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Abstract : A Two-species, one-dimensional, reaction-diffusion system with a catalyst is considered. 
The catalytic action enhances the diffusion coeficients of the reactants and the catalyst itself is subject 

, to a reaction-diffusion kinetics (with decaying reaction part) which is fast compared with that of the 
other two species. Global existence is analyzed and is applied to the particular case of a Schnackenberg 
kinetics. 

1. Problem setting and first approximations 
Many processes involve complex interactions of severa! species (chemical, biologi- 

cal, etc.) In some instantes some of them are ctalysts, enhancing reactions between 
the other species and following a kinetic depending on its own conceiitration. Here 
we concentrate on the study of a three-species model, where one catalyzes the inter- 
action between the other two. A dimensionless model for such a problem can be written 
down giving the following reaction-diffusion system [Murray, 19881 

plus appropriate supplementary conditions. 
In many interesting cases the spatial extent is one-dimensional, so the diffdsion 

a 24 
terms become x(~,-a;). This will be thc frnmework of oiir study. 
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One the other hand, the catalytic action usually acts by enhancing diffusion of the 
reactants, whereas the catalyst has a constant diffusion rate. Some loss of catalyst must 
be accounted for (poisoning or similar problems), and the above system becomes 

where D, and D, depend on the concentration X3. Tha spatio-temporal domain of 
definition is [O, l ]  x [O, 00) and the supplementary conditions are zero-flux conditions 
at both ends of [O,]] for the species X, and X,, while we impose a zero-flux condition 
on X3 at x = O a'nd' a constant value at x = 1, ¡.e. X,(1, t )  = c. These conditions are natural 
if the hypothesis is assumed that there is some externa1 supply of the catalyst to 
maintain it constant at x = l. 

A plausible hypothesis is that concentration X, must attain quickly a certain level 
for the reaction between species 1 and 2 to take place. Therefore, equation (6) reQresents 
a fast evolution as compared with (4)-(5) and (6) can be replaced by the equilibrium 

ax 
solution of --2=0. A direct solution of the boundary problem for X, yields. 

at 

e ~ h i s  equation suggests that the conflict between decay and diffusion of the catalyst, 
d represented by the quotient k, will play an important role. As a matter of fact, it will 

be shown later that this is a bifurcation parameter. 
Now our'model reads : 

According to the standard Turing theory, systems of this type can develop spatial 
patterns if the diffusion coefficients are different [Turing, 19521. Here we assume a 1 

relationship 4 =mD,, m>o,  and D,(X~) is taken as some affine function of X,, ¡.e. 
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where a ,  p are chosen to keep D,> 040n the interval [O, I]. Summing up, we have 

2. Linear analysis and morphogenesis 
Morphogenesis appears when durable spatial patterns can be observed. These patterns 

are wavelike structures and they can be stationary or else have some wandering features 
[Panfilov and Keener (1995)l. Some analysis have been carried on by the authors 
elsewhere [García Cortí and Pacheco (1993); Garcia Cortí, Fernandez and Pacheco 
(1994)l. Duration implies some type of global existente results, a problem analyzed 
in the next part of this paper. We apply in a straightforward way the general linear 

theory. Let ~ ( 4 ,  x2)(i= 1.2) satis@ conditions for the diffusionless system to have 

a compatible singular point, ¡.e. (x,,, x,,) with X,, > O, X,, > O and let 

be the jacobian at (4,. x,,). We look for patterns as solutions of the global systerns 

bifurcating from (x,,, x,,): 
L L X , = T o + e  I ; ( x ) ,  X2=X2,+e Y , ( x )  

where h are eigenvalues and = ( x )  ( i  = I,2) are the shape coefficients. Now we plug 

these expresions in the system together with that for D, = (x,)  and obtainthe following 
ODE system : 

(4 +~)q"+u&~;'+(a,, - h)I; +a& = O  

m(% +p)q+rnorX;Y;+a,,I; +(a2, - h ) q  = O  

In fact this is a single ODE: for the new variable I; + AI; if A is properly chosen. The 

A first equation puls times the second yields 
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a12 + (a22 - A)$ 
Tiierefore we must choose A = O,,A , a quadratic euation whose roots we al, 

represht as A, and A,. Writing 2, = Y, + A,Y,(j  = 1,2) ,  we have two ODE's for the 
spatial perturbations Z : 

~ ( 4 "  ~ 2 ,  ) . T ( H ~  +12, 1 whose general solutions are Z ( X )  = c e 
1 1 1  + c2,e 

where Hl = 

a2 d j  with p, =(all -A)+- 
m 

The zero-flux conditions at x =  O imply c,,  = c , ~ ,  and the following system appears :- 

Now, Y, and Y, are expressed as : 

e~f' 
y2 = 2 -  

A2 - Al 
( c 1 2 ~ h ( x ~ 2 2  - c1 , c h ( x ~ 2 1  1) 

XI Combining these expressions with e q(x) = X, - X J o ( j  = 1,2), we obtain 

J ; ( o )  = ~ , ( 9 ,  O ) - x , , ,  and the constants c , ,  and c,, are given by 

C11 = 
Y,(O)+AlY,(O). 

7 q 2 =  1;(0)+'4lY,(O) - 
2  2 

Equation (1 1) deserves a more detailed analysis. Its charactreistic equation is 
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a; where --- +P < O .  Therofore Hi =-'*>O, so the real part of the (possibly 
2 M 3 + P  

complex) roots is positive. For complex roots to appear, the relationships 

(a,, -A)++  < O  

must hold, which is equivalent to % being a pure imaginary, id ,  H2j = % for some 
real s.. Summing up, the following expression for Y,, Y, are obtained : 

thus showing their oscillatory nature, a distinguished feature for morphogenesis. 

Relationship (13) can be inierpreted as two dispersion relationships F , (x .  h), and (13) 

becomes simply F, (x, h) < O. Figures 3 and 4 show the functions z, = F; (x, A), z, = F, (x, h) 

with the bifukation pararneter set to 1 

3. Existence theory and numerical experiments 
The model equations can be written iii abstract form as 

noundary conditions are zero-flux ones at {O, 1) and an initial condition X(x,O) = X,(x) 
is also given. Tn this language we face ari iíiitial value problem for the operator 
"G+B~,. .. ,l. ry coiiditions" [Holland (1992)l in some Banach space E. This can be 

solved I ' i - . t  Ay through the variation of constants formula 

where e-Gt is the analytic semigroup whose infínitesimal generator is G. The formula 
caii be justified becaiise G is a'sectorial operator and therefore generates an analytic 
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semigroup [Henry, 19811. the emergence of stable spatial patteriis needs the exfstence 
of the solutions for al1 t > O. Geometrically, this 1s equivaient to avolding blow-iip of 
solutions and can be adrieved through an application of Gronwall's lemma, if an 
estimate 

IIY (XHI, < 4 + 1141,) (16) 

holds, where ll& is the norm in the space E, = Dom(C?+ al)' and 8 is some fra~t imal  
power characterizing the Banach space where initial conditions X, ensure existence and 
uniquenes. The norm is defined as 

In practice 11 118 is not computed directly, the norm of the adequate Sobolev space 

Hk[O, 11 such that Es G Hk[O, 11 for S > 5 is employed. Moreover, the Sobolev embed- 
ding theorem guarantees that for n = 1 the elements of E, can be considered as con- 
tinuous functions, and the same holds for solutions of our problem. See, e.g, [arindrod 
(1991)].-The so-called Schnackenberg kinetics is described by the reaction term 

where f E L2(51) whenever A,& E L, ( O ) .  This happens only if X,,X2 E L,,(S~), where 

Q = [O, l] and p = 3. Now we apply the Nirenberg-Gagliardo inequality 

114 ll,,,, 4 R  lbq II4 Il 
if O < 0 ( i , p 2 q 7 p > r ,  and - ~ ( e ( ~ - ~ ) - ( ~ - ~ ) ~ .    he inequality is strict f o r r  = 1.  

P 

hold. This is true if 29 2 n .  Therefote we take the initial condition in H,(Q)(q= l ) ,  

and because n =  l( i .e.Qc IR), there is no restriction on p. ThereforeS, andf, map H, 
on b(51). 10 see taht f is lipschitz we write, forf,: 

IIx(x)-x(y)1l4$(-xi +XX, + I ;  -q2q45 
414 - q (444x* - X ~ K  +4% - ~ : % 1 1 ~ 1  
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An analogous result holds forf, and, summing up, existence of solutions is guaranted. 

Niimerical experiments ha;e been carried on for a = -1, P = 20, h = 1000, c = 15, m = 10, 

w, = 0.1. w, = 0.9y$= 1 (figures 5a and 5b), and 8 = 2  in figures 6a y 6b, showing 

the stable wavelike patterns appearing in the reaction-diffusion equations. 

4. Figures 

Figure 1 Figure 2 

Figure 3 Figure 4 . 
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Figure 6a 

Figure 5b 

Figure 6b 
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