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A B S T R A C T   

Signature verification is a widely explored field due to its high acceptance and its compromise between security 
and comfort. Recently, different techniques have appeared to improve the capture, processing, and classification 
of signatures. In this work, authors present a novel and robust in-air signature verification system, which applies 
the use of Leap Motion controller to characterize in-air strokes, due to its stability and good performance for this 
task, as it will be demonstrated. Therefore, a database has been built for developing the experiments, which is 
composed of 100 users, with 10 genuine and 10 forgery samples per user. The implemented system is tested 
against two tests of impostor samples, zero effort attacks and active impostors. The second type of attacks are 
developed by different users, who showed very good abilities with the sensor. The classification is done by a 
Least Square Support Vector Machine. The equal error rate was 0.25% and 1.20%, respectively. The proposed 
system achieves very good results in comparison with the state-of-the-art one, which suggests that in-air 
signature processing gives an opportunity to increase systems’ security.   

1. Introduction 

Computer Science has notably evolved, allowing a high development 
of the information technologies, which results in a more electronically 
connected society. From this evolution, different systems are developed 
to perform repetitive tasks instead of the user or to facilitate remote 
interaction between users and administration systems. These activities 
show an evolution of authentication systems to ensure user’s digital 
identity. 

Biometrics, understood as the process to recognize people based on 
their characteristics (Anand et al., 2010), is one of the most covered 
fields when recognizing users. It is usually divided into two groups, 
according to the studied characteristics, as follows:  

1. Physical features: fingerprint, iris, palm of the hand, face, etc.  
2. Behavioral features: signature, walk, etc. 

The ideal system does not exist, and different aspects must be studied 
when a new approach is designed. Physical features tend to provide high 
security levels due to the temporal variability of behavioral features, but 
they usually require more difficulties for the user to employ them. 
However, there are some examples of hybrid techniques, which try to 
combine the strength of both groups. For these reasons, it is important to 

know the application environment for developing the best system for the 
scenario. 

User authentication based on signatures is a widely-studied field in 
biometrics since it is one of the most accepted verification techniques 
(Behera et al., 2017; Impedovo & Pirlo, 2008), mainly because of its 
usability. Signatures verification techniques are usually divided into 
online (Plamondon & Srihari, 2000) and offline (Vargas et al., 2009). 
Both approaches try to identify and characterize the features which 
define the signature of each user, trying to check if a signature is original 
or not, applying for these a wide spectrum of classifiers (Bibi et al., 
2020). 

Offline techniques study the scanned image of a signature, while 
online techniques measure the data captured while the signature is 
done, as velocity (Elliott & Hunt, 2006), pressure (Ammar et al., 1986), 
etc. In general, online techniques perform better results due to the in-
formation sources they manage, as well as the sequential information of 
each signature that is already known, plus all previous parameters. 

As shown in Behera et al. (2017), Impedovo and Pirlo (2008), Lee 
et al. (1996), some signature authentication systems are not resistant to 
imposter attacks because they do not contemplate these kind of errors. 
For these reasons, authentication systems should also verify if a signa-
ture is genuine or not, to ensure their robustness and efficiency against 
any kind of attack. When focusing in verification signature performance, 
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online systems are more reliable than offline ones as it is easier to 
remember and reproduce the shape of a signature than its dynamic 
features (Guru & Prakash, 2009). 

Offline and online systems usually use different kinds of features to 
analyze the signature (Alonso-Fernandez et al., 2009; Ferrer et al., 
2005). For example, offline techniques analyze the geometry and the 
texture of the signature, using boundary and geometric features (Alonso- 
Fernandez et al., 2009; Ferrer et al., 2005). 

On the other hand, online techniques study the dynamic features of 
signatures’ strokes, which is the reason why these kinds of systems 
usually perform a comparison of temporal series. This temporal com-
parison can be performed using the Dynamic Time Warping (DTW) 
(Bailador et al., 2011). 

Talking about online techniques and signatures capture, there are 
also several options. On the one hand, there is the option of capturing 2D 
data of the signature using pen-sensitive devices by computing the 
pressure, velocity, acceleration, etc. On the other hand, 3D representa-
tions of the signature have already come to reality, performing better 
results. The 3D representations can be developed by using different 
sensors, as accelerometers (Bailador et al., 2011), Microsoft Kinect (Qu, 
2015), Leap Motion Sensor (Behera et al., 2017), etc. 

1.1. Related work 

Previous works, to the authors’ knowledge, are shown in this section 
to present the state of the art of online signature verification and the use 
of several sensors to capture in-air online data for biometry purposes. 

According to the purposes of the works, they could be grouped into 
two main areas, as follows:  

• Biometrics applied to signature verification  
• Biometrics applied to other fields 

Signature verification systems mainly use online data. Some of these 
works analyze in-air information to characterize the signatures using 
different sensors. On the other hand, online techniques and in-air in-
formation is also applied to other fields, such as: medicine, music, vid-
eogames, etc. (Bibi et al., 2020). 

Talking about feature extraction in online systems, it can be based on 
parameters or function methods (Okawa, 2020). While first ones use 
global information such as duration, second ones analyze local proper-
ties as trajectory and pressure. Generally, function-based systems pro-
vide better verification performance (Tang et al, 2017). 

1.1.1. In-air information applied to signature verification 
In-air strokes as a biometric technique has been proposed in a few 

works. Some examples of these are shown in (Bailador et al., 2011; 
Behera, Dash, Dogra, & Roy, 2018; Behera, Dogra, & Roy, 2018; Farella, 
O’Modhrain, Benini, & Riccó, 2006; Haskell et al., 2006; Liu et al., 2009; 
Okumura et al., 2006). These works propose both the signature and 
other gestures as methods of user identification. 

The work presented in Bailador et al. (2011) is the first work, to the 
authors’ knowledge, in proposing the employment of user’s handwritten 
signature, developed in the air, as a method to verify identity. It pro-
poses the use of an accelerometer to capture the data and DTW as one of 
the possible techniques to compare the temporal series. However, in this 
work a mobile phone is used as capture device. 

In the case of Farella et al. (2006), a system based on in-air gestures 
that are captured by an accelerometer is presented, using KNN as clas-
sifier. Okumura et al. (2006) proposes a similar system to capture the 
data using a mobile phone. However, in this case, a DP-matching algo-
rithm is applied to avoid possible fluctuations. 

In Haskell et al. (2006), also an accelerometer is used. However, 
signature is proposed as the identification gesture. Curvature moments 
and Mahalanobis distance are used to classify the samples. Although 
signature is proposed as an identification gesture, authors detailed 

(Bailador et al., 2011) as the first work to do this since it is the first one, 
to author’s knowledge, to propose an isolated final system to perform 
the identification. 

To show the importance of the gesture, in Liu et al. (2009) authors 
perform a study using uWave, ‘a state-of-the-art recognition system for 
user-created free-space manipulation, or gestures’. The results highlight 
the importance of gesture selection. 

Recently, other works have been developed related to the in-air 
signature, as (Behera et al., 2017), which also proposes the use of the 
handwritten signature, with the difference of the sensor used to capture 
the data. Another example is shown in Behera, Dash et al. (2018), 
Behera, Dogra et al. (2018), where a system based on 3D in-air signature 
is presented as solution for verification and recognition. 

In general, according to Bibi et al. (2020), online systems for signa-
ture verification usually manage contact devices to capture the data. On 
the other hand, this work proposes an approach applying a contactless 
device and the user of the user signature, against works that apply the 
use of general gestures. 

1.1.2. In-air information applied to other fields 
Other works focus on the use of in-air information to develop systems 

to solve other problems. For example, Silva et al. (2013) presents a study 
where the use of Leap Motion as a tool to generate digital music is 
evaluated. On the other hand, there are works related with medicine, as 
the ones shown in Haleem Buttet al. (2017), Lahanas et al. (2017), where 
Leap Motion is used for laparoscopy and Parkinson. 

Gesture recognition is also applied to understand sign language. In 
Mohandes et al. (2014), the sensor is used to understand the Arabic sign 
language. Physical rehabilitation is another field of application for the 
sensor, as shown in Cohen et al. (2018), Postolache et al. (2019). In 
Bachmann et al. (2018), a full and current review is found. Some of the 
more recent studies are shown in Kumar et al. (2017), Placidi et al. 
(2017). 

Considering the strength points of online techniques applied to in-air 
gestures, this work proposes the use of Leap Motion controller to char-
acterize in-air signatures to perform a signature verification system. The 
selection of this sensor is based on its stability during time for this kind 
of data, as studied on Guerra-Segura et al. (2017). The proposal is 
detailed below, and the sensor is shown in Section 2. 

1.2. Proposal 

Motivated by recent studies and applications based on 3D models, 
authors developed this work to evaluate the performance of a com-
mercial sensor to solve the problem of verification of users by their 
signatures. On the other hand, contactless systems are emerging based 
on hygiene and maintenance reasons, which increases the interest of 
studying this sensor. Once the temporal variability of signals for their 
use in this purpose has been studied in Guerra-Segura et al. (2017), 
following step is evaluating the performance of a verification system. 

This paper presents an approach for solving the problem of detecting 
imitated signatures when processing the identification of a user. 
Particularly, the proposed solution uses in-air signatures, which are 
described by aerial strokes drawn with the index finger, captured by the 
Leap Motion sensor. Signature verification systems try to decide if a 
given signature has been done by the user who is accessing to the system, 
while signature recognition systems identify the most probable user for a 
given signature, without evaluating if the signature is genuine or is 
imitated. 

Verification systems need to store users’ models to compare the 
incoming signature. These models are created during an enrolling phase, 
when the user should perform its signature several times to compute the 
intra-user variability (see Fig. 1). 

Fig. 1 shows a block diagram where system’s architecture is 
displayed. 

The work studies and deepens in the innovation of using the third 
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dimension to increase the performance of authentication systems when 
using a contactless device and the user signature, against other works 
that analyze general gestures or signature capture with contact devices. 
The final goal is to develop a novel and robust system to detect falsifi-
cations and to ensure the identity of the user by the performance of its in- 
air signature. 

An in-air signature is represented in 3D in Fig. 2. As it can be 
observed, the 3D representation uses XYZ plane to show the coordinates 
of the air stroke to make easier its visualization. 

The rest of the paper is organized as follows. Authors present the use 
of the sensor and materials in Section 2. Processing stages and algo-
rithms are explained in Section 3, while Section 4 shows the experi-
mental methodology developed in this work. Experiments’ results, 
results discussion and a comparison of methods are presented in Section 
5. Finally, conclusions are drawn in the last section. 

2. Materials: building of the dataset 

In this section, different aspects related with the database are pre-
sented. First, the chosen sensor and some of its characteristics are shown 
together with the protocol designed to capture the in-air signatures. 

On the other hand, the signals that have been captured from the set 
offered by the sensor are detailed. Finally, the characteristics of the 
database are shown. 

2.1. Leap Motion and data acquisition protocol 

Leap Motion is a commercial tracking sensor which operates on the 
infrared spectrum and provides information about different measure-
ments of the hand with a high accuracy. Moreover, its interaction range 
allows its use without moving it from the table, being this sensor a good 

option to develop solutions to interact with a personal computer. 
There are already works that study the sensor for different purposes, 

mainly medicine, as explained in Bachmann et al. (2015), Behera, Dash 
et al. (2018), Behera, Dogra et al. (2018), Chahar et al. (2015), Haleem 
Buttet al. (2017), Kaji and Sugano (2017), Kamaishi and Uda (2016), 
Mohandes et al. (2014), Silva et al. (2013). These related works show 
how this sensor offers a good performance, independently of the field of 
study. It validates its use for this proposal. 

Authors studied the temporal variability of this sensor when char-
acterizing in-air signatures in Guerra-Segura et al. (2017). Results show 
its suitability for characterizing air strokes. Moreover, in Behera et al. 
(2017), this sensor is used for the same purpose. It has also been used for 
biometric authentication using handwriting, as explained in Kamaishi 
and Uda (2016). 

Behera, Dash et al. (2018), Behera, Dogra et al. (2018) shows a 
performance of an online system, which uses Leap Motion for 3D air 
signature recognition and verification. This work focuses on improving 
the processing velocity by optimizing the extracted features and uses a 
database formed by 80 users and 20 signatures for each one. The results 
are higher than the ones in Behera et al. (2017), obtaining a 98% of 
accuracy. Although higher accuracies can be observed in the state of the 
art, the relationship between accuracy and velocity is very optimal. 

To capture the data for this study, an algorithm developed and pre-
sented in Guerra-Segura et al. (2017) is used. The algorithm stores 21 
characteristics for each recorded frame. 

As explained in Guerra-Segura et al. (2017), the capture protocol 
consists of the following 4 steps:  

• Steps 1 and 2. Hand detection and starting position. These steps are 
performed to detect the hand and to initialize the capture of the 
signature. Fig. 3 shows the starting position. 

Fig. 1. System’s architecture.  

Fig. 2. 3D representation of an in-air signature.  
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• Steps 3 and 4. Signature performance and ending position. Once the 
user finishes the signature, he stretches the thumb to stop recording 
the data. Fig. 4 shows the signature performance. 

In general, users needed an average time of 5 min to be able to 
perform their signature. This learning time is mainly due to the need to 
adapt to the 3-dimensional representation. This need for adaptation led 
to 4 users not being able to perform their enrollment, driving to a failure 
to enroll rate (FER) of 3.8% (100 successful users and 4 failures). 

Based on the performance of the first sessions with users, the decision 
to avoid several sessions in different days for the same users was taken. 
This decision was made according to the difficulties shown by some 
users, and the fact that enrollment steps usually consist on 1 session. 
There were 2 sessions per user, but they were performed during the same 
day. 

User’s samples were obtained during the same day but not consec-
utively. Users performed a total of 20 signatures, divided in two groups 
of 10. Between groups, other users performed their respective signa-
tures. With the total of 20 samples per user, an algorithm of Dynamic 
Time Warping was applied to select 10 samples for each user. The se-
lection was based on the distance obtained with this algorithm. The 10 
chosen samples are not the most similar, but the 10 that allow to cover 
the differences due to the inter-user variability. 

2.2. Captured characteristics 

As mentioned above, from all the possible characteristics offered by 
the Leap Motion, 21 are the chosen to characterize the aerial strokes. 
The selection of these 21 characteristics is based on cited references and 
the evaluation of their temporal variation for this purpose. These 21 
measures are shown in Table 1. 

These measures were selected according to the most used features 
and the way these could be emulate with the Leap Motion signals. For 
example, velocity and acceleration of the strokes are measured with 
signals 4–6 and 13–15, according to Table 1. On the other hand, pressure 
can be taken into consideration using the information about the position 
of the index finger and the palm, mainly in the Z axis, using signals 1–3 
and 10–12. Finally, rest of signals are used to describe user behavior 
during the signature stroke – i.e. how to position and rotate the index 
finger and the hand, emulating the features related to angular moments 
and angles used in bibliography-. 

As shown in Table 1, for each group of coordinates it is obtained the Z 
axis since it is supposed to offer a high level of personal information. 
Some works have studied the pressure of the manuscript signature, to 
the information related the Z axis, as done in Plamondon and Srihari 
(2000). With this sensor, information about the Z axis is as easy to obtain 
as information about the X and Y axes. 

Main differences between the manuscript signature and the one ob-
tained with this sensor are based on the on-line techniques. With the 

sensor it is possible to obtain information about the velocity, accelera-
tion, angles, etc. while the signature is being developed. Manuscript 
signature offers less information although it has been more studied. 

According to previous works about the use of different sensors, Z axis 
gives important information about the unconscious movement of the 
hand when signing. This is the main strength of these tools, although it is 
also a source of noise since users are not used to develop a 3-dimensional 
signature. 

As it can be observed in Vamsikrishna et al. (2016), position and 
angles are some of the used characteristics when using Leap Motion to 
characterize the position. In addition to these features, it can be 
observed in Table 1 other features related to velocity, which add in-
formation about the acceleration of the signatures. These 21 features 
were validated by users in Guerra-Segura et al. (2017), where a signa-
ture was performed daily for 3 months to evaluate the time variation of 
the signals for this purpose. 

Fig. 3. Starting position.  

Fig. 4. Signature performance.  

Table 1 
List of the characteristics and the methods to obtain them.  

Measure 
identifier 

Method Data 

1 finger.tipPosition() x coordinate 
2 ycoordinate 
3 zcoordinate 
4 finger.tipVelocity() xcoordinate velocity 
5 ycoordinate velocity 
6 zcoordinate velocity 
7 finger.direction() xcoordinate of the index direction 

vector 
8 ycoordinate of the index direction 

vector 
9 zcoordinate of the index direction 

vector 
10 hand.palmPosition() xcoordinate 
11 ycoordinate 
12 zcoordinate 
13 hand.palmVelocity() xcoordinate velocity 
14 ycoordinate velocity 
15 zcoordinate velocity 
16 Hand.palmNormal() xcoordinate of the hand normal vector 
17 ycoordinate of the hand normal vector 
18 zcoordinate of the hand normal vector 
19 hand.direction().pitch 

() 
Pitch angle of the hand 

20 hand.direction().yaw 
() 

Yaw angle of the hand 

21 hand.direction().roll() Roll angle of the hand  
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2.3. Database characteristics 

A database has been built following the previous sections. Below are 
presented the main characteristics of this database. 

Table 2 shows a resume of the main characteristics of the database. 
To improve time preprocessing for the different experiments, the 

database is divided into different datasets according to the experiments’ 
goals. Differences between subsets are based on the size and the pres-
ence of imitated samples. Their characteristics are presented with the 
corresponding experiment in section 4. 

Related to the 10 forged signatures per user, all the forgeries have 
been developed by the 2 most expert users. Theses 2 users have been 
selected by observing their performance with the sensor and their ability 
to adapt their aerial strokes according to the signatures to be imitated. 
To perform the forged signatures, forgers only observed the 2-dimen-
sional representation of the original signatures. 

3. Methods 

This section explains the used concepts in this proposal, which are 
important to understand the proposal and to address experiments. 

First, the preprocessing steps applied to the captured signatures are 
shown. Then, the features extraction stage is explained, showing the 
different characteristics applied to the signatures. Finally, a brief 
explanation of the applied classifier is shown. 

3.1. Preprocessing 

A first step is the preprocessing stage. The mission is to normalize 
each signature in order to make it independent of position and size; since 
each signature can change its size, be acquired in different coordinates, 
because each user always does different each signature. 

This preprocessing step consists in removing the influence of size and 
position. It is reach applying Eq. (1). 

v’ =
v − min(v)

max(v) − min(v)
*(max(v’) − min(v’) )+min(v’) (1)  

where v is the vector to preprocess. 
This equation transforms the vectors (temporal series for each axis) 

to the specified range, [− 11] in this case. Since the features are online, 
this step consists on normalizing the features with respect to the original 
capture. 

In Fig. 5, 5 samples from the same user are shown in the same plot to 
visualize the performance of the preprocessing step. These signatures 
are represented according to x and y coordinates of the finger.tipPosition 
(). Therefore, it is the projection from 3D (xyz) to 2D (xy) of these 
signatures. 

3.2. Features extraction 

After normalizing the signatures, features extraction is applied. The 
extraction is mainly applied to each of the 21 signals that form each 
signature, according to Table 1. Moreover, each of these 21 signals is 

divided into different numbers of segments in order not to avoid details, 
since characterizing very long temporal series could result in avoiding 
some details, which can be highlighted by dividing the data into seg-
ments (Bailador et al., 2011; Behera et al., 2017; Guerra-Segura et al., 
2017; Wu, Pan, Zhang, Qi, & Li, 2009). In the experiments, as shown in 
next sections, signals are divided into 2, 3, 4–20 or more segments. 

Segments are characterized by statistics from first to fourth order, 
correlation, and entropy. These features define the value of each 
segment, reducing the effect of details but without being a generaliza-
tion. Then, the grade of discrimination of each signature can be shown. 
Very short segments give many details and it gives noise for the analysis 
intra-class. The list of features is the following:  

• Mean: it shows the absolute value generated by the distribution. It is 
a first order statistical.  

• Standard deviation: it is a second order statistical and explains the 
stability of the mean.  

• Correlation: correlation is applied to each pair of possible signals of 
each segment.  

• Shannon entropy: amount of information contained in a random 
variable (Shannon & Weaver, 1949). It is calculated as shown in 
equation (2). 

H(x) = −
∑

Pilog2(xi) (2)   

• Kurtosis: nonlinear measure to evaluate the normality of a distribu-
tion. It is a fourth order statistical and it is a measure of the distri-
bution’s shape. Its information refers to the similarity between the 
distribution’s shape and a Gaussian distribution. The most common 
definition is that the kurtosis of a distribution H is the characteristic 
measured by its standardized fourth central moment (Balanda & 
MacGillivray, 1988). 

To evaluate the kurtosis of different distributions, Eq. (3) is applied: 

k =
H(x − μ)4

σ4 (3)  

where μ is the mean of x, σ is the standard deviation of x, and H(t)
represents the expected value of the quantity t. Note that the kurtosis of 
a normal distribution is 3, which is often used as a standard.  

• Skewness: it is a measure about the asymmetry of a distribution 
related to its mean. It can be positive, negative, or undefined. Its 
value refers to the relation between left and right tails of the distri-
bution (Mardia, 1970). 

Skewness is calculated according to Eq. (4). 

γ1 = E

[(
X − μ

σ

)3
]

=
μ3

σ3 =
E[(X − μ)3

]

(E[(X − μ)2
])

3
2
=

k3

k3/2
2

(4)  

where μ is the mean, σ is the standard deviation, E is the expectation 
operator, μ3 is the third central moment, and kt are the tth cumulants. 

As an example, let us suppose that we want to compute the division 
of the signature into 3 segments. Moreover, for each of the 3 segments, 
we want to use only the signatures related to the 3D finger position, i.e. 
signals with identifiers 1, 2 and 3, according to Table 1. In this case, we 
are evaluating a signature characterized by 3 of the possible signals, and 
we want to divide the signature into 3 segments. We obtain 9 mean 
values, 9 standard deviation values, 9 kurtosis values, etc. since we are 
calculating 3 measures (one per signal), 3 kurtosis values, etc. for each 
segment. Correlation is a special measure because it is applied to each 
possible pair of signals in each segment. In this case, we also obtain 3 
measures for each segment. 

Table 2 
Resume of the database’s characteristics.  

Characteristic Value 

Number of users 100 
Samples for user 10 genuine samples + 10 forgeries 
Gender Masculine 65% 

Feminine 35% 
Age Eldest 64 years old 

Youngest 13 years old 
Average 29 years old 
Typical deviation ±12 years old  
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3.3. Classification 

The studied classifier is the Least Squares Support Vector Machine 
(LS-SVM) (Suykens & Vandewalle, 1999). This classifier is chosen 
against SVM due to its suitability for large experiments when comparing 
both (Wang & Hu, 2005). The LS-SVM has demonstrated to be a good 
election for discriminative features and for a big size of data, and recent 
studies have compared the performance of generic SMV against other 
classifiers (Upadhyay et al., 2020; Parmar et al., 2020). 

It is also used on transfer learning approaches, and recent studies 
have implemented theses kind of approaches using SVM (Wang et al., 
2020; De Cooman et al., 2020; Bibi et al., 2020). Moreover, these kind of 
classifiers (SVM and LS-SVM) have been used successfully in many 
pattern recognition problems, as handwriting recognition (Adankon & 
Cheriet, 2009). 

As it can be observed, there are many reasons to choose SVM or LS- 
SVM as the classifier for this kind of problems. Moreover, in this work, 
result of the implemented systems confirm the performed election. 

This classifier works with a minimization model based on Lagrange 
functions and polynomials. It is a supervised learning algorithm and was 
developed as a solid and robust tool for regression and classification in 
complex domains (Cortes & Vapnik, 1995). 

SVM are based on the concept of decision planes, which are defined 
by the decision limits (Burges, 1998). A decision plane divides a set of 
objects formed of samples from different classes. A linear SVM classifier 
divides the set using a straight line. However, when it is not possible to 
perform a lineal separation, data must be mapped to a higher order 
dimension space where it is possible. This mapping is developed by a 
function called kernel, and the new separation lines are known as 
hyperplanes. 

LS-SVM look for a hyperplane maximizing the separation between 
the hyperplane and the samples of both classes using lineal equations, 
while traditional SVM use the structural risk minimization principle. 
Moreover, while in SVM very support values are 0, in LS-SVM the sup-
port values are proportional to the errors. 

About the kernel function, in this work two kernels are studied, the 
polynomial and the Radial Based Function (RBF). These kernel func-
tions, which are selected according to author’s experience in this kind of 
problems, are shown below. 

3.3.1. Polynomial kernel 
This kernel uses a no homogenous polynomic function of grade d, as 

shown in equation (5). 

K(x, y) =

(
∑n

i=1
xiyi + c

)d

(5)  

where x and y are vectors, d is the grade of the function and c is an 
adjustment parameter to modify the influence of higher-order and 
lower-order terms of the polynomial. 

3.3.2. RBF kernel 
It uses an equation which values depend on the distance to a point 

defined as central reference, as detailed in Eq. (6). 

K(x, y) = exp

(

−
||x − y||2

2σ

)

(6)  

where x and y are the input vectors and σ is a free parameter of 
adjustment. 

4. Experimental methodology 

To evaluate the performance of the proposed solution, values of False 
Rejection Rate (FRR), False Acceptance Rate (FAR), and Equal Error 
Rate (EER) are computed, therefore, a verification stage is applied. FRR 
refers to errors of rejecting a genuine user, while FAR are related with 
errors of accepting an impostor. The decision threshold, where the best 
trade-off between FAR and FRR is obtained, is the EER. To compute FRR, 
genuine samples for the users must be divided into training and testing 
samples. On the other hand, to obtain the FAR, genuine samples are used 
to train, and both the imitated samples and the signatures of the rest of 
users are used to test, depending on what kind of attack is being 
simulated. 

The methodology is based on a typical classification architecture, 
where the database is separated into training and testing sets. Moreover, 
experiments use different subsets of the full database to optimize the 
processing time according to each objective, as explained below. The 
experiments are based on the use of a LS-SVM classifier and 2 options of 
kernels. 

The validation of the classification experiments is driven by using a 
hold-out cross validation, because of the reduced number of samples. 
Different approaches were applied, from 50% hold-out cross validation 
(5 samples to train and 5 to test) to 10% hold-out cross validation (1 

Fig. 5. Representation of 5 signatures from the same user overlapped in the same plot.  
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sample to train and 9 to test). 
A total of 5 experiments are set up to compute the performance of the 

classifier in the studied scenario. The design of these experiments tries to 
develop a final system, adjusting the classifier, improving the feature 
selection stage, etc. Each experiment is based on the results of the pre-
vious one, and its results are tested to evaluate its performance and the 
need to adjust the settings obtained with the previous ones. 

The experiments are briefly explained below. The used dataset for 
each experiment is shown. 

1. Classifier adjustment: this first experiment focuses on obtaining 
the best values to adjust the different parameters of the SVM and the 
kernels (gam and sig2) to maximize the success using information 
related to the different planes (XY, XZ, YZ and XYZ). For the classifica-
tion, features as mean, standard deviation and correlation of different 
signals divided in several segments are used. In this first experiment, a 
total of 812 complete simulations are driven, reason why a subset of the 
database is used because of the processing time of simulations. 

Database subset: 39 users and only genuine samples. 
2. Statistical features: the second experiment has the objective of 

evaluating the performance of additional statistical features when 
characterizing the in-air signatures. The additional features are Shannon 
entropy, skewness, and kurtosis. This experiment uses the dataset that 
give best results in experiment 1, when using 5 and 1 training samples. 
Results of adding all possible combinations of the new features are 
evaluated to see if these features improve the performance. In this case, a 
total of 126 complete simulations are performed. 

Database subset: 39 users and only genuine samples. 
3. Influence of the third dimension: after experiment 2, datasets 

with best results keep divided according to the planes involved in the 
feature extraction. As it can be observed, datasets could be formed by XY 
information or by XYZ information. At this point, it is possible to develop 
comparisons between dimensionality and number of training samples. 

Database subset: 39 users and only genuine samples. 
4. Features fusion: once results for different groups of features are 

obtained, this experiment tries to find a combination of these groups to 
improve the system performance. This experiment looks for evaluating 
the performance of applying features fusion to the dataset with best 
results. Obtained results are computed to conclude if fusion of feature 
improves the performance. 

Database subset: 39 users and only genuine samples. 
5. System performance: as previous experiments are designed to 

use a smaller database because of time processing, this experiment 
evaluates the results when increasing the size of the database, applying 
the configuration obtained in previous experiments. 100 complete 
simulations are driven to compute the mean EER for 1 and 5 training 
samples. 

Database subset: 100 users and only genuine samples. 
Final system performance: once the system has been validated with 

the previous subsets, final simulations are driven to compute the per-
formance when falsifications are added to the database. For this final 
experiment, a total of 100 complete simulations for each number of 
training samples are performed. 

Database subset: 100 users with genuine and imitated samples. 
As it can be extracted from explanations, experiments 1–5 focus on 

designing and adjusting the system, while final simulations are devel-
oped to test the final performance. These finals simulations use full 
database and evaluate the system against real falsifications, taking into 
consideration both types of attacks, zero effort and active impostors. 

As explained above, the experiments are set to evaluate each of the 
followed steps in the design and adjustment of the classification system. 
With each experiment, the influence of the different elements of the 
system, as shown in Fig. 1, can be evaluated. Following all the experi-
ments drive authors to evaluate the final system being sure about the 
performance of each single element of the complete system. 

5. Results and discussion 

In this section, the results obtained for the 5 experiments and for the 
final system simulations are shown. Results of experiments 1–5 are 
shown briefly, since the main results are the ones obtained with the last 
tests. 

As explained before, each signal is divided into segments, from 2 to 
30 for these experiments. According to this, the nomenclature used for 
these experiments follows the next example: using only the signals which 
refer to X and Y position of the index finger, each of them is divided into 5 
segments. This dataset is called ‘5 segments subgroup of X and Y index finger 
position’. 

5.1. Experiment 1: adjustment of classifier 

As it can be observed, there are many combinations for 21 signals 
and their division into segments. Therefore, results would include only 
the best performances. For this experiment signals are grouped as shown 
below:  

a) Signals related to the XY plane.  
b) Signals related to the XZ plane.  
c) Signals related to the YZ plane.  
d) Signals related to the XYZ plane. 

In these experiments, first simulations are done with 5 training 
samples. These initial simulations are developed to detect the best 
groups for fast simulations and to adjust the classifier to obtain the 
highest possible EER values. 

In total, 812 simulations are driven: 4 groups, 29 possible segments 
(dividing the signals from 2 to 30) and 7 subgroups per each group 
(according to Table 1). 

Best results are obtained for the groups which are formed by all the 
possible signals. It means, for all signals related to group a), all signals 
related to group b), etc. Best results are shown in Table 3, according to 
Equal Error Rate (EER). Results are obtained using a standard poly-
nomial kernel. 

As it can be observed, the best result is obtained for dataset ‘5 seg-
ments subgroup of all signals related to XY plane’, with an EER value of 
0.5769%. This dataset is used to adjust the classifier to improve the 
results. 

Once the best dataset is selected for a standard classifier configura-
tion, the next simulations of this experiments try to adjust the classifier 
to improve the obtained EER. 

5.1.1. Polynomial kernel 
After driving different simulations, the optimal adjustment for the 

classifier, using a polynomial kernel, is achieved with the values shown 
in Table 4. The adjustment is driven according to the LS SVM definition 
shown in Brabanter et al. (2011), where for this type of kernel, gam is 
the regularization parameter and sig2 is the squared bandwidth. 

With these parameters, the EER obtained for the selected dataset is 
0.0405%, instead of the previous value of 0.5769%. 

Then, simulations for other datasets with this parameter configura-
tion are driven to check that the improvement is achieved for all the 

Table 3 
Best results obtained for experiment 1.  

Dataset Number of segments EER (%) 

All signals related to XY 5  0.5769. 
All signals related to XY 4  0.6312. 
All signals related to XZ 5  0.9430. 
All signals related to XZ 4  1.0260. 
All signals related to XYZ 2  1.0507. 
All signals related to YZ 3  1.5380. 
All signals related to YZ 4  1.5380.  
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cases and not only for the selected dataset. 
Simulations are driven for training samples from 1 to 5 and dividing 

the signals into different amounts of segments. For 5 training samples, 
best results are obtained with datasets related to XY plane, while using 1 
training sample gives better results for XYZ plane. On the other hand, the 
worst results are obtained for datasets related to YZ plane. 

After these experiments and analyzing the results, authors conclude 
that XZ and YZ planes should be discarded for the following experi-
ments, due to these planes omit information, which is relevant for the 
discrimination, according to the results. 

5.1.2. RBF kernel 
In this case, best results are achieved with the values shown in 

Table 5. According to Brabanter et al. (2011), for this kernel, gam is also 
the regularization parameter, determining the trade-off between the 
training error minimization and smoothness, while sig2 is also related to 
the squared bandwidth. 

These values allow to get an ERR of 0% for the dataset selected to 
perform this first experiment. 

According to results from the previous adjustment, next simulations 
are driven with dataset related to XY and XYZ planes to check that the 
adjustment is not only optimal for the studied dataset. 

For 5 training samples, 0% of EER is obtained for datasets of all 
signals related to XY plane divided into 4, 5, 6, 7 and 8 segments. 
Although 0% of EER is obtained, it is not possible to select this system as 
a final system because it has been tested only for a very specific scenario 
and with a low level of samples, which is the reason why these results are 
only useful to develop more experiments according to it. On the other 
hand, for the dataset of all signals related to XYZ plane divided into 5 
segments, the obtained EER is 0.1350%. 

When evaluating the classifier with 1 training sample, the dataset of 
all signals related to XY plane divided into 6 segments performs an EER 
of 1.7094%, while the datasets of all signals related to XYZ plane divided 
into 4 and 5 segments show an EER of 1.1396%. 

The training with 50% of samples offers enough information for a 
good verification, but when the number of training samples is decreased, 
the extra information from the third coordinate gives a more discrimi-
native value. Therefore, authors conclude after this first experiment that 
when only 1 training sample is applied, 3 dimensions (XYZ plane) are 
more efficient due to the contribution of the third dimension, i.e. the Z 
coordinate. 

5.2. Experiment 2: statistical features 

As explained in section 4, this second experiment focuses on applying 
different statistical features to evaluate their performance. The evalu-
ated features are usually applied in different works (Bachmann et al., 
2015; Bailador et al., 2011; Bernardos, Sánchez, Portillo, Besada, & 
Casar, 2015; Guerra-Segura et al., 2017; Wu et al., 2009). 

This experiment is developed using the 7 datasets which offer the 
best results in the first experiment. Since this selection gives only 
datasets tested with 5 training samples, the 2 best results obtained for 1 

training sample are also selected, given a total of 9 datasets. 
The selected datasets are listed above:  

• All signals related to XY plane divided into 8 segments (Dataset1)  
• All signals related to XYZ plane divided into 12 segments (Dataset2)  
• XYZ coordinates of the index position divided into 7 segments 

(Dataset3)  
• XY coordinates of the index position divided into 11 segments 

(Dataset4)  
• XYZ coordinates of the palm of the hand position divided into 22 

segments (Dataset5)  
• XYZ coordinates of the index velocity divided into 6 segments 

(Dataset6)  
• XY coordinates of the palm of the hand position divided into 22 

segments (Dataset7)  
• All signals related to XYZ plane divided into 7 segments (Dataset8)  
• All signals related to XY plane divided into 3 segments (Dataset9) 

For this second experiment, simulations are driven for 5 and 1 
training samples for each of the listed datasets. For nine datasets, new 
statistical features are added. These new features are Shannon entropy, 
skewness, and kurtosis. For each simulation, results before and after the 
addition of these features are compared to evaluate their performance. 

In Figs. 6 and 7, the comparison developed for 5 and 1 training 
samples can be observed. The X axis refers to the possible combination 
when adding the new features. The values are the rate between the 
previous EER and the one obtained with the addition of the new fea-
tures. The threshold refers to the previous EER, so when a value is over 
it, the addition has produced a worse performance, while the simulation 
has given a better EER when the value is under the threshold. 

For the 18 studied cases, 9 for 5 training samples and 9 for 1 training 
sample, kurtosis gives a better performance in 1 case, while skewness 
improves 3 cases and Shannon entropy offers better results in 7. 

In general, the results are not improved with the addition of these 
features, which are proposed in other works for similar purposes, as 
shown before. Authors conclude that these features are not relevant for 
the experiments related to this scenario. 

5.3. Experiment 3: influence of the third dimension 

The third experiment focuses on evaluating the influence of 
computing the third dimension, i.e. the Z axis. As it can be observed in 
previous experiments, the third dimension is important when training 
with 1 sample, while training with 5 samples does not need this 
dimension to be able to discriminate between users. In this experiment, 
different numbers of training samples are tested to evaluate when the 
third dimension starts to be important for the classification. 

According to experiment 1, YZ and XZ planes are discarded because 
of the low information shown, while XY and XYZ show the best results. 
For these reasons, in this case, the datasets used for comparison are:  

• All signals related to XY plane  
• All signals related to XYZ plane 

The following figures show the comparison of EER related to the 
numbers of segments the datasets are divided into for 5 and 1 training 
sample. Results shown in Fig. 8 are achieved with the polynomial kernel, 
while Fig. 9 shows the results of applying the RBF kernel. 

As it can be concluded from previous figures, for the RBF kernel, 
when training with 5 samples, adding the third dimension provides 
worse results. On the other hand, training with 1 sample offers better 
results when applying the third dimension. 

For the polynomial case, from 3 training samples the results start to 
be better for the datasets which are formed with the third dimension. For 
1 training sample, all the divisions of the datasets show better results for 
the one with the signals related to the three dimensions. 

Table 4 
Polynomial kernel optimal configuration.  

Parameter Value 

gam 300 
sig2 [7;2]  

Table 5 
RBF kernel optimal configuration.  

Parameter Value 

gam 400 
sig2 150  

E. Guerra-Segura et al.                                                                                                                                                                                                                        



Expert Systems With Applications 165 (2021) 113797

9

In the first experiment, it is possible to perceive the positive influence 
of the third dimension when training with a low number of samples. As 
explained above, the simulations driven in this third experiment allow 
authors to confirm the previous conclusion, since these simulations are 
designed to prove the influence of the third dimension. 

From this experiment, authors conclude that the third dimension is 
important for low numbers of training samples, as it could be also 
concluded in first experiment. 

5.4. Experiment 4: features fusion 

Focusing on designing a system with best rate results/cost, i.e. the 
one with better EER for the minimum number of training samples, this 
experiment is driven with the dataset of all 3D signals. The experiment is 
tested for both kernels, the polynomial, and the RBF. 

The objective of this experiment is to obtain a fusion of datasets 
which improves the EER. The tested fusions are done for the different 

divisions of the dataset formed with all the signals. 
Although an EER of 0% is obtained in experiment 1, the used 

configuration it is not valid at all, since the simulations are driven with a 
low number of users. This experiment also tries to find different com-
binations of features which could be used when increasing the number 
of users in the system. 

After having driven several experiments, the best result is achieved 
when merging the datasets ‘all signals divided into 5 segments’ and ‘all 
signals divided into 6 segments. For this combination, the EER is 
decreased from 1,1674% to 1,1096% for the polynomial kernel. 

For the RBF kernel, the merge of ‘all signals divided into 3 segments’ 
and ‘all signals divided into 4 segments’ gives an improvement which 
reduces the EER from 1,1396% to 0,7890%. 

From this experiment, authors conclude that dataset fusions offer an 
interesting improvement for the designed classifier, as shown before, 
considering the future increase of users. From here, these are the main 
datasets used for next experiments. 

Fig. 6. Comparison developed for 5 training samples.  

Fig. 7. Comparison developed for 1 training sample.  
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5.5. Experiment 5: system performance 

In this experiment, different simulations are driven with the datasets 
selected with the previous one. As mentioned above, it is used the total 
database formed by 100 users. 

The simulations are performed with variations from 1 to 5 training 
samples. For each dataset combination, number of training samples, and 
kernel, 100 simulations are driven to compute the mean EER. Each of 
these simulations select the training samples randomly. 

In Table 6, the achieved results are shown. 
In this case, to evaluate the fusion performance, the same simulation 

is driven for the configurations which offered best results for individual 
datasets with 5 and 1 training samples, using both the polynomial and 

the RBF kernels. 
In Table 7, comparison of the performances for both kernels are 

shown. 
These comparisons show that fusion also offers better results for the 

full database, for both kernels. Moreover, it can be observed that for 100 
users, the third dimension adds a lot of information to the 2D, giving 
better performances. 

These results allow to conclude that feature selection and fusion, 
developed for previous experiments, offer a good performance for a 
higher database. 

Fig. 8. Comparison developed for polynomial kernel when training with 5 and 1 samples, respectively. Red lines refer to the dataset with all XYZ signals and blues 
line refer to the dataset with all XY signals. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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5.6. Final system performance 

These final simulations evaluate the system for the full database with 
falsifications. 

Fig. 10 shows the ROC curve obtained for the final system when 
training with 5 samples and performing 100 simulations. 

FAR1 refers to False Acceptance Rate when applying random falsi-
fication, i.e. possible errors because of similarities of different users’ 
signatures, resulting an EER of 0.25%. FAR2 is the rate when computing 
only spoofing attacks developed by the expert users, obtaining an EER of 
1.5%. FAR and FRR build the ROC curve for the system when evaluating 
both kind of attacks. As it can be observed, the global system EER is 
1.2%. 

Fig. 9. Comparison developed for RBF kernel when training with 5 and 1 samples, respectively. Red lines refer to the dataset with all XYZ signals and blues line refer 
to the dataset with all XY signals. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 6 
Results obtained with the database of 100 users.  

Training Samples Kernel EER (%) Standard deviation 

5 RBF 0,0751 0,0897 
Polynomial 0,1207 0,0991 

4 RBF 0,1318 0,1037 
Polynomial 0,1716 0,1052 

3 RBF 0,2218 0,0996 
Polynomial 0,2897 0,1151 

2 RBF 0,4209 0,1274 
Polynomial 0,5187 0,1660 

1 RBF 1,1017 0,2290 
Polynomial 1,4185 0,3280  
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5.7. Comparison of methods 

This section shows a comparison of different works referred to 
signature verification to evaluate the performance of in-air signature 
analyzed with online techniques. 

Table 8 shows a comparison between references of the state-of-the- 

art and the proposed approach. It shows different reported EER and 
the composition of the used databases. There are not public datasets for 
these applications, and therefore, an exhaustive comparison is not 
possible. Table 8 can help to understand the behavior of each reference 
according to the method, the size of dataset and its EER. Therefore, the 
proposed method shows a very good answer for the applied 
methodology. 

As it can be observed in Table 8, considering the EER, this approach 
offers the best result. Referring to the size of the database, Guru and 
Prakash (2009) performs one of the best relation between it and the 
obtained EER. However, as it is highlighted, the reported EER in Guru 
and Prakash (2009) is obtained by applying an individual threshold for 
each user. 

On the other hand, Okawa (2020) present a low EER system. How-
ever, result related to database SVC2004 Task2 are achieved using 10 
training sample. Results obtained MCYT-100 are the most like this work, 
since the database are formed by the same number of user and both 
systems use the same number of training samples. The main difference 
between these works lies on the capture device. While Okawa (2020) use 
a contact device, this study works with a contactless device. 

Therefore, it could be concluded that the presented approach is a 
good and robust option to avoid falsifications with a common threshold, 
what makes easier to register new users since the computation of its 
threshold is not necessary. 

In general, it can be concluded that online techniques and third 

Table 7 
Results for the RBF and polynomial kernel.   

RBF kernel Polynomial kernel 

Training Samples Dataset EER (%) Dataset EER (%) 

5 XYZ_4 segments  0.4729. XYZ_5 segments  0.4920. 
XYZ_5 segments  0.4746. XYZ_7 segments  0.6944. 
Fusion  0.0751. Fusion  0.1207. 

4 XYZ_4 segments  0.5957. XYZ_5 segments  0.6371. 
XYZ_5 segments  0.5987. XYZ_7 segments  0.8072. 
Fusion  0.1318. Fusion  0.1716. 

3 XYZ_4 segments  0.7799. XYZ_5 segments  0.8429. 
XYZ_5 segments  0.8323. XYZ_7 segments  1.0768. 
Fusion  0.2218. Fusion  0.2897. 

2 XYZ_4 segments  1.1836. XYZ_5 segments  1.3355. 
XYZ_5 segments  1.3103. XYZ_7 segments  1.5764. 
Fusion  0.4209. Fusion  0.5187. 

1 XYZ_4 segments  2.6406. XYZ_5 segments  3.0782. 
XYZ_5 segments  2.3869. XYZ_7 segments  3.4179. 
Fusion  1.1017. Fusion  1.4185.  

Fig. 10. ROC curve obtained for the final system.  

Table 8 
Comparison vs. the state-of-the-art.  

Work Database properties Classifier EER (%) 

Behera et al. (2017) a) 80 users * 20 samples = 1600 original samplesb) 10 impostors * 10 samples of 4 
registered user signatures = 400 forged signatures 

HMM 10 
DTW + K-NN 4.5 

Guru and Prakash (2009) a) 100 users * 25 samples = 2500 genuine samplesb) 100 users * 99 samples = 9900 
imposters 

Test signature 1.67(1) 

Guru and Prakash (2009) a) 330 users * 25 samples = 8250 genuine samplesb) 330 users * 229 samples = 75570 
imposters 

Test signature 1.65(1) 

Bailador et al. (2011) a) 96 users * 8 samples = 768 genuine signatures Bayes 1.81 ± 0.33 
Bailador et al. (2011) a) 96 users * 8 samples = 768 genuine signaturesb) 7 impostors * 96 users * 7 samples =

4074 forged signatures 
DTW 4.58 ± 0.51 

Okumura et al. (2006) a) 22 users * 5 samples = 110 genuine gestures DP-matching 5.0 
Behera, Dash et al. (2018), Behera, Dogra 

et al. (2018) 
a) 80 users * 20 samples = 1600 original samplesb) 400 forged signatures DTW + K-NN 8 

Okawa (2020) a) SVC2004 Task1b) SVC2004 
Task2 

40 users * (20 genuine + 20 skilled forgeries) = 1600 
samples 

weighted multiple 
DTW 

4.26(2)1.80(2) 

c) MCYT-100: 100 users * (25 genuine + 25 skilled forgeries) = 5000 samples 1.28(3) 

Singh and Viriri (2020) SigComp2009: 12 genuine signers * 5 samples + 31 skilled forgeries * 5 samples * signer 
= 1920 samples 

CNN + RNN 5.00 

This proposal a) 100 users * 10 samples = 1000 original samplesb) 2 expert users * 100 users * 5 
samples = 1000 forged signatures 

LS-SVM 1.20 

(1) With writer dependent threshold; (2) Using 10 training samples; (3) Using 5 training samples 
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dimension information increases the performance of verification sys-
tems when falsification are considered, as shown in the different 
experiments. 

6. Conclusion 

A novel and robust approach has been developed for in-air signature 
verification, using online techniques and 3-dimensional information 
with a contactless device, obtaining an EER of 0,0751% and 1,1017% for 
5 and 1 training samples, respectively, and an EER of 1,2% for 5 training 
samples when performing spoofing attacks. 

The main conclusion is the importance of the third dimension, con-
firming results of previous works. In addition, with the results of this 
work, it is remarked the importance of the third dimension specially 
when using a low number of training samples. Moreover, the fact that 
the fusion of datasets formed by traditional statistical features show 
better results, is a secondary conclusion extracted in this work. 

As shown in section 5, the third dimension has more importance 
when decreasing the number of training samples and increasing the 
number of users, since it offers behavioral information for user identi-
fication. In Figs. 8 and 9, best results are obtained by using the third 
dimension when decreasing the number of training samples. 

Although conclusions could be compared with previous works, re-
sults and evaluation conditions give more importance to the current 
paper. Database is formed by 100 and skilled forgeries, while most of the 
rest use smaller database and only analyze random forgeries. Other 
difference is the number of training samples and the device used for 
capturing the data. For author’s knowledge, there is no work with 
similar results using a contactless device and computing skilled 
forgeries. 

Authors plan to evaluate offline techniques for data captured with 
the same sensor, to evaluate and combine the actual performance of 3- 
dimensional information with offline techniques. Also, different classi-
fiers and features should also be studied in order to increase the global 
performance of the system. 
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