22.4) 
91.2 

(17.1) 
85.2 

(14.3) 
91.0 
(11.1) 

95.8 
(6.0) 

84.8 
(20.7) 

60.2 
(24.09 

29.4 
(28.2) 

81.0 
(20.0) 

72.2 
(22.0) 

L3(6) 
62.9 

(19.0) 
65.2 

(36.1) 
30.1 

(27.1) 
71.2 

(32.4) 
87.6 

(25.0) 
82.3 

(14.5) 
77.9 

(20.7) 
90.1 

(11.9) 
84.0 

(23.6) 
45.9 

(32.3) 
5.0 

(18.4) 
64.7 

(25.9) 
70.3 

(25.8) 

L4(1) 
37.7 

(23.9) 
65.9 

(34.8) 
38.6 

(35.0) 
24.5 

(32.1) 
25.8 

(37.2) 
61.2 

(38.5) 
43.9 

(27.6) 
77.5 

(30.6) 
81.4 

(27.0) 
25.5 

(41.0) 
-20.4 
(37.0) 

-3.3 
(30.2) 

10.8 
(49.8) 
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Figure 5-23. Classifications maps of the test dataset using the selected bands by the ACO algorithm. 

5.9 Summary 

This chapter has showed the results obtained when selecting the bands that provide 

more information when classifying HS brain images for the detection and delineation of 

brain tumors. This selection process was divided into different methodologies, increasing 

the success rate of the results after the use of the reduced training dataset. First, the GA 

and PSO algorithms were evaluated having as a condition for the band selection the 

OAPenalized metric. From the best results obtained in these evaluations, these algorithms 

were re-evaluated having as a condition for the band selection the FoM and the 

FoMPenalized metrics in order to take into account the balance of the sensitivity (accuracy 

per class) results. After selecting the best cases, a new evaluation of the test images was 

performed using the coincident bands obtained for all the test images in the previous 

independent evaluations. This analysis was performed in different levels. In this case, 

the best case obtained was the use of the GA using the FoMPenalized (48 bands) with the 

coincident bands in at least one image, providing a 77.9% of OA and a tumor sensitivity 

of 52.7%.  

Once it was decided which was the best case (OPF-GA-FoMPenalized), another 

optimization algorithm was analyzed. This algorithm, ACO, was evaluated independently 

since it follows a different structure compared with the other algorithms. However, the 
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process followed was the same. First, the bands that the ACO selected with the entire and 

reduced dataset were evaluated. Then, it was decided which case gave the best 

performance, and the coincident bands were evaluated for all the test images at different 

levels. In this case, the best result was obtained in the L1 (81 bands). This means that all 

the bands that the ACO had selected for each HS test image independently were used, 

providing 76.4% of OA and a tumor sensitivity of 47.6%. 

Analyzing these two results, the best of these cases is the OPF-GA-FoMPenalized method 

as it provided better quantitative and qualitative results employing only 48 bands. Table 

5-20 shows the results of all the images after evaluating the OPF-GA-FoMPenalized L1, 

the average values of all the patients of the results and the average values of the reference 

results. It can be seen that the OA improves 3.6% with respect to the reference results, 

giving in the images Op8C2, Op12C1 and Op15C1 the best results with 92.6%, 93.3% and 

91.5% respectively. In terms of sensitivity, the tumor class has the lowest result, 

specifically 52.7%, although it improves by almost 8% compared to the reference ones. 

The worst cases are with the Op12C2 image (35.7%) and with the Op20C1 image (0.0%). 

The specificity has good results in all classes, and has similar results with reference 

with the exception of the background class, which improves by 7%. As in sensitivity, the 

metric MCC tumor class exhibits the worst result, specifically 44.4%. This result is 

slightly higher than the reference ones (42.5%).  

Figure 5-24 illustrates the classifications maps of the OPF-GA-FoMPenalized. 

Looking at all the images one by one, in the Op8C1 image, it is observed that there are 

more false positives of the tumor class with respect to the reference map, in the Op8C2 

image, it shows more true positives of the tumor class than the reference one, although 

it also has more false positives. In the cases of the Op12C1 and Op12C2 images, both 

images have more true positives of the tumor class and less false positives of said class 

by the classification map. The Op15C1 image shows a greater number of false positives 

on the upper left side, and the Op20C1 image does not show tumor. 

Figure 5-25 shows the spectral signatures of the healthy tissue (green color), the 

tumor tissue (red color), the hypervascularized tissue (blue color) and the final bands 

that have been selected. It can be seen that the bands are mainly grouped into small 

groups throughout the spectral signature. These are some of the groups of the bands: 1-

8, 17-20, 33-38, 43-49, 55-63, 72-81 and 123-128, that correspond to 440.5-465.96 nm, 

498.71-509.62 nm, 556.91-575.1 nm, 593.29-615.12 nm, 636.94-666.05 nm, 698.79-

731.53 nm and 884.32-902.51 nm. 
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Table 5-20. Accuracy, sensitivity, specificity and MCC results using OPF-GA-FoMPenalized L1. 

Patient 
ID 

OA 
Sensitivity Specificity MCC 

NT TT HT BG NT TT HT BG NT TT HT BG 

Op8C1 58.7% 50.4% 70.2% 42.8% 100.0% 90.3% 78.3% 96.8% 66.5% 44.3% 45.9% 50.5% 46.5% 

Op8C2 92.6% 95.2% 60.1% 87.8% 93.1% 99.3% 94.1% 99.7% 97.4% 95.3% 24.7% 91.2% 87.4% 

Op12C1 93.3% 91.7% 74.3% 94.8% 99.3% 95.2% 98.2% 98.2% 98.8% 86.1% 71.1% 92.5% 94.5% 

Op12C2 74.3% 84.6% 35.7% 98.2% 63.9% 81.3% 97.1% 86.6% 92.9% 61.9% 43.4% 79.7% 60.9% 

Op15C1 91.5% 98.4% 75.8% 96.1% 98.6% 91.9% 99.9% 100.0% 98.0% 79.0% 83.3% 95.8% 89.7% 

Op20C1 57.2% 90.0% 0.0% 81.2% 100.0% 65.6% 99.9% 98.9% 58.5% 47.5% -1.9% 84.9% 57.2% 

AVG 77.9% 85.1% 52.7% 83.5% 92.5% 87.3% 94.6% 96.7% 85.3% 69.0% 44.4% 82.4% 72.7% 

AVG £ 
(Ref) 

78.8% 93.0% 28.0% 87.4% 95.4% 82.0% 98.1% 93.3% 93.9% 68.8% 34.0% 80.3% 86.0% 

AVG ¥ 
(Ref) 

74.3% 72.0% 44.8% 82.7% 95.5% 87.7% 95.4% 96.0% 77.9% 59.4% 42.5% 81.0% 65.5% 

* NT: Normal Tissue; TT: Tumor Tissue; HT: Hypervascularized Tissue; BG: Background. 

¥ Average reference results (employing 128 bands with the OPF method). 

£ Average reference results (employing 128 bands with the BPF method). 
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 Figure 5-24.Best case classification map. (a) Synthetic RGB images with a yellow line 
determining the area tumor. (b) OPF Reference.(c) OPF GA FoMPenalized L1. 
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Figure 5-25. Normalized average signature of the classes and final selected bands. 

 

Table 5-21. Accuracy, sensitivity, specificity and MCC results using OPF-GA-FoMPenalized L1. 

Band ID λ (nm) Band ID λ (nm) Band ID λ (nm) Band ID λ (nm) Band ID λ (nm) Band ID λ (nm) 

1 440.50 18 502.34 43 593.29 56 640.58 72 698.79 95 782.46 

2 444.14 19 505.98 44 596.93 57 644.22 74 706.06 101 804.29 

3 447.78 20 509.62 45 600.57 58 647.86 75 709.70 104 815.20 

5 455.05 33 556.91 46 604.20 59 651.50 76 713.34 117 862.49 

7 462.33 34 560.55 47 607.84 60 655.13 77 716.98 123 884.32 

8 465.96 36 567.83 49 615.12 61 658.77 78 720.62 124 887.96 

14 487.79 38 575.10 53 629.67 62 662.41 79 724.25 126 895.23 

17 498.71 41 586.01 55 636.94 63 666.05 81 731.53 128 902.51 

 

 





 

 

Chapter 6: Conclusions & Future Lines 

6.1 Conclusions 

In accordance with the objectives of this Master Thesis, the use of different 

optimization algorithms for the selection of the most representative bands in the 

identification of brain tumors has been evaluated. For this work, the HS images 

described in Chapter 3 were used with the aim of identifying the bands that allow 

differencing between the different tissues within the VNIR range of the electromagnetic 

spectrum.  

The SVM classifier was used to evaluate the bands selected by the optimization 

algorithms following a leave-one-patient-out cross-validation. The optimization 

algorithms employed were the GA, the PSO and the ACO. With the GA and PSO 

algorithms, several methodologies were performed. First, the bands were selected after 

using the entire dataset, optimizing the OAPenalized metric (BPF method). This 

methodology was assessed with 30 and 60 generations. Then, due to the large execution 

times (~3 hours per test image with 60 generations), and with the additional goal of 

evaluating a reduced and a balanced training dataset, the labeled dataset was reduced 

using a methodology based on the K-means clustering algorithm (OPF method). Once 

reduced, the optimization algorithms were evaluated with 60 generations, which took ~4 

min per test image for obtaining the optimized bands.  

At that time, it was observed that after evaluating the selected bands, the case that 

obtained the best OA was not the one that obtained the best sensitivity in the tumor class, 

so two new evaluation metrics (FoM and FoMPenalized) were proposed. These metrics were 

employed to evaluate the OPF method. After evaluation, the best cases were selected and 

all the test images were evaluated employing the same selected bands. This evaluation 

was divided into several levels: first evaluating the test images with all the bands selected 

for each image together (L1), then evaluating the images with the bands repeated in at 

least two images (L2) and so on. 

As for the ACO algorithm, it worked in a different way than the other two optimization 

algorithms, and it was evaluated with the complete and reduced labeled dataset. After 

choosing the best result, all images were evaluated with the same bands and with the 

same procedure as with the GA and PSO algorithms. 

In Chapter4, it was observed that the overall average sensitivity of the tumor class was 

not very high. With the exception of the Op20C1 image, the brain tumor was correctly 

identified, although with many false positives spread across the classification maps. It 
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was also observed that by reducing the dataset and selecting the most relevant bands, the 

results improved with respect to the reference ones (128 bands). After all the experiments 

performed, it was decided that the best case was the OPF-GA-FoMPenalized using the Level 

1 (48 bands). The most important spectral regions identified were: 440.5-465.96 nm, 

498.71-509.62 nm, 556.91-575.1 nm, 593.29-615.12 nm, 636.94-666.05 nm, 698.79-

731.53 nm and 884.32-902.51 nm.  

6.2 Future lines 

The future work of this Master Thesis has many paths to follow. On the one hand, 

thanks to the ITHACA project, the amount of data in the train and test database will be 

increased. With this improvement, it will be able to corroborate the results obtained in 

this work. The increased database can be employed also to identify different tissues and 

tumor types, apart from delineating the boundaries of the tumor.  

Another field of future research is to perform an optimization of the hyperparameters 

of the SVM algorithm. One way to do this could be to execute within the optimization 

algorithm another algorithm of the same family that will optimize the parameters of the 

SVM classifier each time the main algorithm selects different bands. For this purpose, 

the best possible prediction model could be achieved in each execution. 

It would be also interesting to perform more experiments in the design of the training 

dataset reduction algorithm, because after performing the balance of the labeled dataset 

(1000 pixels per class), the results improved significantly. It is necessary to remember 

that, initially, this methodology was proposed as a solution to accelerate the execution 

time of the optimization algorithm and the improvements that it could offer have not 

been studied in detail in this work. 

Finally, it could be also interesting to try to correlate the most representative spectral 

ranges, obtained in this work, with the biological properties of brain tissue, especially 

with the goal of differentiating the tumor and normal tissue. 
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