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Abstract—Whole Slide Imaging refers to the digitalization of 
entire histology slides and it is becoming an improvement for 
pathology workflows. Moreover, hyperspectral imaging is an 
emerging technology in the biomedical field because it can 
improve histological disease detection. However, its spatial 
information is usually lower. This paper describes different 
methodologies for microimage stitching, offering an approach for 
expansion of the field of view (FOV) of hyperspectral images. The 
goal is to find the optimal combination of parameters for the 
input frames which provide an accurate mosaic of the whole 
slide.  

Keywords- Hyperspectral imaging (HSI), Computational 
Pathology and Stitching. 

I. INTRODUCTION 

Nowadays, the study of histology slides is regarded as the gold 
standard for the clinical diagnosis of cancer, and the trend is to 
digitalize histology slides for further histology image analysis. 
Histopathologists visually examine cell shapes and tissue 
distributions, determine whether tissue regions are cancerous, 
and determine the malignancy level [1]. However, 
interpretation of these images is often subjective due to 
limitations in human vision to distinguish subtle color 
differences, particularly because of spatially overlapping 
emissions.  

Spectral technology improves on color camera performance by 
expanding the number of channels beyond the RGB (Red, 
Green, Blue) palette. The higher content of information 
provided by a hyperspectral (HS) image can be analyzed to 
detect objects and patterns as well as the chemical composition 
of the materials which are present at the scene [2]. However, 
the spatial information provided by a hyperspectral imaging 
(HSI) frame is usually lower compared to a traditional RGB 
frame. Microimage stitching offers an approach for expansion 
of the field of view (FOV), aiding visualization of microscale 
features across macroscopic areas of tissue. 

After an exhaustive study of the state of art, we concluded that 
the number of studies applying stitching to HS images in the 
literature is very limited. Lang et al. [3] developed a 
multichannel mosaicking algorithm which could process square 
cubes up to 10 channels and 94% overlap between them. It was 
hypothesized that input parameter could be optimized and still 
obtain accurate results (e.g. overlap between frames or number 
of channels per frame).  

II. METHODOLOGY 

The database used in this research work belongs to the 
ITHaCA project [4]. The specimens investigated in this 
research work consist of human biopsies extracted during 
brain tumor resection procedures and captured with a 
customized HS microscope system.  

A quality assessment protocol needs to be designed for the 
stitched images. The problem arises when trying to measure 

the quality of the alignment of several small FOV images, as 
such large FOV image does not exist. We addressed this 
problem by designing an approach based on the one proposed 
by Wald in 1997 [5]. The steps shown in Figure 1 are further 
explained. 

 

Figure 1. Block diagram of the Wald Protocol. 

A. Field of View Degradation (FOVD) 

When working with microscopes, the FOV is mainly 
determined by the used magnification. Pathologists, usually 
work in 20× to detect an event on a slide [6], and so, to 
simulate this magnification, we should apply a FOV 
degradation (FOVD) of 20. However, for simplicity of the 
tests, it was decided to work with a FOVD of 2. However, such 
a perfect degradation cannot be achieved in real life. When 
working with the platform of our microscope, we must deal 
with 3 μm translational errors. Thus, when degrading the FOV, 
errors were simulated by translating the small FOV images a 
random number of pixels within the range -8 to 8. 

Another variable to consider was the overlap between the small 
FOV images (Nsi). It is defined as the percentage that one 
image i+1 shares with its predecessor, I (1). It is possible to 
have different overlaps for x and y axis. However, for 
simplicity of the test, we are going to set the same overlap for 
both axes. 

 

 
(1) 

The last variable is the number of frames (Nf) taken. To 
reconstruct the whole original image, Nsi number of frames are 
needed. However, if a smaller number of frames are taken, less 
area is reconstructed. Thus, the number of frames taken Nf, 
goes from the FOVD (minimum number frames possible), to 
Nsi (number of frames that reconstruct the original image) (2). 
Overlap function (1) has an asymptote in 1 thus, tests stopped 
at the graph’s plateau, overlap=0.92 (Nsi=13 for FOVD=2). 
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B. Stitching Algorithm 

In this study we decided to employ two different stitching 
methods, namely manual and automatic stitching. The manual 
stitching consisted of just mosaicking the images one next to 
each other, without any kind of further processing. However, 
for the automatic stitching a more complex algorithm, 
developed by Lang et al. [1], was used.  

C. Quality Metrics 

Image quality evaluation methods can be subdivided into 
objective and subjective [7]. Subjective methods are based on 
human judgment and operate without reference to explicit 
criteria. In any case, it is also necessary to establish quantitative 
measures to quantify the effects of image stitching algorithms 
on image quality. Root Mean Square Error (RMSE) [8], Peak 
Signal-to-Noise Ratio (PSNR) [9] and the Structural Similarity 
Index (SSIM) [10] were employed. 

III. RESULTS 

On the one hand, we obtained the results for the manual 
stitched images consisting of mosaicking the images one next 
to each other, without further processing. Quantitatively, 
metrics for this kind of stitching algorithms were not bad. 
However, qualitatively, the image quality was really poor in the 
joint areas between the original frames. 

On the other hand, we obtained the results for the automatic 
stitched images. Firstly, the selected overlap and number of 
frames (Nf) were tested. This meaning that for every image we 
had, it was tested all the overlaps between 50% and 92% and 
all the possible frames for a determined overlap. We can see an 
example of a graph obtained for SSIM in Figure 3.a. 

Results clearly show the most repeated number of frames to be 
3, and thus the selected one. And although there is no clear 
number for the overlap values it was chosen the one which 
better reconstructed the original image from the selected 
frames, 67% (reconstructs 83%). In Figure 2, we can appreciate 
that qualitatively the mosaics show good results. 

 
(a) (b) 

Figure 2. Brain histology images. a) Original image. (b) Reconstructed 
83% of the original image from 3 frames at 67% overlap. 

Secondly, we proceeded to test each band individually. From 
pre-processed images containing 159 bands, single band 
stitching was realized. Then, for each metric it was perform the 
mean for each band (of the 5 brain histology images), as shown 
in Figure 3. The most accurate stitching results would be given 
from bands in the range of wavelength 650 to 750 nm. Finally, 
some band configurations were evaluated. Cubes of 10 and 3 
bands were conformed using wavelengths between 650 and 
750 nm. The mosaics resulting from these cubes offered SSIM 
values between 0.88 and 0.94. Computational resources of this 
algorithm required ~0.5 MB of memory and 100 seconds of 
execution time per each band stitched. 

      

 
(a) (b) 

Figure 3. (a) SSIM of a Brain Histological Image for all overlaps and its 
corresponding frames. (b) Plot of mean SSIM vs wavelength for 5 Brain 

Histology images (159 bands) at 67% overlap and 3 frames. 

IV. CONCLUSIONS 

Spatial information provided by an HSI frame is usually poor, 
but microimage mosaicking improves microscopic resolution 
while macroscopic FOV. In this project the state-of-art 
referring the stitching algorithms of HS histology images was 
studied. Experimental tests were performed, employing manual 
and automatic algorithms. Although, manual tests showed good 
results metrics, the joint area between images were not as good. 
Lang et al. [3] algorithm offered good results when applying a 
67% of overlap between frames and 3 frames to reconstruct the 
original image. Single band stitching was also performed, 
finding a range of wavelength between 650 and 750 nm that 
provided accurate mosaics. Several combinations of bands 
within this range were tested and proved to be quantitative and 
qualitative good. In conclusion, a final stitching algorithm have 
not been developed, however, several important discoveries 
have been made to create our own algorithm in a close future.  
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