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Abstract
A calorimetric sensor for medical application has been developed to measure surface and localize heat dissipations of human 
body. The instrument evaluates the heat flux transmitted by conduction, through a thermopile, between the human body 
surface and a programmed thermostat at a set temperature. In this work, a model with twelve transfer functions describing 
the operation of the sensor is exposed. This model relates the inputs to outputs of the system. Sensitivities, poles and zeros 
of each of the transfer functions are obtained with two independent experimental measurements and a numerical optimiza-
tion method based on the adjustment of the experimental output curves with the ones calculated by the model. The model 
simulates the operation of the sensor, determines its operating limits and assesses the flow of heat between human skin and 
the thermostat sensor. The proposed method is applicable to any non-differential calorimeter.

Keywords  Direct calorimetry · Heat conduction calorimeters · Medical calorimetry · Non-differential calorimetry

Introduction

Modelling a calorimeter is to establish mathematical rela-
tionships between the variables involved in the energy pro-
cess under study and the variables measured and controlled 
by the instrument [1–4]. These mathematical relationships 
allow accurately determining the power and/or the heat 
energy developed in this process and also to study the related 
magnitudes, such as the heat capacity of the sample under 
study. The modelling also allows to determine the operating 

limits of the instrument and to study the effect of the actions 
that make it possible to start the process under study [5–7]. 
In addition, depending on the model chosen, the modelling 
helps relating the static and the dynamic operating of the 
calorimeter with its own design. In this work, a model of 
the operation of a calorimetric sensor specially designed to 
measure the heat power dissipated by a surface and localized 
area of the human body is exposed.

This sensor is non-differential, and the measured heat 
power is transferred by conduction from the surface of the 
human body to a thermostat located inside the calorimetric 
sensor. Therefore, we can include this instrument within 
the group of non-differential calorimeters [8]. Besides, this 
instrument is outside the standards of calorimetry [9, 10] as 
the studied process is not within the calorimeter and conse-
quently is not isolated from external disturbances.

The information obtained with this sensor can comple-
ment other studies of human surface temperature measured 
by thermography [11, 12]. In addition, this calorimetric sen-
sor can be used to study several pathologies that can cur-
rently be monitored with thermography [13–20].

The first prototype constructed of this calorimetric sensor 
had a detection surface of 6 × 6 cm2 [21–24]. The second 
built sensor is similar but smaller in size, with a detection 
surface of 2 × 2 cm2 [25–27]. The advantages of the sec-
ond prototype over the first one are: (1) easier handling for 
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application to different parts of the human body, (2) greater 
sensitivity and (3) faster dynamic response. This work 
focuses on the second sensor of which two prototypes have 
been constructed allowing cross-measurements [28]. The 
development of this work begins with a description of the 
experimental system and the measured and controlled varia-
bles. Next, the model and identification results are presented. 
Finally, several simulations of the calorimeter operations 
are shown. From these simulations, it is possible to obtain 
useful information for the design of experiments, such as 
an estimation of the thermal working conditions in terms 
of thermostat temperatures and measurable powers for each 
room temperature.

Experimental system and measurement 
method

The sensor has a measurement area of 2 × 2 cm2. Figure 1 
presents a scheme of the sensor’s parts and its application 
on the skin. A measurement thermopile (part two in Fig. 1) 
provides the calorimetric signal, related to the heat flux 
between the measurement plate (part one in Fig. 1) and the 
thermostat (part three in Fig. 1). This heat flux is the one 
that pass across the thermopile, indicated by the red arrows 
in Fig. 1. Thermal insulation (part seven in Fig. 1) reduces 
oscillations caused by the environment. The thermostat can 
control the temperature with a resolution of 5 mK. The ther-
mostat’s temperature controller is a proportional integrative 
derivative controller (PID) [29–32].

In order to perform calibrations and ensure a good base-
line, a calibration base (Fig. 2) is necessary. For the sensor 
operation, it is also required a data acquisition system and 
one power supply for each sensor. The two sensors available 
operate with a sampling period of 1 s. All these elements are 
described on detail in previous works [25, 26].

Calibration measurements are all made with the sensor 
located on its calibration base. The measurements with the 
sensor consist of its application on the human body sur-
face. Before and after the sensor’s application, the device 
is placed on the calibration base to ensure a good baseline. 
Usually, the measurements take 15 min: 5 min in calibra-
tion base (initial baseline), 5 min in human body and 5 min 
in calibration base (final baseline) [28].

Operating model and identification

The model considered has four inputs and three outputs. 
The two first inputs are the power generated by the human 
body that passes across the sensor, u1, and the power dis-
sipated in the thermostat, u2. When measured on the skin 
of the human body u1 = Wbody, but when the sensor is 
placed on the calibration base, the power u1 is the power 
dissipated in the resistance used to calibrate the sensor. 
The other two inputs are the voltage applied to the cooling 
thermopile, u3 = Vpeltier, and the power dissipated in the 
cooling thermopile, represented by u4 = V2

peltier
 . The opera-

tion of the cooling thermopile is nonlinear. This is experi-
mentally checked for both voltage (0–2 V) and intensity 
(0–0.34 A) values used. For this reason, we consider two 
inputs for the thermopile supply: the voltage that produces 
the cooling effect and the squared voltage that is propor-
tional to the power dissipated by Joule effect. The outputs 
are the following ones: the temperature of the calibration 
base y1, the sensor’s thermostat temperature y2 and the 
calorimetric signal y3 provided by the measuring thermo-
pile. The model, which consists of twelve transfer func-
tions TFij that relate inputs to outputs, allows us to simu-
late the operation of the sensor. In Laplace domain, the 
model is defined by Eq. 1.

Fig. 1   Scheme of the calorimet-
ric sensor and its application on 
the skin. (1) Aluminium plate, 
(2) measurement thermopile by 
Seebeck effect, (3) thermostat 
containing RTD sensor and 
heater resistor, (4) cooling 
thermopile by Peltier effect, (5) 
aluminium heat sink, (6) fan 
and (7) thermal insulation
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Given the signal-to-noise ratio of the experimental 
curves, two poles in each TFij are sufficient to reconstruct 
the output signals. This determines the shape of each TFij, 
which is indicated in Eq. 2.

where Kij is the sensitivity (stationary response to an input 
Heaviside), τ1ij and τ2ij are the time constants (opposite of 
the inverses of the poles) and �∗

ij
 is the opposite to the inverse 

of the zero.
Two measures are designed for identification. The first 

one consists in dissipating 300 mW (u1) in the calibra-
tion base for 300 s. Then, spaced 600 s in time, a power of 
500 mW (u2) on the thermostat is dissipated during 300 s 
(Fig. 2). This measure allows determining the relationship 
between the outputs (y1, y2 and y3) and the inputs (u1 and u2). 
The second measure is to program variations on the voltage 
(u3) of the cooling thermopile by successively applying dif-
ferent voltages: 0.0, 0.4, 0.8, 1.2, 1.6 and 2.0 V for 600 s in 
each voltage (Fig. 3). This second measurement determines 
the relationship between inputs u3 and u4 = u2

3
 and outputs 

(y1, y2 and y3).
The identification process is as follows. We use an itera-

tive process based on Nelder–Mead algorithm [33–35] to 

(1)Yi(s) =

4
∑

j=1

TFij(s) ⋅ Uj(s) i = 1, 3

(2)TFij(s) =

Kij ⋅

(

1 + s ⋅ �∗
ij

)

(

1 + s ⋅ �1ij
)

⋅

(

1 + s ⋅ �2ij
)

determine the sensitivity, poles and zeros of each TFij. This 
algorithm minimizes the mean squared error (Eq. 3) between 
the signals calculated with the model (signalsCal. in Figs. 4, 
5) and the experimental ones (signalsExp. in Figs. 4, 5).

First, the parameters of the two TFs that relate the output 
y1 to the inputs u1 and u2 (TF11 and TF12) are identified. 
According to the RC modelling of the calorimeters [1–4], 
we consider that the time constants of these two TFs are 
the same. Sensitivities and zeros are different for each TF. 
The procedure is the same to determine the parameters of 
the TFs that relate the outputs y2 and y3 to the inputs u1 and 
u2 (TF21, TF22, TF31 and TF32). Table 1 shows the results 
obtained, and Fig. 4 shows the fit between experimental and 
calculated curves.

The same procedure is applied to determine the param-
eters of the TF that relate the outputs y1, y2 and y3 to the 
inputs u3 and u4. Table 2 shows the results obtained, and 
Fig. 5 shows the fit between experimental and calculated 
curves.

The RC modelling of calorimeters by heat conduc-
tion implies the decomposition of the device in as many 
domains as dissipation and detection elements exist. The 
number of domains determines the number of poles. These 
poles are the same for all TFs that relate the inputs to 
outputs. On the other hand, the experimental signal/noise 

(3)� =
1

N

√

√

√

√

N
∑

i=1

(

yexp[i] − ycal[i]
)2

Fig. 2   Calibration measure-
ment 1 with corrected baselines 
(sensor 1). The input powers 
are u1 and u2 that are dissipated 
in the base and thermostat, 
respectively. The outputs are the 
temperatures of the base (y1) 
and the thermostat (y2), and the 
calorimetric signal (y3)
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ratio does not allow the identification of TFs of more than 
two poles. For each output yi, the TFs related to u1 and u2 
(TFi1 and TFi2) have common poles. However, the TFs 
related to u3 and u4 involve the cooling thermopile and, 
therefore, TFi3 and TFi4 have identical poles, but different 
from those of TFi1 and TFi2.

Simulations

Temperature control

The simulations from this model are very useful for check-
ing the proper functioning of the thermostat temperature 

Fig. 3   Calibration measurement 
2 with corrected baselines (sen-
sor 1). The input signals are the 
voltage applied to the cooling 
thermopile (u3) and its squared 
value (u4 = u2

3
 ). The outputs are 

the temperatures of the base (y1) 
and the thermostat (y2) and the 
calorimetric signal (y3)
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Fig. 4   Adjustment of experi-
mental outputs (yexp) and 
calculated (ycal) by the model. 
The input powers are the dis-
sipated powers at the base and 
thermostat, respectively (u1 
and u2). The outputs are the 
temperatures of the base (y1) 
and the thermostat (y2) and the 
calorimetric signal (y3). Meas-
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Fig. 5   Adjustment of experi-
mental outputs (yexp) and 
calculated (ycal) by the model. 
The input signals are the voltage 
applied to the cooling thermo-
pile (u3) and its squared value 
(u4 = u2

3
 ). The outputs are the 

temperatures of the base (y1) 
and the thermostat (y2) and the 
calorimetric signal (y3). Meas-
urement corresponding to Fig. 3 500 1000 1500 2000 2500 3000
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Table 1   TF parameters that 
relate the outputs y1, y2 and y3 to 
the inputs u1 and u2

Inputs: u1 (base joule power), u2 (thermostat joule power)
Outputs: y1 = Tbase/K, y2 = Tthermostat/K, y3 = Ycalorimetric/mV

Outputs yi Ki1 Ki2 τ1i1 = τ1i2/s τ2i1 = τ2i2/s �
∗
i1
/s �

∗
i2

/s Error (Eq. 3)

Sensor 1
 y1 27.47 K W−1 8.33 K W−1 98.0 8.5 61.3 0.0 2.0 mK
 y2 8.18 K W−1 11.46 K W−1 102.9 23.1 15.0 50.5 1.3 mK
 y3 101.86 mV W−1 − 57.07 mV W−1 74.9 11.8 54.7 91.0 14.7 μV

Sensor 2
 y1 36.19 K W−1 7.21 K W−1 108.3 8.5 77.2 1.0 2.0 mK
 y2 8.53 K W−1 9.86 K W−1 105.6 31.8 26.0 55.0 1.1 mK
 y3 121.38 mV W−1 − 43.53 mV W−1 169.3 15.1 147.6 193.3 13.4 μV

Y
i
(s) = K

i1

(1+s⋅�∗
i1
)

(1+s⋅�1i1)⋅(1+s⋅�2i1)
U

1
(s) + K

i2

(1+s⋅�∗
i2
)

(1+s⋅�1i2)⋅(1+s⋅�2i2)
U

2
(s)

Table 2   TF parameters that 
relate the outputs y1, y2 and y3 to 
the inputs u3 and u4

Inputs: u3 = Vpeltier, u4 = V2
peltier

 (Vpeltier: cooling thermopile voltage)
Outputs: y1 = Tbase/K, y2 = Tthermostat/K, y3 = Ycalorimetric/mV

Outputs yi Ki3 Ki4 τ1i3 = τ1i4/s τ2i3 = τ2i4/s �
∗
i3
/s �

∗
i4

/s Error (Eq. 3)

Sensor 1
 y1 − 5.07 K V−1 1.23 K V−2 105.5 33.1 37.9 0.0 0.9 mK
 y2 − 8.18 K V−1 1.67 K V−2 98.9 12.2 57.0 14.0 0.7 mK
 y3 60.71 mV V−1 − 7.10 mV V−2 36.6 7.5 47.0 40.7 7.2 μV

Sensor 2
 y1 − 5.31 K V−1 1.12 K V−2 92.6 32.1 42.3 7.8 0.8 mK
 y2 − 9.48 K V−1 1.65 K V−2 73.6 13.8 48.6 20.6 1.2 mK
 y3 66.22 mV V−1 − 6.83 mV V−2 59.8 5.8 68.6 62.6 5.7 μV

Y
i
(s) = K

i3

(1+s⋅�∗
i3
)

(1+s⋅�1i3)⋅(1+s⋅�2i3)
U

3
(s) + K

i4

(1+s⋅�∗
i4
)

(1+s⋅�1i4)⋅(1+s⋅�2i4)
U

4
(s)
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control and adjusting its parameters. The controller chosen 
is a PID controller (proportional, integrative and deriva-
tive) whose transfer function is given by Eq. 4.

Initially, the parameters kp, ki and kd are determined by 
Ziegler–Nichols tuning rules [29–32]. Then, by means of 
successive simulations, these values are adjusted until the 
desired specifications are obtained. Figure 6 shows a scheme 

(4)GPID(s) =

(

kp +
ki

s
+ kds

)

of the control loop in which a limiter of the power dissipated 
in the thermostat (from 0 to 2 W) is included.

It has been verified that the adjusted control parameters 
are maintained as long as the limits of the thermostat power 
and the sampling period (∆t = 1 s) do not change; otherwise, 
these parameters must be readjusted again. An important 
advantage of the identification of the controller by means of 
this model is the saving of time involved. Although a new 
system identification is necessary, the total time required to 
calculate the parameters of the controller is less than the one 
that is necessary experimentally.

PID

control

Tref
+ +

+

–

power
limit

calorimetric
sensor

Troom

Y3

Vpeltieru1

u2 Tthermostat

Fig. 6   Scheme of the thermostat temperature control loop. Tref is the programmed temperature of the thermostat. u2 is the power dissipated in 
the thermostat. u1 is the power to be measured (from the human body). Vpeltier is the voltage of the cooling thermopile. Troom is room temperature
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Fig. 7   Simulation of the operation of the thermostat temperature con-
trol (the control starts at t = 600 s). a Power dissipated in the thermo-
stat. b Calorimetric signal. c Thermostat temperature. a′, b′, c′ repre-

sent a zoom of the final part of curves a, b and c, respectively (from 
t = 700 s to t = 1200 s)



489Modelling and simulation of the operation of a calorimetric sensor for medical application﻿	

1 3

Figure 7 shows the operation of the temperature con-
trol for two consecutive periods of time. In the first period 
(600 s), a constant voltage of 0.8 V is applied to the cool-
ing thermopile for an room temperature of 25 °C and the 
thermostat temperature drops to a value of 19.53 °C. The 
PID controller is then started to reach a thermostat tempera-
ture of 24 °C. This simulation has included a noise of ± 10 
mW in the power, which produces a noise of ± 0.15 mV in 
the calorimetric signal and ± 4 mK in the thermostat tem-
perature. These values are very similar to the experimen-
tal ones. The steady state of the thermostat temperature is 
reached at 150 s. However, the calorimetric signal reaches 
the stationary at 250 s. This implies that 300 s are enough to 
reach steady state. The values of the parameters used in the 
PID controller (Eq. 4) are the following: kp = 0.96 W K−1; 
ki = 0.32 W K−1 s−1; kd = 0.72 W K−1 s.

Operation range

The controller is able to keep the thermostat temperature 
constant independent of the voltage applied to the cooling 
thermopile. However, it is necessary to correctly adjust this 
value to prevent the sensor saturation. According to the 
proposed modelling, the thermostat temperature is given by 
Eq. 5.

In steady state and for sensor 1, Eq. 5 has the following 
form:

Troom being the room temperature, Wbody is the power that 
passes through the sensor that comes from the human body 

(5)TThermostat =
Troom

s
+ Y2(s) =

Troom

s
+

4
∑

j=1

TF2j(s) ⋅ Uj(s)

(6)

TThermostat =
Troom

s

+ 8.18Wbody + 11.46WThermostat

− 8.18Vpeltier + 1.67V2
peltier
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Fig. 8   Simulation of the operation of the thermostat temperature con-
trol (curve c) when a power of 300 mW for 300 s crosses the sensor 
(curve blue in a), for cases of a voltage in the cooling thermopile of 

0.2  V and 0.6  V (curve d). Power dissipated in the thermostat (red 
curve in a). Calorimetric signal, (curve b)
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or the calibration base and Vpeltier the voltage applied to the 
cooling thermopile. Equations 5 and 6 allow to determine 
the voltage to be applied to the cooling thermopile to be able 
to correctly program the thermostat temperature taking into 
account the maximum value of WThermostat (2 W) and the 
value of Wbody.

As an example, Fig. 8 shows the simulation of the opera-
tion of the sensor for a room temperature of Troom = 25 °C in 
two different situations.

•	 In the first case, the voltage in the cooling thermopile is 
0.2 V. Consequently, when a power of 300 mW passes 
through the sensor (blue curve of Fig. 8a), the thermostat 
temperature control is lost.

•	 In the second case, simulated below, when the cooling 
thermopile voltage is increased to 0.6 V, the thermostat 
temperature control keeps the programmed 24 °C value.

Table 3 shows the recommended voltage values to be 
applied to the cooling thermopile according to the thermo-
stat temperature. The power dissipated in the thermostat is 
also indicated depending on the temperature of the ther-
mostat. In the calculation, it has been considered that the 
Wbody power varies linearly from 360 mW for a thermostat 
temperature of 24 °C to 10 mW for a thermostat temperature 
of 36 °C. This hypothesis is based on the order of magnitude 
of the experimental measurements obtained with this sensor, 
in which it is verified that the surface heat flux of the human 
body depends directly on the temperature of the thermostat. 
The higher the temperature of the thermostat, the lower the 
heat flow between the surface of the human body and the 
thermostat [28].

These simulations manifest the importance of the cor-
rect programming of the cooling voltage. These relation-
ships (Eqs. 5, 6) allow the sensor to operate in any reason-
able environment with room temperatures between 18 and 
28 °C. This is of great importance, since it facilitates its use 
in installations where the surrounding temperature cannot 
be controlled.

Table 3   Power dissipated in the thermostat as a function of the ther-
mostat temperature (Tthermostat), the room temperature (Troom) and the 
voltage applied to the cooling thermopile (Vpeltier)

Troom/°C Vpeltier/V Thermostat temperature

24 °C 28 °C 32 °C 36 °C

18 0.0 0.267 W 0.699 W 1.131 W 1.564 W
20 0.4 0.354 W 0.787 W 1.219 W 1.651 W
22 0.8 0.395 W 0.828 W 1.260 W 1.692 W
24 1.2 0.390 W 0.822 W 1.254 W 1.687 W
26 1.6 0.338 W 0.770 W 1.202 W 1.635 W
28 2.0 0.239 W 0.671 W 1.103 W 1.536 W

Fig. 9   Simulation of sensor 
operation. a Power dissipated 
in the thermostat. b Thermostat 
temperature. c Calorimetric 
signal. d Simulated power (blue 
curve) and power calculated 
with Eq. 7 (red curve) 500 1000 1500 2000
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Estimation of heat flow dissipated by the human 
body

The main objective of this calorimetric sensor is to deter-
mine the human heat flux when applied to the skin of the 
human body. Two dissipations in the human body are 
simulated (Fig. 9): the first one with Wbody = 150 mW for 
a constant thermostat temperature of 28 °C. (Troom = 24 °C, 
Vpeltier = 0.8  V). The second dissipation corresponds to 
a linear variation of the thermostat temperature, where 
the dissipation is Wbody = 150 mW for Tthermostat = 28 °C 
and Wbody = 50 mW for Tthermostat = 33 °C (Troom = 24 °C, 
Vpeltier = 0.8 V). Being the voltage applied to the cooling 
thermopile constant throughout the whole measurement 
(which is usual and recommended), the power is calculated 
with Eq. 7.

Being y3(t), the calorimetric signal and u2(t) the power 
dissipated by the thermostat. Table 1 previously shown indi-
cates the values of the TF parameters that relate y3 to the 
powers u1 and u2 (K31, K32, τ131, 231, �∗31 , �

∗
32

).
Figure 9 shows the curves corresponding to these two 

simulations. The good adjustment of the deconvolution 
obtained with Eq. 7 (red curve in Fig. 9d) with the simu-
lation (blue curve in Fig. 9d) can be observed. With this 
simulation, we check the ability of the model to simulate 
measurements on the surface of the human body with differ-
ent temperatures of the thermostat, for simple measurements 
(with the thermostat at constant temperature) and complex 
ones (with a programmed variation of the thermostat, in this 
case linear variation).

Conclusions

A method of calibration for the calorimetric sensor is pro-
posed, consisting of the identification of twelve transfer 
functions that describe the operation of the sensor and that 
relate the inputs to the outputs of the system. With two 
independent experimental measurements and a numerical 
method of optimization, based on the adjustment of the 
experimental output curves with those calculated by the 
model, the sensitivities, poles and zeros of each of the trans-
fer functions are obtained.

While the model is still under development and it presents 
some limitations, it is currently of interest for the following 
applications:

(7)

U1cal(s) =
Y3(s) ⋅

(

1 + s�1
)

⋅

(

1 + s�2
)

− K32 ⋅

(

1 + s�∗
32

)

⋅ U2(s)

K31 ⋅

(

1 + s�∗
31

)

�1 = �131 = �132; �2 = �231 = �232

•	 The simulations performed with this model are an ideal 
complement that greatly reduces the time required for 
the identification of the PID temperature controller. The 
Ziegler Nichols method requires several experiments that 
can be simulated using the exposed model in a much 
shorter time. The controller set by the model works as 
well as the experimental one.

•	 This model allows simulating the operation of the ther-
mostat and the cooling system, which allows estimating 
the operating range of the device based on the measure-
ment conditions. In our case, the sensor is able to operate 
for room temperatures between 18 and 28 °C and for 
thermostat temperatures between 24 and 36 °C.

•	 The purpose of this instrument is the determination of the 
heat flux transmitted by conduction between the surface 
of the human body and the sensor thermostat. The mod-
elling allows evaluating such power for different constant 
temperatures of the thermostat, even for cases of linear 
variation of the thermostat temperature.

•	 On the other hand, the proposed method is applicable to 
any heat conduction calorimeter. This method is being 
used for experimental design.
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