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Abstract 

Nowadays, the study of histology slides is considered the gold standard for the clinical 

diagnosis of cancer, and current trend is to digitalize histology slides for further histology 

image analysis. Histopathologists visually examine the regularities of cell shapes and tissue 

distributions, decide whether tissue regions are cancerous, and determine the malignancy 

level. However, the interpretation of these images is often subjective due to limitations in 

human vision to distinguish subtle color differences particularly because of spatially 

overlapping emissions.  

Spectral technology improves on color camera performance by expanding the number of 

channels beyond the RGB palette. The higher content of information (spatial and spectral) 

provided by a hyperspectral image of a scene can be analyzed to detect, identify, or 

discriminate objects and patterns as well as the chemical composition of the material 

present at the scene. However, spatial information provided by a hyperspectral (HS) or 

multispectral (MS) frame is usually lower compared to a traditional RGB frame. Microimage 

stitching offers an approach for expansion of the field-of-view (FOV) without loss of 

resolution, aiding visualization and interpretation of microscale features across 

macroscopic areas of tissue. 

After an exhaustive study of the state of art, we came to the conclusion that the number 

of studies applying stitching to HS images in the literature is very limited. Lang et al. 

developed a multichannel mosaicking algorithm which could process square cubes up to 

10 channels and 94% overlap between them. It was hypothesized that input parameter 

could be optimized and still obtain accurate results (e.g. overlap between frames or 

number of channels per frame).  

Finally, the algorithm of Lang et al. was proven to produce accurate stitching results for 

brain histology images when introducing 3 frames at 67% overlap (SSIM of 0.78 for RGB 

images). This meaning, that to be able to obtain good results, 3 by 3 (9) frames have to be 

introduced in the algorithm to be stitched, and moreover, each frame has to be 67% 

overlapping with its predecessor. At the same time, single band stitching was performed. 

It was proved that the wavelengths giving the most accurate overlaps were in the range of 

650-750 nm (SSIM of 0.93 as maximum value). Finally, cubes of 10 and 3 bands were made, 

with SSIM values higher than 0.75 and wavelengths between 650 and 750 nm. The mosaics 

resulting from these cubes gave SSIM values between 0.88 and 0.94. All the tests 

performed were repeated on breast histology images to prove their repeatability.  

Key Words  

Hyperspectral Image (HSI), whole slide image (WSI) and stitching (mosaicking).    



 

 

 

  



 

 

 

Resumen 

Hoy en día, el estudio de slides de histología se considera un paso clave para el diagnóstico 

clínico del cáncer, y la tendencia es digitalizar slides de histología para su posterior análisis. 

Los histopatólogos se dedican a examinar visualmente las regularidades de las formas de 

las células y la distribución de los tejidos, para luego decidir si las regiones de los tejidos 

son cancerosas y en tal caso, determinan el nivel de malignidad. Sin embargo, la 

interpretación de estas imágenes es a menudo subjetiva debido a limitaciones en la visión 

humana para distinguir diferencias sutiles de color. 

La tecnología espectral mejora el rendimiento de la cámara en color al expandir el número 

de canales más allá de la paleta RGB (Red-Green-Blue). La gran cantidad de información 

(espacial y espectral), proporcionada por una imagen hiperespectral de una escena, se 

puede analizar para detectar, identificar o discriminar objetos y patrones, así como la 

composición química del material presente en la escena. Sin embargo, la información 

espacial proporcionada por una imagen hiperespectral o multiespectral suele ser menor en 

comparación con una RGB. Hacer un mosaico (stitching) de pequeñas imágenes, permite la 

expansión del campo de visión (FOV) sin pérdida de resolución. Esto ayuda a la visualización 

de características a escala microscópica de áreas macroscópicas de tejido. 

Después de un estudio exhaustivo del estado del arte, llegamos a la conclusión de que el 

número de estudios que aplican stitching a imágenes hiperespectrales en la literatura es 

muy limitado. Lang et al. desarrollaron un algoritmo de multichannel stitching que puede 

procesar cubos hiperespectrales cuadrados de hasta 10 canales y con una superposición 

entre ellos del 94% entre ellos (es decir, dos cubos contiguos contienen el 94% de la misma 

información). En este trabajo fin de máter se planteó la hipótesis de que los parámetros de 

entrada podrían optimizarse y aun así obtener resultados precisos (por ejemplo, la 

superposición entre cubos o el número de canales por cubo). 

Finalmente, el algoritmo de Lang et al. demostró que produce resultados de stitching 

precisos para imágenes de histología cerebral cuando se introducen 3 cubos con una 

superposición del 67% (SSIM de 0,78 para imágenes RGB). Esto significa que, para poder 

obtener buenos resultados, se deben introducir 3 por 3 (9) cubos en el algoritmo, y, 

además, cada cubo debe tener una superposición del 67% con su predecesor. Además, se 

realizó un stitching de cada banda por separado. En este paso, se demostró que las 

longitudes de onda que daban los mosaicos más precisos estaban en el rango de 650-750 

nm (SSIM de 0.93 como valor máximo). Finalmente, se hicieron cubos de 10 y 3 bandas, 

obteniendo valores SSIM superiores a 0,75 con longitudes de onda entre 650 y 750 nm. Los 

mosaicos resultantes de estos cubos dieron valores SSIM entre 0,88 y 0,94. Todas las 

pruebas realizadas se repitieron en imágenes de histología de mama para demostrar su 

repetitividad. 
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Chapter 1: Introduction 

In this introductory chapter of this Master Thesis, the motivation that led us to develop this 

project is going to be described, as well as the impact that would have on our society and 

the objectives that are going to be achieved.  

1.1. Motivation 

A tumor is a growth of abnormal cells in a tissue. These can be malign or benign, that is 

cancerous or non-cancerous, respectively. For the purpose of these Master Thesis, we are 

going to investigate brain tumors. Brain tumors can be divided into two main types: 

primary, which starts in the brain, or metastatic tumors, which begins somewhere else in 

the body and move to the brain [1]. Treatment includes cautious waiting (monitoring 

without administering any treatment until symptoms occur or change), surgery, radiation, 

chemotherapy and targeted therapy. Targeted therapy uses medications or other 

substances to fight specific cancer cells that cause less damage to normal cells. Most people 

receive a combination of these methods [2]. 

Before any treatment is made, a diagnostic must be performed. Medical doctors diagnose 

these tumors through a neurological examination and other kind of tests such as magnetic 

resonance imaging (MRI), computed tomography (CT) or pathologically analyzed biopsies. 

Moreover, automatically detection of these tumors can be achieved by using hyperspectral 

imaging (HSI) of histology slides, instead of biopsy observation under a microscope.  

Images can be classified according to the number of bands they contain. While RGB images 

capture three discrete wavelengths within the visible range of the electromagnetic 

spectrum, multispectral (MS) images are able to capture information up to dozens of 

bands, and hyperspectral (HS) images contain more than 100 bands within and beyond the 

visible range [1]. To obtain a hyperspectral image, the sensors measure the reflected 

radiance (reflectance) in a large number of wavelengths, thus, creating a high spectral 

resolution image. The bands captured are grouped to produce a hyperspectral cube, which 

is a 3D data structure whose dimensions are the combination of the spatial (x, y) and the 
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spectral (l) information of the scene. Capturing images with high spectral resolution defines 

the concept of HSI [3]. 

The main strength of HSI over multispectral imaging is the large number of adjacent 

spectral bands which are possible to acquire and handle, allowing detection of materials in 

a scene with higher precision. If the radiation reflected to the sensor is measured at 

different wavelengths over a region, a spectral signature of such region is obtained. That 

is, a representation of each image pixel is obtained along the spectrum. This representation 

creates a unique footprint of the material that allows us to identify such different materials 

with accurate precision [4]. Thus, this type of images and the type of information they 

provide have multiple applications in fields such as remote sensing [4], medicine [5] or 

agriculture [6].  

In this project, we will use a hyperspectral camera to obtain images with the help of a 

microscope with hyperspectral capacity [7]. The problem associated with this type of 

images is that the different magnifications provide different types of information about the 

sample. The acquisition of images at high magnifications is necessary to identify the 

morphological details of cells. These morphological details are of great importance for the 

final diagnosis of the sample in histological applications. In addition, since the sample size 

is larger than the area that can be captured in a single image, it is necessary to use 

algorithms that are capable of unifying them in a larger image, this procedure is known as 

stitching [8]. 

One of the challenges of using hyperspectral images for microscopic sample analysis is that 

several small images of large spatial resolution have to be captured and assembled 

(stitching) to achieve the complete image from the sample. Stitching is the process by which 

multiple photographs with overlapping fields of vision are combined to produce a high-

resolution image. This process is commonly done through the use of certain software or 

algorithms to achieve an almost exact overlap between images, producing a uniform result. 

The union of images has many applications at the moment, as it is in medical images [9], 

photomosaic [10] and photosatellites [11]. 

However, this mosaicking of images is not trivial. Algorithms need to be developed to 

perfectly combine overlapping images, even in the presence of some problems that are 

commonly encountered when multiple images are going to be assembled. An error in a 

medical image, such as the movement of the scene or the difference in exposure to light 

between the images, can lead to an error in the diagnosis, with dramatic consequences  [8]. 

1.2. Context   

This Master Thesis was developed within the research line of hyperspectral imaging (HSI) 

acquisition and processing for medical applications that is currently carried out by the 
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Division of Integrated Systems (DSI) of the University Institute for Applied Microelectronics 

(IUMA) of the University of Las Palmas de Gran Canaria (ULPGC), specifically in the field of 

pathological analysis of brain cancer biopsies.  

In addition, IUMA has been involved in projects financed by both public and private entities, 

in the field of processing HS images in different areas. Among these projects are:  

1.2.1. HELICoiD Project (CNET-ICT-618080) 

Helicoid was a European collaboration project between four universities (ULPGC, Imperial 

College of Science, Technology and Medicine of London, Polytechnic University of Madrid, 

Assosiation pour la Recherche et le Développement des Methodes et Processus Industriels 

de Paris - Armines), three industrial partners (Medtronic Iberica SA, General Equipment for 

Medical Imaging S.A., Virtual Angle B.V.) and two hospitals (Canary Foundation for 

Research and Health, University Hospital of Southampton NHS Foundation Trust), financed 

by the Executive Research Agency (REA) of the European Union [9].  

The purpose of this project was to develop a demonstrator capable of differentiating 

between healthy and tumor tissue in real time during neurosurgery interventions by means 

of hyperspectral images, thus enabling real-time resection of tumor tissue to be confirmed 

in real time, avoiding excessive resection of adjacent healthy tissue and indeterminations 

due to displacement of brain mass. This project ended in December 2016.  

1.2.2. ITHaCA Project (ProID2017010164) 

After HELICoiD project finished, the ITHaCA project was created to continue with the 

investigation of intraoperative brain cancer diagnosis. This Master Thesis is framed within 

the ITHaCA project (IndenTificación Hiperespectral de tumores CerebrAles), funded by the 

Canarian Agency for Research, Innovation and the Information Society of the Canary Islands 

Government [7]. This is a multidisciplinary project that integrates engineers, 

neurosurgeons and pathologists. Its main objective is to perform a real-time accurate 

differentiation and classification by using hyperspectral images of different types of brain 

tumors. This fundamental research project is promoted by the IUMA (University Institute 

of Applied Microelectronics) of the University of Las Palmas de Gran Canaria and FUNCANIS 

(Canarian Foundation for Health Research), the research management foundation of the 

University Hospital of Gran Canaria Doctor Negrín (HUGCDN). 

For the purpose of this Master Thesis project, it is proposed to perform the stitching of 

several images taken with the hyperspectral microscope acquired by the University 

Institute for Applied Microelectronics (IUMA). This is, until the moment, the only known 

microscope with hyperspectral capacity in the range of 400 to 1700 nm that it is used for 

pathology images in Spain. Due to the different magnification factors existing, it is proposed 

as principal task the stitching of these hyperspectral images for its future processing. This 

task will involve solving complex problems associated with the registering of images, the 
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maintenance of brightness levels and the spatial consistency among images (seamless). The 

resulting image must conserve the original characteristics as if we had taken just one 

complete image. This way, we assure that the posterior automatic detection of brain 

tumors will come up with a coherent diagnostic for pathologists. 

1.3. Objectives   

The main objective of this Master Thesis is to adapt a stitching algorithms of large spatial 

resolution images for automatic assembly of hyperspectral histological images captured 

with the pathological microscope available in the research group infrastructure. This main 

objective can be broken down into several specific objectives that must be performed along 

this project. 

 O1. To study the actual state-of-art algorithms currently used in the literature for 

image stitching. 

 O2. To study the HSI technology, its application in the medical field, and the use of 

the hyperspectral microscope instrumentation available in the laboratory.  

 O3. According to the information collected from the stitching algorithms and the 

performance of hyperspectral images, the optimal conditions used to capture the 

microscopic hyperspectral images will be proposed, in order to perform an efficient 

stitching.  

 O4. To develop image stitching algorithms through the high-level language 

MATLAB®. 

 O5. To apply the developed algorithms to the stitching of hyperspectral microscope 

images of histological samples for the future use of this images in the detection of 

tumors at different magnifications.   

 O6. To validate the results obtained using appropriate quantitative and qualitative 

metrics and compare the results of the HSI stitching versus the stitching of 

conventional digital pathology images. 

 O7. Estimation of the computational cost of the algorithms developed for future 

hardware implementation. 

Conclusions 

In this section, it has been explained the motivation that drove us to carry out this project 

at the same time as the impact that the results would have in our society and the objective 

we wanted to fulfill.
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Chapter 2: Background 

In this second chapter of the Master thesis, it is going to be described in first place what is 

pathology and histology and the important role they play when dealing with brain tumors. 

Furthermore, spectral technology is also going to help in the diagnosis of these kind of 

cancer by using whole slide imaging. However, resolution problems arise when digitalizing 

histology slides and thus, stitching have to be applied.  

2.1. Pathology 

Pathology is defined as the study of diseases and it brings together science and medicine 

to improve patients care. Pathology doctors and scientists are experts in illness and disease 

and their work encompass from diagnostic testing and treatment advice to cutting-edge 

genetic technologies and preventing diseases. Pathologists have played a critical role in 

research, advancing medicine and devising new treatment to fight viruses like blood 

transfusion, vaccination and treatment of inherited conditions, among others. Thank to this 

discipline, illnesses have been significantly reduced during the last 100 years [12]. 

As previously said, the main goal of this science is to determine the causes and effects of 

the different diseases and to achieve that samples of body tissue have to be examined. 

Commonly, hospitals have their own teams of scientists who study different samples of 

patient’s bodies to try to understand what is causing their disease. These teams are made 

up of pathologists as well as biomedical scientists and support staff. Doctors, nurses, 

surgeons, and other medical staff look to pathologists and consultant clinical scientists for 

advice on the nature and seriousness of a patient’s illness, making sure they get the most 

appropriate treatment. 

2.1.1. Histopathology 

Histology studies microscopic structures of biological material and the ways in which 

individual components are structurally and functionally related. It is a key discipline for 
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biological and medical science because it brings together different health branches such as 

biochemistry, molecular biology and physiology [13]. 

Histopathology has roots in both clinical medicine and in basic science. Its main purpose is 

to study the diseases by examining the tissues or cells under the microscope. 

Histopathologists work closely to other clinician’s specialties being their task to make the 

diagnosis of tissues and helping clinicians managing patients’ care. They can reach a 

diagnosis by examining a biopsy which is a small piece of tissue, for example from the skin, 

liver, kidney or other organ. Their job is to carefully examine the tissue under a microscope, 

looking for changes in cells that might explain what is causing a patient’s illness [14]. 

As we can see in Figure 1, biopsy samples can be acquired from many areas of the body by 

using safe instruments such as: 

- Scalpels for directly accessible tissues such as the skin, mouth, nose, etc.; 

- Needles into solid organs; 

- Endoscopic tubes into the alimentary tract or body cavities; 

- Special flexible cannula inside blood vessels. 

 

Figure 1. Different techniques to obtain small samples of many areas of the body [13]. 

Furthermore, it has to been taken into account that knowledge of normal histological 

appearances is essential if abnormal diseased structures are to be recognized, and to 

comprehend how abnormal biochemical and physiological processes result in disease.  
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2.1.2. The Advance of Histology 

Histology was first studied using a simple light microscope and elemental techniques for 

preparing thin slices of biological material to be able to examine them. Despite the 

simplicity of the method employed, early histologists acquired a huge amount of 

information related to the structure of the biological materials under study. These first 

studies led Rudolf Virchow to enunciate his cellular theory of the structure of living 

organisms that established the cell as the basic building block of most biological material 

[15].  

In those early years, a vocabulary of histology was developed, build on light microscopic 

analysis of cells and limited understanding of cell physiology. Assembly of cells having 

analogous morphological characteristics were described as forming tissues. These were 

first divided just into four types: epithelial, muscular, nervous and connective tissues [13].  

Modern investigations have revolutionized our understanding of cells, and thus the science 

of histopathology. Modern techniques include electron microscopy, cloning of cells in 

culture, protein sequencing and molecular genetics, among others. However, and despite 

the rapid emergence of the science, terms and classifications were not changed much since 

original histological studies were performed. A rigid classification of cells and tissues was 

maintained during years.  

Fortunately, this rigid histological system is now giving way to a more exciting and 

functional approaches, using all the information available of cell biology [13]. We are living 

an exciting period in histology, where we are able to explore the physiological and 

molecular basis of biological structures through the development of techniques that allow 

us to examine the chemical make-up of living tissues under the microscope. It is now 

becoming clear why various biological structures are shaped and arranged as they are.  

Nowadays, the study of histology slides is regarded as the gold standard for the clinical 

diagnosis of cancer, and the trend is to digitalize histology slides for further histology image 

analysis [16]. In histology image analysis for cancer diagnosis, histopathologists visually 

examine the regularities of cell shapes and tissue distributions, decide whether tissue 

regions are cancerous, and determine the malignancy level. Such histopathological study 

has been extensively employed for cancer detection and grading applications, including 

prostate [17], breast [18], cervix [19], and lung [20] cancer grading, neuroblastoma 

categorization [21], and follicular lymphoma grading [21]. For the purpose of this thesis, 

we are going to use histopathologic samples of brain tumors.  
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2.2. Brain Tumors 

World Health Organization (WHO) defines cancer as “a large group of diseases that can 

start in almost any organ or tissue of the body when abnormal cells grow uncontrollably, 

go beyond their usual boundaries to invade adjoining parts of the body and/or spread to 

other organs” [22]. 

Tumors of central nervous system (CNS) include the tumors of the brain and spinal cord, as 

well as their covers. Those tumors are uncommon tumors, accounting for approximately 

1% of all human body tumors [23]. Brain tumors are assigned into four grades, from Grade 

I very benign tumor to Grade IV highly malignant tumors. Diagnosis of brain tumors is 

primarily based on the WHO Classification of Tumors of CNS [2]. This expert consensus 

scheme was first completed in 1979 and then revised in 1993, 2000, and 2016. This scheme 

is currently the most widely utilized by neuropathologists worldwide for typing and grading 

the CNS tumors.  

In Figure 2, it is depicted a basic classification of brain tumors based on the one previously 

mentioned. They can be divided into two main types: primary which starts in the brain, or 

metastatic which begins somewhere else in the body and it moves to the brain.  

 

 

Figure 2. Basic classification of Brain Tumors [24]. 

The most common primary brain tumors are gliomas, pituitary adenomas, and vestibular 

and primitive neuroectodermal tumors. Gliomas are tumors that begin in the glial tissue 

and they include glioblastomas, astrocytomas, schwannomas, oligodendrogliomas, and 

others. The most common malignant brain tumor is glioblastoma (GB, 81% of malignant 
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CNS tumors), which is usually associated with poor prognosis. GM is classified as a subtype 

of astrocytoma. GM is classified as grade IV according to the WHO. With regard to 

treatment, GM and grade III brain tumors are managed similarly. 

Any intracranial tumor, regardless of the degree of malignancy, can potentially invade or 

displace critical brain areas, resulting in neurologic compromises. The most common 

complications are seizures, peritumoral edema, venous thromboembolism, fatigue, and 

cognitive dysfunction [24]. 

2.2.1. Molecular Diagnosis of Adult Gliomas 

Glial tumors comprise approximately 25–30% of primary CNS tumors and represent a 

spectrum ranging from low-grade, benign to the highly aggressive, malignant tumors. They 

are broadly classified by glial cell type of origin and determined by histology with or without 

the use of immunohistochemistry (IHC), which is then used to provide a WHO grade [2].  

However, histology has not been able to accurately predict response to treatment or 

clinical outcomes, and it is not uncommon for many of these tumors with nearly identical 

histologic features to have very different outcomes [23]. As a result, there is a need of 

obtaining better histology images, with more information, to improve their further analysis.  

2.3. Spectral Technology Applied to Tumor Detection 

Conventional histopathology relies on stained tissue cell specimens viewed by an optical 

microscope with transmission illumination. The introduction of fluorescence microscopy 

techniques has added the ability to examine cell condition and function in addition to 

structure in research and clinical diagnosis methods, such as immunochemistry. However, 

interpretation of these images is often subjective due to limitations in human vision to 

distinguish subtle color differences particularly because of spatially overlapping emissions. 

Spectral technology improves on color camera performance by expanding the number of 

channels beyond the RGB palette [25]. 

2.3.1. Basics of Spectral Imaging  

First of all, two basics concepts can be differentiated when working with light. In one hand, 

Irradiance refers to the energy of light per unit time incident on a surface, normalized by 

the surface area (W/m2). On the other hand, Reflectance (light reflected) is a dimensionless 

number between 0 and 1 that characterizes the incident fraction of light reflected by a 

surface [3].  

The characteristics of sunlight reflection from a material contribute to the own material’s 

detection and classification within of a scene. When a material is irradiated, it absorbs 
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𝐿𝛼(𝜆), transmits 𝐿𝜏(𝜆) and reflects 𝐿𝑟(𝜆), light in a particular way. All the components are 

based on wavelengths (1). 

 𝐿𝑖(𝜆) =  𝐿𝛼(𝜆) + 𝐿𝜏(𝜆) + 𝐿𝑟(𝜆)  (1) 

The proportions of 𝐿𝛼(𝜆), 𝐿𝜏(𝜆) and 𝐿𝑟(𝜆) in (1) vary according to spectral behavior of the 

different materials found within the surface of the Earth. Spectral variations captured by 

the sensor allows us to detect or classify an object in an image. (2) allows us to quantify the 

reflectance 𝜌𝑖, measuring the amount of incident irradiance 𝐿𝑖(𝜆) which is reflected, 𝐿𝑟(𝜆). 

 
𝜌𝑖 = 

𝐿𝜏(𝜆)

𝐿𝑖(𝜆)
 (2) 

The variation of the reflectance 𝜌𝑖 as a function of the wavelength is called the spectral 

signature, which is the quantitative measurement of spectral properties of an object in the 

range of the electromagnetic spectrum collected by a sensor (Figure 3). Thus, spectral 

sensors detect reflected solar energy by the different materials and measure the intensity 

of the energy reflected in different wavelengths of electromagnetic spectrum creating the 

spectral images. These images contain spatial (x, y) and spectral (𝜆) information, forming 

3D hyperspectral cubes.  As we can see in Figure 3, each pixel (x, y) contains a spectrum 

with high spectral resolution called spectral signature. 

 

 

Figure 3. Hyperspectral cube concept and spectral signature of a specific pixel [5]. 

 

 



CHAPTER 2. BACKGROUND 

11 

2.3.2. Multispectral and Hyperspectral Imaging 

Spectral resolution is determined by the number of spectral bands and the width of them, 

used to measure reflection at different wavelengths. Figure 4 shows that spectral images 

can be classified according to the number of bands they contain: red-green-blue (RGB) or 

visible (VIS), which belong to the visible range of the spectrum; multispectral, which 

capture information in only dozens of bands, and hyperspectral, which contain more than 

100 bands [25].  

 

 

Figure 4. Classification of the spectral images. These are differentiated by the number of bands and the width of 

these [11]. 

HSI main strength over Multispectral Imaging is the large amount of contiguous spectral 

bands possible to acquire and handle, allowing a precisely detection of materials in a scene. 

Figure 5 illustrates the superiority in spatial and spectral resolution of HSI over MSI, 

producing an image with more information.  

 

Figure 5. Graphical differentiation between MS and HS images. For the aim of the comparison, it is taken into account 

the spectral and spatial resolutions as well as the data content of each type [3]. 
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The greatest content of information of HSI based on spectral resolution improves and 

expands its use and exploitation. It allows the development of target detection algorithms 

based on the spectral signature of the target to be detected (e.g. tumor tissue) [26]. 

 

2.3.3. HSI/MSI Applications for Histopathological Sample Analysis 

HSI is an emerging technology in the biomedical field. In the recent years, many researchers 

have explored this technology as a diagnostic aid tool for different applications. Compared 

to other existing technologies for assessing the diagnosis, one of the strengths offered by 

HSI is being completely non-invasive [27]. In medical applications, this technology has been 

employed in a wide range of fields, including blood vessel visualization enhancement [28], 

intestinal ischemia identification [29], measuring the oximetry of the retina [30], estimating 

of the cholesterol levels [31] or cancer detection [32], among others.  

Regarding studies for clinical diagnosis of histological samples, the number of studies using 

hyperspectral data in the literature is limited. Ortega et all. [33] performed a systematic 

review, based on the use of both HSI and MSI for pathological diagnosis, digital staining and 

other applications.  According to the different fields within medical diagnosis, they analyzed 

a total of 84 research articles in the field of hematology, breast, central nervous system, 

gastrointestinal, genitourinary, head and neck, and skin. Some examples these 

investigations are the identification of acute lymphoblastic leukemia [34], blood cell 

analysis [35] or mitotic cell detection and segmentation [36].  

Furthermore, we can see the workflow of a specific study carried out by Ortega et all. [27] 

who studied the detection of brain tumor in pathological slides by using HSI. In their 

research work, HS images from pathological slides belonging to human brain tissue 

suffering high-grade gliomas were analyzed. The main goal of their study was to analyze if 

it is possible to discriminate between normal and tumor tissue in pathological slides by 

processing only their spectral information.  

In Figure 6, the processing framework of this study is explained. First, raw images were 

acquired by using a HS sensor. Then a multiple steps pre-processing chain was applied to 

the data. And at the end, three different classifiers were employed to automatically 

distinguish between tumor and normal tissue, using as features only the spectral 

information.  
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Figure 6. Processing framework block diagram [27]. 

The results obtained showed competitive results in the discrimination between normal and 

tumor tissue, regardless of the classifier employed. Thus, HSI proved to be a suitable 

technique to develop a future automatic diagnostic tool for pathological slides [27].  

At the end, according to the results depicted in the aforementioned investigation and the 

other 83 analyzed research articles, Ortega et all. [33] concluded that there are still many 

challenges that have to be addressed for the final adoption of HSI/MSI for digital pathology 

in a clinical setting. Firstly, the spectral acquisition equipment is unstandardized, complex, 

research-grade, and expensive. Additionally, the analysis algorithms are often different. 

Thus, the experimental results reported in the literature are difficult to compare. 

Moreover, it is extremely difficult to extrapolate the results obtained in one particular 

diagnostic application in one specific organ system to another application/organ, mainly 

due to the heterogeneity of the spectral properties of the different tissues. The use of 

HSI/MSI for digital and computational pathology is promising and is still in its infancy, 

requiring more investigation and creative solutions to the problems for its clinical 

translation [33]. 

However, overall, HSI/MSI technologies are able to succeed in histological disease 

detection. Diagnostically important spectral features can be subtle and not easily assessed 

by the naked eye, but HS sensors capture such features from the image scene for a deeper 

understanding and analysis [33]. Finally, HSI technology coupled with microscopy is now 

finding a broad set of application areas including disease diagnostics by digitization of 

histology slides and its storage in digital form [26]. Consequently, digitized tissue 

histopathology has now become amenable to the application of computerized image 

analysis and further machine learning techniques.  
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2.4. Whole Slide Imaging (WSI) 

Whole slide imaging (WSI) refers to the digitization of entire histology slides or specific 

areas. WSI has revolutionized the pathology field, making it a necessary first step for a wide 

array of digital tools to enter the field.  As just explained its basic function is to digitize glass 

slides, but its impact is much higher. It is an improvement for pathology workflows, 

reproducibility, dissemination of educational material, expansion of service to 

underprivileged areas, etc. Another application that has also taken advantage of this 

technology is the intra-institutional and inter-institutional  collaboration being a significant 

innovative movement with far-reaching effects [37].  

As explained in section 2.1, pathology relies on the accurate examination of microscopic 

images in order to precisely diagnose patients and manage therapeutic decisions. With the 

appearance of whole slide imaging, pathologists have begun to carry out the act of 

histology slides examination in the computer screen instead of direct observation in the 

microscope, as they used to. This technology allows them to navigate a virtual slide, giving 

on to a number of new opportunities not feasible using conventional microscope such as 

digital collaboration, integration with electronic workflows and health records, and 

diagnostic support based on computational tools like artificial intelligence [37]. 

Although WSI benefits are countless, the adoption of this new technology is not always 

easy. It remains a difficult step to overpass for many academic centers or research 

institutions which may do not have an easy access to funds and new material for their 

laboratories or are unfamiliar with the new technologies and the opportunities they may 

offer. To apply WSI technologies it is needed a whole slide scanner which basically is a 

microscope under robotic and computer control. This is attached to a highly specialized 

camera(s) containing advanced optical sensors. Thus, as we can see in Figure 7, WSI 

scanners consist of 6 main components: a microscope with lens objectives, a light source, 

robotics to move glass slides, a digital camera for image capture, a computer and a virtual 

microscopy viewer (VMV) to see and interact with the images [38].  

 

Figure 7. Example of Whole Slide Image setup [39]. 
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The process of slide digitization is shown in Figure 8. It starts with the image acquisition or 

scanning by the camera sensor followed by its assembly to generate a digital image of the 

whole slide. Then, the multiple images obtained are stored on the computer. And finally, 

the WSIs are displayed on a virtual microscopy viewer [39]. However, construction of such 

a VMV implies to solve different kind of problems, whose nature depends on the different 

involved steps: assembling the high-resolution image, efficient storage and rapid 

information availability for navigation. These three general requirements define three 

complementary processes [40]. 

 

Figure 8. The whole scheme illustrates the Virtual Microscopy process [40]. 

Stitching is a fundamental step in the process since acquiring the area of the whole slide in 

just one image usually does not provide much spatial resolution. Spatial resolution is 

defined as the minimum distance at which two distinct objects can be identified as separate 

events [37]. For example, in Figure 9 we can see that in the second image (5 m resolution) 

changes are distinguished every 5 meters but, in a 30 m resolution image changes are less 

detected, making a lower resolution image of the same area 
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Figure 9. Example of different spatial resolution representing the same polygon [41]. 

The resolution problem can be achieved by scanning different higher magnification FOV 

which will be later assembled into a single high-resolution image.  

Furthermore, clever storage strategies are needed since the virtual slide demands a huge 

amount of memory space. For this reason, it is required an intensive use of image 

compression methods but subjected to the restriction that such methods must also allow 

an efficient access to information when required. Additionally, compression in medical 

images must be lossless since minimal distortions may lead to a false diagnosis [42]. 

Finally, navigation is the process which permits a user to carry out a microscopic 

examination of a particular sample as it would be possible using a conventional microscope. 

This virtual microscope must allow sequential and random translational movements at any 

of the XY-axes or zooms when moving along the Z-axis [43]. 

In conclusion, mega-images, understood as whole-slide-images, are constructed by a 

sequential capturing process. They shall be in the very near future a useful tool in most 

routine microscopical applications. They allow a unique image storage, called virtual slide 

which makes possible a so far unknown information availability for image retrieval in case 

of latter studies, medical training, distribution by electronic media, image exchange 

between pathologists, annotation capabilities and morphometrical measurements [40]. 

2.5. Image Stitching 

In biomedical and clinical studies, it is often highly desirable to observe images of whole 

tissue sections with high resolution. However, it is usually difficult to get a single image 

with high resolution to view a whole sample. A common solution to this problem is to stitch 

several images with FOV, which will have higher spatial resolution, to form a composite 

one. As we can see in Figure 10, image stitching is highly desirable to acquire a high FOV 

image which represents macroscopic areas of certain structures or whole sections, while 

retaining microscopic resolution [44]. 
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Figure 10. Example of increasing the resolution of an image thanks to the use of the stitching technique. 

This process is commonly performed through the use of certain software to achieve almost 

exact overlaps between the images, producing a uniform result [45]. The way in which most 

microscope digital cameras, which have stitching capacity, work is the following: 

1. While focusing on the sample with the camera turned on, the software is opened. 

2. The image stitching feature captures multiple images while the mechanical stage is 

slowly moved in both the X and the Y axis to cover the field of view desired. 

3. The software works in the background to stitch this larger image together. 

However, creating a large mosaic is challenging because the stitching algorithm consume a 

lot of computational resources, needed for assembling the resulting mosaic. In addition, 

algorithms working on the software need to be developed to seamlessly combine overlay 

images, even in the presence of problems. Some commonly problems encountered when 

assembling multiple images are: parallax, that is, the displacement in the apparent position 

of an object; lens distortion deflecting light rays; the movement of the scene; and the 

difference in light exposure between the images [45]. 

Anyway, since quantitative pathologic examination of cells and tissues can provide 

important diagnostic and prognostic information, accuracy is necessary on the macroscopic 

image and thus, precise stitching methods are required [46]. 

2.5.1. Stitching of HS/MS Images  

The spatial and spectral information provided by a HS image of a scene can be analyzed to 

detect, identify, or discriminate objects and patterns as well as the chemical composition 

of the material present at the scene [9]. However, spatial information provided by one 
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HSI/MSI frame is usually lower compared to traditional RGB frame. Microimage stitching 

(mosaicking) offers an approach for expansion of the FOV without loss of resolution, aiding 

visualization and interpretation of microscale features across macroscopic areas of tissue. 

In Figure 11 it is shown how stitching improves the spatial range for both, HS and RGB, 

images at the same time that allows HS/MS images to have more spectral information [47].  

 

Figure 11. Stitching of a RGB image (left) vs HS/MS image (right). Mosaicking HS/MS data allows for high spectral and 

spatial range images. 

In conclusion, mosaicking can be used for enhancement of the FOV of HS/MS images [48]. 

This way it is possible to increase the amount of information acquired via HSI and, 

therefore, to increase the possibility of data analysis. However, the biggest challenge in this 

process is the mapping of the images of the individual spectral channels to each other (co-

registration). Therefore, an investigation should focus on the procedure of data acquisition, 

correction and registration. 

Conclusions 

In this section, the main motivation for the study of histological slides has been described, 

which is considered as the gold standard for the clinical diagnosis of cancer. Specifically, we 

have focused on brain tumors and its better detection by using HS images. Furthermore, it 

is possible to couple this HS technology with a microscopy, allowing histology digitalization 

for further data analysis. However, HS spatial resolution is usually low compared to RGB 

imagery. We propose to stitch high-magnification, high-resolution HS frames, generating a 

large FOV HS mosaic. This way we will increase the information available and the possibility 

of further histology image analysis and cancer detection. 
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Chapter 3: State of Art 

In this chapter the latest image stitching methods used for digitalizing microscope slides is 

introduced. The advantages and weaknesses of these algorithms are going to be described. 

Finally, we will hypothesize a potential solution.  

3.1. Current Situation 

Optical biopsy of disease is becoming a key element for basic biology research. However, 

cellular resolution generally comes with the trade-off of a microscopic FOV, as clinicians 

may need to survey large (macroscopic) areas. Consequently, achieving both microscopic 

resolution and macroscopic FOV optical imaging remains a central challenge in the field.  

Microimage mosaicking offers an approach for expansion of the field-of-view without loss 

of resolution, aiding visualization and interpretation of microscale features across 

macroscopic areas of tissue. Mosaicking is an image analysis technique in which sequential 

frames from a sequence of images are examined for common spatial features and then 

stitched together by overlapping the images’ shared regions pairwise.  

Adequate microscopic virtual reconstruction of a desired part of a biological sample is 

achieved using image registration and stitching. In the virtual microscopy context, 

registration is the process of finding the amount of overlay between two neighbor frames 

by maximizing a particular similarity measure between them. Two kinds of similarity 

measures have been used in virtual microscopy systems [40]:  

 Area based methods. These measures are based on the similarity of intensities 

between the two neighbor FOV, using their intersected regions. They are based on 

low-level image intrinsic properties and therefore they are very sensible to the type 

of noise.  

o Sum of squared differences. Thévenaz et al. have used the sum of squared 

differences as similarity measure in a virtual microscopy system [49]. This 

measure has shown to be appropriate in many applications since it is simple 

and optimal under controlled conditions i.e. when differences between 
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images are exclusively caused by Gaussian noise [50]. However, inter-image 

intensity variations are mostly linear in histological applications and 

constitute the major source of noise [51], together with the unavoidable 

biological variability and the technical difficulties of any histological 

procedure.  

o Correlation. In routine microscopy, illumination settings are controlled in 

such a way that most changes regarding intensities between neighboring 

FOV can be modelled as linear [52]. Therefore, similarity measures based on 

correlation such as the normalized cross correlation or phase correlation 

[53], result more robust and become also more general. They are 

remarkably less sensible to noise than simple measures at the level of pixel 

differences such as the sum of squared differences and they are also robust 

to image displacement or rotations produced by microscope stage 

instabilities.  

 Feature based methods. These approaches are based on the detection of salient 

features in the image intersection which can be used in a general manner.  

o Corners. Sun et al. [54] have proposed a method which finds a set of corners 

in the overlapping region of each FOV, based on the Harris corner detector 

method [55], which is followed by a match of the corresponding features. In 

this case the similarity measure is the Euclidean distance between the 

corresponding features. Although the method is rapid, this is not general or 

robust since there is not any guarantee for the corners to exist in every 

microscopical image. 

Summarizing, the registration algorithm determines the best translational offset between 

two consecutive image frames. In the application we are targeting, virtual microscopy 

pathology slide mosaicking, illumination settings are usually controlled, and the dominant 

component of motion is translational, being any non-translational motion small in 

comparison. That is the reason we chose to implement a correlation area based method 

previously employed by Bedard et al. [56]. Their algorithm, based on the Guizar-Sicairos et 

al. [57], performs an optimized cross correlation using discrete Fourier transforms (DFTs). 

The cross correlation of two images𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦) is given by (3). 

 𝑟𝑓𝑔(𝑥𝑖, 𝑦𝑖) =  ∑𝐹(𝑢, 𝑣)𝐺∗(𝑢, 𝑣)𝑒𝑥𝑝 [𝑖2𝜋 (
𝑢𝑥𝑖
𝑀

+
𝑣𝑥𝑖
𝑁
)]

𝑢,𝑣

 (3) 

where N and M are the image dimensions, uppercase letters represent the DFT, and * 

denotes complex conjugation. The approach to finding the cross-correlation peak is as 

follows: 1) compute the product 𝐹(𝑢, 𝑣)𝐺∗(𝑢, 𝑣); 2) take the inverse Fast Fourier 

Transform (FFT) to obtain the cross correlation; and 3) locate its peak [57]. Error of 

registration fit is given by the normalized root-mean-square error (NRMSE).  
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After a similarity measure between frames has been selected, the registering phase 

consists in finding the optimal transformation function which maximizes that similarity 

between neighboring FOVs. Notice that a large image must be generated by registering 

hundred or thousand FOV, whereby optimal registration schemes are required (Figure 12). 

Romo et al. [58] decided to implement an strategy following a serpentine pattern as it 

simulates the microscope’s movement while scanning a microscopy slide. Rankov et al. [59] 

proposed to start at the center of the digitalization framework and to follow a spiral-like 

pattern, under the hypothesis that the image at the center contains the higher information. 

Appleton et al. [51] aligned simultaneous rows of FOV, while images associated to each row 

are firstly stitched into one single image using an efficient dynamic programming algorithm 

for solving the optimization problem. 

 

Figure 12. a) Sequence of microscopical FOVs that will be stitched. b), c) and d) Different stitching schemes [40]. 

In the algorithm we plan to carry out [57], registered high resolution frames are first 

inserted into a large zero-value image called a canvas. The first frame in a video sequence 

is copied to the center of the canvas, as in Figure 12.c, and so it follows a spiral-like pattern. 

Subsequent frames are inserted into the canvas at an offset determined by the registration 

algorithm. For our application it is important to preserve size and separation of features 

such as nuclei, so we typically use the dead leaves approach [60], which simply replaces 

overlapping regions with the new frame. Although individual frame boundaries can 

become apparent when using the dead leaves approach, spatial features within the image 

keep their size [56]. Registration errors can occur for several reasons, as when there is little 

spatial information (such as in uniform grayscale images) or when there is loose debris. 

Additionally, the development of hyperspectral and multispectral systems for biomedical 

applications provides motivation for adapting mosaicking algorithms to process a number 

of simultaneous spectral channels. The advent of multidimensional imaging techniques 

provides novel information about frame-to-frame motion that single-mode techniques are 

not equipped to analyze. Thus, existing mosaicking algorithms should be adapted to 

leverage spatial and spectral data and enable these techniques to image micro- and 

macroscopic environments with greater fidelity than their single-channel predecessors.  

Lang et al. [61] presented a first step in the development of multichannel mosaicking 

algorithms. They employed a method to characterize the noise tolerance and 

computational efficiency of stitching algorithms to enable quantification of mosaicking 

dca b
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performance of multichannel images relative to single-channel analogues. When 

processing multiple spectral (spatially coinciding) channels, it is clear that a single unique 

spatial alignment should be applied across all channels in a set of hyperspectral frames 

(provided achromatic optical performance). Independent alignment of different channels 

could obscure colocalization information, which is often of primary interest in HS data 

analysis. 

Simulated HS frames were generated with a constant, high percentage (94%) area overlap 

between consecutive frames to approximate conditions for video-rate imaging. Zero-mean 

additive Gaussian noise was added to each image in every frame, in order to degrade image 

quality and to mimic challenging experiments that could potentially cause alignment errors. 

Additionally, there is a trade-off between the addition of spectral channels (increased 

accuracy) and computational speed [61]. 

The multichannel mosaicking algorithm presented by Lang et al. [61] applies pairwise 

normalized cross-correlation (NCC) as a basis for frame registration, following the 

previously explained algorithm of Bedard et al. [56]. Cross-correlation maps are calculated 

between consecutive image frames and the maps are normalized to an in-place 

autocorrelation (i.e., the theoretical maximum correlation). Correlation space then maps 

the probability of alignment across the spatial domain spanned by the intersection of two 

images being aligned, from which the location of maximum likelihood is selected as the 

“true” alignment location for the subsequent stitching step. We calculate the spatial cross-

correlation map separately for each additional channel and average the maps in correlation 

space, producing a single map. 

 

Figure 13. Exemplary cross-correlation maps demonstrate improved noise tolerance for multichannel versus single-

channel micromosaicking [61]. 
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Exemplary cross-correlation maps demonstrate improved noise tolerance for multichannel 

versus single-channel micromosaicking. Figure 13.b and d show that the variance in NCC 

space is reduced by taking the mean of multiple NCC maps, since random noise fluctuations 

area averaged out and reduced over several spectral channels. However, comparison of 

Figure 13.a and c reveal that this process also populates (sharpens) the central true peak 

feature while reducing the magnitudes of false peaks. 

Hence, multichannel mosaicking was suggested to be more robust to noise compared to 

the single-channel case not only through averaging out random noise in NCC space but also 

because this spectral averaging apparently suppresses the false NCC peaks due to separate 

biological objects that share similar structural features, and therefore enhances the 

strength of the true peak versus false peaks. 

 Conclusions 

In this section, and after an exhaustive study of the state of art, we realize that the number 

of studies applying stitching to HS images in the literature is very limited. Consequently, we 

hypothesize that already existing (single channel or RGB) image stitching algorithms can be 

adapted to process a number of simultaneous spectral channels for further HS data 

applications. This includes, optimization of the type of data that stitching algorithms 

receive (e.g. overlap between frames or number of channels per frame), as well as any 

further modification of the actual algorithms. Computational costs are also going to be 

taken into account in order to decide which parameters perform better. 





 

25 

Chapter 4: Materials and 

Methods 

In this section, materials, quality assessment protocols and methods employed in this 

Master Thesis are introduced and further explained.  

4.1. Materials 

4.1.1. Image Acquisition System 

The instrumentation employed in this study consists of an HS camera coupled to a 

conventional light microscope (Figure 14). The microscope is an Olympus BX-53 (Olympus, 

Tokyo, Japan). The HS camera is a Hyperspec® VNIR A-Series from HeadWall Photonics 

(Fitchburg, MA, USA), which is based on an imaging spectrometer coupled to a CCD 

(Charge-Coupled Device) sensor, the Adimec-1000m (Adimec, Eindhoven, Netherlands). 

This HS system works in the visual and near-infrared (VNIR) spectral range from 400 to 1000 

nm with a spectral resolution of 2.8 nm, sampling 826 spectral channels and 1004 spatial 

pixels. The push-broom camera performs spatial scanning to acquire an HS cube with a 

mechanical stage (SCAN, Märzhäuser, Wetzlar, Germany) attached to the microscope, 

which provides accurate movement of the specimens (±3 μm accuracy). The objective 

lenses are from the LMPLFLN family (Olympus, Tokyo, Japan), which are optimized for infra-

red (IR) observations. The light source is a 12 V, 100 W halogen lamp.  
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Figure 14. Microscopic HS acquisition system. a) HS camera, b) Halogen light source, c) Positioning joystick and d) XY 

linear stage [62]. 

To ensure high quality acquisitions, the methodology proposed in a previous research work 

to maximize the quality of HS images acquired with a push-broom microscope [63] was 

followed. This methodology includes the optimal speed determination of the scanning, a 

dynamic range configuration, an appropriate alignment, and the correct focusing 

procedure. Custom software for synchronizing the scanning movement and the camera 

acquisition was previously developed.  

4.1.2. Dataset Acquisition 

The specimens investigated in this research work consist of human biopsies extracted 

during brain tumor resection procedures. The pathological slides in this study were 

processed and analyzed by the Pathological Anatomy Department of the University 

Hospital Doctor Negrín at Las Palmas of Gran Canaria (Spain). The study protocol and 

consent procedures were approved by the Comité Ético de Investigación Clínica-Comité de 

Ética en la Investigación (CEIC/CEI) of the same hospital. After the resection, the samples 

were dehydrated and embedded in paraffin blocks. The blocks were then mounted in 

microtomes and sliced in 4 μm thick slices. Finally, the slices were rehydrated and stained 

with H&E. After routine examination of the samples, every sample was diagnosed by 

pathologists as GB, according to the WHO classification of tumors of the nervous system 

[2]. After the pathologist confirmed the GB diagnosis, macroscopic annotations of the GB 

locations were made on the physical glass slides using a marker-pen. Non-tumor areas are 

defined as areas in the pathological slide where there is no discrete presence of tumor cells. 

Within the areas annotated by a pathologist, regions of interest (ROI) were selected and 

subsequently digitized using HS instrumentation. Figure 15 shows an example of the 
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annotations within the pathological slide, the selection of different ROIs (shown at 5x), and 

the HS images (imaged at 20x) that are used in this study. Red color annotations indicate 

areas diagnosed as GB, while non-tumor areas were annotated in blue marker.  

 
Figure 15. Pathological samples used in this study. a) Macroscopic annotations performed in pathological slides after 

diagnosis. Blue squares denote regions of interest (ROIs) within annotations; b) ROIs from a shown at 5x; c) of HS 

images used in this study for classification (imaged at 20x). 

Using the aforementioned instrumentation, some of the areas highlighted by pathologists 

from each slide were imaged. The positioning joystick of the microscope was used to select 

the initial position of the first HS image within a ROI to be captured. Due to the challenges 

imposed by the high dimensionality of the HS images, the images employed for this Master 

Thesis were collected with a spatial size of 800 lines, producing HS cubes of 800 × 1004 × 

826, i.e., number of lines × number of rows × number of bands. However, as the algorithm 

developed by Lang et all. [61] only admitted square images, cubes were cropped into 800 

x 800 x 826. Furthermore, these images were scanned from histology brain tissue slides at 

magnification 20x, producing 2D images of size 299 x 299 μm (Figure 15.c). This 

magnification was chosen because it allowed the visualization of the cell morphology; 

hence, the classifier was able to exploit both the spatial and the spectral features of data. 

In this study, a total of 5 images presenting and not presenting GB were used in this Master 

Thesis. 

 

Figure 16. Database of 5 hyperspectral histological images (Represented as RGB). The 3 images at the left present GB, 

were the two of the right do not.  

The FOV captured by a camera depend on both the lens magnification (𝑀𝑖) and the sensor 

size of the camera (𝑆𝑠), as shown in (4). The sensor size can be calculated as the product of 
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the pixel size of the sensor (𝑃𝑠) by its number of pixels (𝑁). Using this information, we are 

able to calculate the pixel size for the different magnifications. By using (4), the calculated 

pixel size is 0.37 µm at magnification 20x. 

 

 
𝐹𝑂𝑉 =

𝑆𝑠

𝑀𝑖
=
𝑃𝑠 ∗ 𝑁

𝑀𝑖
;    𝑃𝑠 =

𝐹𝑂𝑉 ∗ 𝑀𝑖

𝑁
= 0.37 𝜇𝑚/𝑝𝑖𝑥𝑒𝑙  (4) 

 

4.1.3. Processing Framework 

The processing framework applied to each HS cube is composed by the following steps. 

First, a standard flat field correction is applied to the images. To this end, the images are 

transformed from radiance to normalized transmittance by using a reference image that is 

captured from a blank area of the pathological slide [27]. Then, due to the high correlation 

of spectral information between adjacent spectral bands, a reduced-band HS image is 

generated by averaging the neighbors’ spectral bands, reducing the number of spectral 

bands from 826 bands to 275 and slightly reducing the white Gaussian noise. This band 

reduction is also beneficial for alleviating computational cost in the subsequent image 

processing. Moreover, the stitching algorithm was implemented in MATLAB R2019b in a 

Windows environment (Microsoft Windows 10) with an Intel i5-4210U 1.70 GHz CPU and 

16 GB RAM.  

4.2. Quality Assessment Protocol 

To be able to carry out this Master Thesis, a quality assessment protocol needed to be 

designed for the stitched images. The problem arises when trying to measure the quality 

of the alignment of several small FOV images taken by the microcopy, as such large FOV 

image (ground truth) does not exist. We addressed this problem of quality assessment by 

designing an approach based on the one proposed by the Wald Protocol in 1997 [64]. Thus, 

instead of capturing new images and stitch them, for which we do not have ground truth, 

we virtually crop an image in small frames and further stitch them, being able to compare 

their alignment to its ground truth image from where they were firstly cropped.  

Thus, as explained in Figure 17, we began degrading the FOV of a large FOV image. In this 

degradation process some error was incorporated in order to simulate the imperfect 

movements of the microscope’s platform. Following, stitching algorithms were applied to 

the small FOV images in order to create an assembled large FOV image. Finally, the quality 

of the alignment was measure applying different metrics found in the state-of-the-art to 

the stitched images with respect to the original ones.    
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Figure 17. Block diagram of the employed Wald Protocol. 

In the following sections the different processes carried out in our experiment are going to 

be explained more in detail.  

4.2.1. Field of View Degradation (FOVD) 

When working with microscopes, the FOV is highly determined by the magnification used. 

Pathologists, which are the ones that are going to use the assembled images, usually work 

in 20x to detect an event on a slide [65]. To simulate this magnification, we should apply a 

FOV degradation by a factor of 20. However, for simplicity of the tests, it was decided to 

work with a FOVD of 2. In section 4.1.2, it is shown that the size of the images employed is 

299 x 299 μm, and thus the new small FOV images would have a size of  150 x 150 μm. Be 

aware that in this Master Thesis, although the FOV is degraded, as we are not increasing 

the magnification, the pixel size remains constant and, as calculated in section 4.1.2, it is 

0.37 μm. In real life, if we increase by a factor of 2 the FOV (magnify the image 2x), the pixel 

size would be reduced by the same factor.  

 

Figure 18. FOVD of 2 divide the FOV by 2.  

Reference large FOV image  

Quality Measures 

Q 

FOV degradation 

Simulated small FOV image  

Stitching Algorithm 

Stitched large FOV image 
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Another variable to take into account was the overlap between the small FOV images. The 

overlap that is going to be used in this project is defined as the percentage that one image 

𝑖 + 1 shares with its predecessor, 𝑖. As shown in (5), the value of the overlap depends on 

the FOV degradation and the number of small FOV images (𝑁𝑠𝑖) that are cropped in each 

direction. In this way, it is possible to have different overlaps for 𝑋 and 𝑌 axis. However, 

for simplicity of the test we are going to set the same overlap for both axes.  

 
𝑂𝑣𝑒𝑟𝑙𝑎𝑝 =  

𝑁𝑠𝑖 − 𝐹𝑂𝑉𝐷

𝑁𝑠𝑖 − 1
 (5) 

In the same way, the number of small FOV images is defined as equation (6). 

 
𝑁𝑠𝑖 =  

𝑜𝑣𝑒𝑟𝑙𝑎𝑝 − 𝐹𝑂𝑉𝐷

𝑜𝑣𝑒𝑟𝑙𝑎𝑝 − 1
 (6) 

As in this Master Thesis the FOVD is set to 2, the overlap follows the plot shown in Figure 

19. Equation (5) has an asymptote in 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = 1. For this reason, in our empirical tests 

we decided to stop at 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = 0.92 (𝑁𝑠𝑖 = 13), where the graph reach a plateau.  

 

Figure 19. Overlap versus number of small FOV images (𝑭𝑶𝑽𝑫 = 𝟐). 

For example, in Figure 20 there are shown two sets of small FOV images with different 

overlaps (𝐹𝑂𝑉𝐷 = 2).  
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Figure 20. Example of different overlap images. 

However, such a perfect degradation cannot be achieved in real life. The most common 

inaccuracies caused when taking pictures for stitching algorithms are rotational, scaling and 

translational errors [66]. When working with the platform of our microscope, small 

rotational errors caused by vibration of the platform or little scaling errors due to different 

heights within the same slide, can be neglected. However, and as we saw in section 4.1.1, 

we have to deal with 3 μm translational error. The maximum translational error (in pixels) 

that the platform can cause at 20x was calculated in (7).   

 
𝐸𝑟𝑟𝑜𝑟 (𝑝𝑖𝑥𝑒𝑙𝑠) =

𝐸𝑟𝑟𝑜𝑟

𝑃𝑖𝑥𝑒𝑙 𝑆𝑖𝑧𝑒
=  

3𝜇𝑚

0.37 
𝜇𝑚
𝑝𝑖𝑥𝑒𝑙

= 8 𝑝𝑖𝑥𝑒𝑙𝑠 (7) 

Thus, when degrading the FOV, errors were simulated by translating the small FOV images 

a random number of pixels within the range -8 to 8. To be able to do that, the image was 

first added an 8-pixel frame around itself.  

Furthermore, and as seen in (8), we can calculate the maximum error percentage taking 

into account the error in pixels previously calculated and the size of the FOV. Since the error 

is the same for both axes, and we are working with a square cube, error would be the same 

for both axes.  

 
𝐸𝑟𝑟𝑜𝑟 (%) =  

𝐸𝑟𝑟𝑜𝑟

𝐹𝑂𝑉
∗ 100 =

3

375
∗ 100 = 0.8% (8) 

 

The last variable that we should take into account is the number of frames (𝑁𝑓) taken. For 

a constant FOVD and overlap, the number of frames taken goes from the minimum number 

of small FOV images possible, that is the same as the FOVD, to the number of small FOV 

images necessary to reconstruct the original image based on the overlap (9).  

 
𝐹𝑂𝑉𝐷 ≤ 𝑁𝑓 ≤

𝑜𝑣𝑒𝑟𝑙𝑎𝑝 − 𝐹𝑂𝑉𝐷

𝑜𝑣𝑒𝑟𝑙𝑎𝑝 − 1
 (9) 
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In Table 1 it is shown the configuration for different number of frames taken and their 

corresponding overlaps. For the interpretation of this Table, it has to be taken into account 

that the diagonal represents the 𝑁𝑠𝑖 necessary to reconstruct the whole image. 

 
Table 1. Configuration for different number of frames taken and their corresponding overlaps (FOVD = 2) 

overlap \ 
Nf 

0 0.5 0.67 0.75 0.8 0.83 0.86 0.88 0.89 0.9 0.91 0.92 

2 X X X X X X X X X X X X 

3  X X X X X X X X X X X 

4   X X X X X X X X X X 

5    X X X X X X X X X 

6     X X X X X X X X 

7      X X X X X X X 

8       X X X X X X 

9        X X X X X 

10         X X X X 

11          X X X 

12           X X 

13            X 

 

Thus, the less 𝑁𝑓 we take, the less reconstructed the original image would be.  

 

 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝐹𝑂𝑉

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐹𝑂𝑉
∗ 100 =

(𝑁𝑓 − (𝑁𝑓 − 1) ∗ 𝑜𝑣𝑒𝑟𝑙𝑎𝑝)

(𝑁𝑠𝑖 − (𝑁𝑠𝑖 − 1) ∗ 𝑜𝑣𝑒𝑟𝑙𝑎𝑝)
∗ 100 (10) 

For example, in Figure 21 are shown two configurations with equal FOVD and overlap, but 

different number of frames taken. Specifically, 𝐹𝑂𝑉𝐷 =  2 and 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 =  50%, thus we 

are in column 2 of Table 1 and the number of frames taken that we can choose are 2 or 3. 

As 3 is the value in the diagonal, it is the one that would reconstruct the original image 

(Figure 21.a). It can be proved using (6) that 0.5 − 2/0.5 − 1 =  3. However, if we choose 

2 frames to reconstruct the original image (Figure 21.b), only 75% of it would be 

reconstructed (from (10): 2 − 0.5/3 − 1 =  0.75). 

 
Figure 21. Same FOVD degradation and overlap was set for both images. a) The area reconstructed is 100% the 

original image and b) The area reconstructed is 75% the original image. 

a)                                                                b)  
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4.2.2. Stitching Algorithm 

For this Master Thesis, we decided to employ two different stitching methods, that we 

named manual and automatic stitching. The manual stitched consisted in just mosaicking 

the images one next to each other, without any kind of further processing. However, for 

the automatic stitching a more complex algorithm, developed by Ryan T. Lang et all. [61], 

was used.  

For the automatic stitching, cross-correlation maps are calculated between consecutive 

image frames. To do so, a serpentine pattern (Figure 12) was followed, where 𝑖 +

1 indicates the contiguous vertical frame of 𝑖. Then, the maps are normalized to an in-place 

autocorrelation (i.e., the theoretical maximum correlation). Correlation space then maps 

the probability of alignment across the spatial domain spanned by the intersection of two 

images being aligned, from which the location of maximum likelihood is selected as the 

“true” alignment location for the subsequent stitching step. We calculate the spatial cross-

correlation map separately for each additional channel and average the maps in correlation 

space, producing a single map.  The algorithm imposes some limitations, such as a limited 

number of spectral bands (10) and the aspect ratio of the image to be one (images should 

be square shape). 

4.2.3. Quality Metrics 

Image quality evaluation methods can be subdivided into objective and subjective methods 

[67]. Subjective methods are based on human judgment and operate without reference to 

explicit criteria. However, determining which method provides a better-quality image could 

vary from person to person. For this reason, it is also necessary to establish quantitative 

measures to quantify the effects of image stitching algorithms on image quality. Objective 

methods are based on comparisons using explicit numerical criteria, and references are 

possible such as the ground truth we are using for this project. The different image quality 

metrics employed in this Master Thesis will be explained below. 

Root Mean Square Error (RMSE) 

The root mean square error can be used as an evaluation criterion of the stitching method. 

The RMSE between each stitched image band and the corresponding reference band can 

be computed as a measure of spectral fidelity. Specifically, it measures the amount of 

change per pixel due to the processing of stitching [68]. Given a reference image 𝑓 and a 

test image 𝑔, both of size 𝑀𝑥𝑁, the RMSE is given by (11).  

 

𝑅𝑀𝑆𝐸 =  √
1

𝑀𝑁𝑃
∑∑ ∑‖𝑓(𝑖, 𝑗) − 𝑔(𝑖, 𝑗)‖2

𝑁−1

0

𝑀−1

0

𝑃−1

0

 (11) 

Thus, the lower the RMSE, the higher stitched image quality.  
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Although the correlation coefficient (CC) can be also used as a metric for the similarity of 

two images, during Pradham research [68], it was found that the RMSE has a higher 

resolution compared to the correlation coefficient. And thus, this metric is not going to be 

taken into account for this experiment. 

Peak Signal to Noise Ratio (PSNR) 

The term peak signal-to-noise ratio (PSNR) is an expression for the ratio between the 

maximum possible value of a signal and the power of distorting noise that affects the 

quality of its representation (12).  Because many signals have a very wide dynamic range, 

the PSNR is usually expressed in terms of the logarithmic decibel scale.  

The peak signal-to-noise ratio can be also used to compare image assembly quality. As for 

the RMSE, images 𝑓 and 𝑔 are going to be evaluated by the PSNR which is defined by (12). 

 
𝑃𝑆𝑁𝑅 = 20 log10 (

𝑀𝐴𝑋𝑓

√𝑀𝑆𝐸
) ;   𝑤ℎ𝑒𝑟𝑒 𝑀𝑆𝐸 =  

1

𝑀𝑁𝑃
∑∑ ∑‖𝑓(𝑖, 𝑗) − 𝑔(𝑖, 𝑗)‖2

𝑁−1

0

𝑀−1

0

𝑃−1

0

 (12) 

 

The mean square error (MSE) represents the cumulative squared error between the 

stitched and the original image, whereas PSNR represents a measure of the peak error. The 

PSNR value approaches infinity as the MSE approaches zero; this shows that a higher PSNR 

value provides a higher image quality [69]. 

The main limitation of this metric is that it relies strictly on numeric comparison and does 

not actually take into account any level of biological factors of the human vision system 

such as the structural similarity index (SSIM). 

Structural Similarity Index (SSIM) 

The SSIM is a well-known quality metric used to measure the similarity between two 

images. It was proposed by Wang et al. [70], and is considered to be correlated with the 

quality perception of the human visual system (HVS). Instead of using traditional error 

summation methods, the SSIM is designed by modeling any image distortion as a 

combination of three factors that are loss of correlation, luminance distortion and contrast 

distortion. As for the PSNR, given a reference image 𝑓 and a test image 𝑔, the SSIM is 

defined in (13). 

 

𝑆𝑆𝐼𝑀 (𝑓, 𝑔) = 𝑙(𝑓, 𝑔) 𝑐(𝑓, 𝑔) 𝑠(𝑓, 𝑔);     𝑤ℎ𝑒𝑟𝑒 

{
 
 
 

 
 
 𝑙(𝑓, 𝑔) =  

2𝜇𝑓𝜇𝑔 + 𝐶1

𝜇𝑓
2 + 𝜇𝑔

2 + 𝐶1

𝑐(𝑓, 𝑔) =  
2𝜎𝑓𝜎𝑔 + 𝐶2

𝜎𝑓
2 + 𝜎𝑔

2 + 𝐶2

𝑠(𝑓, 𝑔) =  
𝜎𝑓𝑔 + 𝐶3

𝜎𝑓𝜎𝑔 + 𝐶3 }
 
 
 

 
 
 

 (13) 
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The first term in (13) is the luminance comparison function which measures the closeness 

of the two images’ mean luminance (𝜇𝑓 and 𝜇𝑔). This factor is maximal and equal to 1 only 

if 𝜇𝑓 = 𝜇𝑔. The second term is the contrast comparison function which measures the 

closeness of the contrast of the two images. Here the contrast is measured by the standard 

deviation 𝜎𝑓and 𝜎𝑔. This term is maximal and equal to 1 only if 𝜎𝑓 = 𝜎𝑔. The third term is 

the structure comparison function which measures the correlation coefficient between the 

two images f and g. Note 𝜎𝑓𝑔 is the covariance between 𝑓 and 𝑔. The positive constants 

𝐶1, 𝐶2 and 𝐶3 are used to avoid a null denominator. The positive values of the SSIM index 

are in the range [0,1]. A value of 0 means no correlation between images, and 1 means that 

both images are equal [69].  

4.3. Methods 

In this section the methodology that was followed during the development of this Master 

Thesis is explained.  

4.3.1. Manual Stitching 

First of all, the manual stitching process was carried out. As for this process the overlap 

only could be 0%, then the only possible number of frames taken was 2, the same number 

of small FOV images (𝑁𝑠𝑖 = 𝑁𝑓 = 2). Thus, the reconstructed image size was 100% of the 

original one.   

4.3.2. Automatic Stitching 

However, the automatic stitching process is more complex. The goal here was to find the 

minimum overlap necessary between contiguous images as well as the minimum 

combination of bands that provide the maximum performance in the final stitched image. 

To achieve it, we designed a two-steps methodology ( 

Figure 22). First of all, from Table 1, the best overlap and 𝑁𝑓 configuration was going to be 

selected. And afterwards, single band stitching was going be performed and the best 

stitching mosaics would show which wavelength perform better for this type of images.  

 

Figure 22. Flow diagram of the methodology employed. 
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Overlap and Frame Selection 

In this first step, the goal was to find the minimum overlap that produced the most accurate 

stitched image, while the maximum number of frames to reconstruct the original image. In 

other words, the closest to the right and the diagonal in Table 1.  

We tested a wide range of different overlaps to see their performance¡Error! No se 

encuentra el origen de la referencia.. The maximum overlap that we used was the one for 

which the function reached the plateau, 92%. The minimum overlap possible is given by 

the translational error percentage, in this case 0.8%. 

 0.8% ≤ 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 ≤ 92% (14) 

If substituting this values into (6), and taking into account that 𝑁𝑠𝑖  can just take natural 

values, we have that the number of small FOV images goes as in (15).  

 3 ≤ 𝑁𝑠𝑖 ≤ 13 (15) 

In this way, we are going to obtain 3D plots were, 𝑥 and 𝑦 axes correspond to overlap and 

frames, respectively, while z axis is the value of each single figure of metric.   

Furthermore, although, the number of bands of the image was no subject of study in this 

first step, we tested these parameters into different image channel configurations to see 

the behavior of the algorithm (a RGB image, a 10-band multispectral image and a grayscale 

image).  

As a neutral image, we used an artificial RGB image extracted from the original HS image 

(Figure 23).  For this process we tried to imitate as much as possible the human eye spectral 

response. Thus, we applied the normal probability density function for the three different 

RGB bands. Based on Figure 23, the mean band selected for the blue channel was 470 nm 

with standard deviation (std) equal to 0.04, for the green channel, 560 nm with a std of 

0.06 and for the red channel 590 nm with a std of 0.08. 

 

Figure 23. Human eye spectral response to light [71].   
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Then, to test how the algorithm respond to more bands, a 10-band image was used. These 

10-band images were generated from the 275-band cube, extracting 10 equidistant 

distributed bands (Figure 24).  

 

Figure 24. HSI bands to 10 Multispectral imaging bands [72]. 

And finally, to test how the algorithm respond to few bands, a grayscale image was 

employed. This image was generated from the mean value of each pixel through the 275 

bands of the HS cube. 

Finally, the quality of the stitched image was measure in these three different types of 

images for all the configurations of overlaps and all their possible number of frames. The 

optimum overlap and frames were selected from these experiments.  

Band Selection 

In this second step, the goal was to find the single band or the best band subset that 

produced the best stitching. This selection will bring benefits such as smaller processing 

time or resources employed by the selected stitching algorithm.  

Band reduction denotes the group of techniques that reduce high dimensional data to a 

smaller set of components. Reduction can be performed by either identifying bands from 

the original subset (selection), or by employing several transforms that produce new 

features (extraction) [73]. As we are doing a prove of concept, a selection method was 

employed. Thus, for the second step, the quality assessment protocol was performed over 

every single band. Each channel in the 275-band cube, was degraded into smaller frames, 

then stitched and finally measured. Finally, the band and band range providing the best 

stitched image accuracy was selected.  

Final Image Selection 

In this third and last step, the goal was to determine how different channel combinations 

behaved. Firstly, it was made a selection of the 3 wavelengths which produced the most 

accurate stitching results, and a cube was created from them. Additionally, a new grayscale 

image was created from as the average of such 3 selected bands. Furthermore, a selection 

of 10 bands was made, also within the range of better performing wavelengths, and a 

grayscale image was also created from the 10 selected bands.  
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Conclusions 

In this section the materials needed to carry out this project, the image acquisition system 

as well as the histology images dataset have been described. It was also explained the 

quality protocol, based on the Wald Protocol, that is going to be followed. Finally, every 

step of the methodology was defined. First, a manual stitching is going to be performed as 

a baseline method. Then the algorithm of Lang et all. [61] is going to be employed in this 

work. Optimal selection of overlap and frames are going to be found, as well as the 

wavelength that offer the most accurate mosaic. Finally, some channel combination images 

are going to be created, from the more suitable wavelengths in this particular application, 

in order to evaluate their stitching accuracy. 
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Chapter 5: Results  

In this section, the results of the methods described before will be shown for further 

analysis and discussion.  

5.1. Manual Stitching 

Manual stitching consisted in mosaicking the images one next to each other, without 

further processing. Note that, as the pictures are being assembled one next to another, 0% 

overlap is needed. In this way the number of frames needed to reconstruct the original 

image is equal to the field of view degradation (𝐹𝑂𝑉𝐷 = 2 in this case). As we can see in 

Table 2, metrics for this kind of stitching algorithms are not bad.  

Table 2. Results obtained for the Manual Stitching approach. 

 RGB 10 bands Grayscale 

RMSE 0.10 ± 0.02 0.08 ± 0.01 0.07 ± 0.01 

PSNR (dB) 19.88 ± 1.70 22.02 ± 0.89 23.54 ±0.62 

SSIM 0.83 ± 0.03 0.89 ± 0.02 0.84 ± 0.04 

 

Nevertheless, as we can see in an example of this stitching process (Figure 25), although 

the image is equal to the original in the majority of the mosaic, it is really inaccurate in the 

areas where the images are being assembled. For example, if stitching two frames, one 

next to each other, most of the image would be the same as the original one, since it is 

contained in the small FOV image. However, the right border of the left image will no 

coincide with the left border of the right image because of the platform translational error, 

and there is where errors arises.  
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Figure 25. Example result of a manual stitching of a brain histology image. 

5.2. Automatic Stitching 

After the manual stitching was conducted, we proceeded to employ Lang et al. [61] 

algorithm. As described in section 4.2.2, a test bench was employed to be able to test the 

different parameters involved in the stitching process.  

5.2.1. Overlap and Frame Selection 

Firstly, we tested the overlap selected and the frames employed, at the same time. This 

meaning that for each image we have, it was tested all the possible frames for a certain 

overlap and all the overlaps between 50% and 92%. We can see an example of a chart 

obtained for SSIM in Figure 26.  

 

 

Figure 26. SSIM result of image ‘Brain_20x_C01_1_1_T’ for all overlaps an its corresponding frames. Colorbar indicate 

the SSIM value for a certain pair of parameters combination. 
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This procedure was repeated for 5 different brain histology images in the form of RGB, 10 

bands and Grayscale. Then, for each image it was found the overlap and frames for which 

each image had the minimum value for RMSE and the maximum values for PSNR and SSIM. 

After that, the means for overlap, frames and metric were calculated and the parameters 

are shown in Table 3.  

Table 3. Overlap and Frames for 5 brain histology images. 

  5 Brain Histology Images 

  RGB 10 bands Grayscale 

RMSE 

Mean Min Value 0.13 ± 0.01 0.11 ± 0.00 0.19 ± 0.01 

Overlap 0.67 ± 0.00 0.77 ± 0.13 0.72 ± 0.11 

Frames 3.00 ± 0.00 3.00 ± 0.00 3.00 ± 0.00 

PSNR (dB) 

Mean Max Value 17.33 ± 0.93 18.78 ± 0.25 14.48 ± 0.52 

Overlap 0.67 ± 0.00 0.72 ± 0.11 0.72 ± 0.11 

Frames 3.00 ± 0.00 3.40 ± 0.55 3.00 ± 0.00 

SSIM 

Mean Max Value 0.78 ± 0.05 0.80 ± 0.05 0.43 ± 0.04 

Overlap 0.76 ± 0.12 0.80 ± 0.12 0.80 ± 0.12 

Frames 3.00 ± 0.00 3.40 ± 0.55 3.40 ± 0.55 

 

Results show some consistency with Lang et al. [61] conclusions, where multichannel 

correlation demonstrated to improve the noise tolerance of HS microimage mosaicking 

versus single channel correlation. We can observe in Table 3 how the quantitative metric 

results are better for 10-band cube, then for RGB images and finally for Grayscale ones. 

Moreover, the mean overlap between frames is considerably smaller than the one that 

Lang et al. [61] used in their experiments, 94%.  Thus, we can state that microscopy slides 

do not need as much overlap between frames as microendoscope video frames.  

As for the frame values, it is clearly shown that the most repeated frame number was 3, 

and thus we selected this value. However, the optimal overlap number is not clear. To 

select the overlap, it was chosen the one which better reconstructed the original image 

from the selected frames. Note that to reconstruct the original image from 3 frames will 

require a 50% overlap, but according to the results this overlap does not produce high 

quality mosaics. The next possible overlap would be 67%, and this value was selected since 

it reconstructs almost the whole original image (83% as seen in equation (16)).  

 

 𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑒𝑑 𝑎𝑟𝑒𝑎

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑎𝑟𝑒𝑎
=
3 − 2 ∗ 0.67

4 − 3 ∗ 0.67
= 83% (16) 
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A more graphical representation of this situation is shown in Figure 27, where the figure of 

the left is the original image, and the one in the right is the reconstructed one from 3 frames 

and 67% overlap.  

 

Figure 27. Brain histology images a) Original image and b) Reconstructed 100% of the original image from 3 frames at 

50% overlap and c) Reconstructed 83% of the original image from 3 frames at 67% overlap. 

To test the repeatability of the tests, we did the same procedure over 4 breast histology 

images and the results are shown in Table 4. 

a) 

c) 

b) 
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Table 4. Metric results, overlap and frames for 4 breast histology images. 

  4 Breast Histology Images 

   RGB 10 bands Grayscale 

RMSE 

Mean Min Value 0.11 ± 0.01 0.16 ± 0.01 0.12 ± 0.01 

Overlap 0.73 ± 0.12 0.79 ± 0.14 0.67 ± 0.00 

Frames 3.00 ± 0.00 3.25 ± 0.50 3.25 ± 0.50 

PSNR (dB) 

Mean Max Value 19.33 ± 0.61 16.05 ± 0.55 18.66 ± 0.58 

Overlap 0.73 ± 0.12 0.79 ± 0.14 0.67 ± 0.00 

Frames 3.00 ± 0.00 3.25 ± 0.50 3.25 ± 0.50 

SSIM 

Mean Max Value 0.96 ± 0.00 0.61 ± 0.03 0.74 ± 0.04 

Overlap 0.79 ± 0.74 0.84 ± 0.12 0.73 ± 0.04 

Frames 3.00 ± 0.00 3.00 ± 0.00 3.25 ± 0.05 

 

For this kind of images, it is not as evident that multichannel correlation improves stitching 

images, since the best metrics are not always found for the 10 band images, nor the worst 

ones for the Grayscale frames. However, we are only testing 4 images as a proof of concept, 

and thus, their results may not be quite reliable. More images should be tested in order to 

validate the methodology and the results. Additionally, the most repeated frame is again 

3, and thus, the overlap value selected is 67%.  

5.2.2. Band Selection 

Once the frames were selected to be 3 and the overlap 67%, and since there was no clear 

better stitching metrics from one kind of image to another, we proceeded to test each band 

individually. The motivation to realize this kind of test comes from the own nature of the 

images, since histology slides usually have similar color characteristics, it was hypothesized 

that an optimal subset of wavelengths could be selected to produce accurate mosaics. 

Moreover, this selection would bring benefits such as smaller processing time or resources 

employed by the selected stitching algorithm. 

To do that, we employed the pre-processed images containing 275 bands and performed 

the Wald Protocol (Figure 17) to each band independently. That is, taking a single band 

image and crop it into smaller frames. Then stitch together the small frames and finally 

compare the resulting mosaic with the original single band image. This process was 

repeated for the 275 bands of each of the 5 brain histology images. Then, for each band 

the mean of the 5 images metric value was performed , as shown in Figure 28 and Figure 

29.  
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Figure 28. Plot of mean SSIM result vs wavelength for 5 Brain Histology images (275 bands) using 67% of overlap and 

3 frames. 

As expected, the RMSE and PSNR results have similar curves, but one is the inverse of the 

other one.  

 

Figure 29. Plots of mean values for 5 Brain Histology images (275 bands) using 67% of overlap and 3 frames. a) Plot of 

mean RMSE vs wavelength and b) Plot of mean PSNR vs wavelength. 

However, in these results, noise can be observed from wavelength 764,997 nm onwards, 

leading to fatal errors in the mosaics. Thus, it was decided to remove some of the initial 

and last bands from the HS image, obtaining a cube of 159 bands instead of 275. Thus, the 

graph for the SSIM result is shown in Figure 30 and the ones for the RMSE and PSNR results 

in Figure 31. 

a)                                                                                     b)  
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Figure 30. Plot of mean SSIM results vs wavelength for 5 Brain Histology images (159 bands) using 67% of overlap and 

3 frames.  

   

Figure 31. Graphs of mean values for 5 Brain Histology images (159 bands) using 67% of overlap and 3 frames a) Plot 

of mean RMSE vs wavelength and b) Plot of mean PSNR vs wavelength. 

 

Previous figures demonstrate that there is a dependency between wavelength and metric 

quality. Thus, some wavelengths show clear better results than other ones, providing 

minimum RMSE and maximum PSNR and SSIM values. They are presented in further detail 

in Table 5.  

 

a)                                                                                     b)  
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Table 5. Average single band best metric results for the 5 Brain Histology Images 

  159 Bands Brain Cube 

RMSE 
Mean Min Value 0.1148 

Wavelength (nm) 703.8810 

PSNR (dB) 
Mean Max Value 18.7355 

Wavelength (nm) 703.8810 

SSIM 
Mean Max Value 0.9340 

Wavelength (nm) 738.8050 

 

From the graphs and table, we can extract that the most accurate stitching results would 

be given from bands in the range of wavelength 650 to 750 nm. Furthermore, Figure 30 

shows a peak in the red region (~635-700 nm) and a smaller one in the blue and violet 

region (~400-490 nm), but a valley in the green region (~520-560 nm). We have 

hypothesized that this behavior is due to the nature of the histology images, as they were 

stained with H&E (Hematoxylin and Eosin), where hematoxylin stains cell nuclei blue, and 

eosin stains the extracellular matrix and cytoplasm pink [13]. Therefore, no green 

components were present in the slide, nor in the HS cube. Thus, when performing the 

stitching process on the green wavelengths, no reference points were available for the 

registration of the frames. 

As in the previous step, to check the repeatability of these tests in different histological 

images, we repeated the same procedure with the 4 breast histology images. The graphs 

obtained are shown in Figure 32 and Figure 33.  

 

Figure 32. Plot of mean SSIM vs wavelength for 4 Breast Histology images (159 bands) using 67% of overlap and 3 

frames. 
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Figure 33. Graphs of mean values for 4 Breast Histology images (159 bands) using 67% of overlap and 3 frames a) Plot 

of mean RMSE vs wavelength and b) Plot of mean PSNR vs wavelength.  

We can observe in Figure 32 the peaks in the red, blue and violet regions, and de valley in 

the green one. These results are consistent with brain histology images, as breast histology 

images were also stained with H&E. Moreover, the following Table 6 shows the minimum 

RMSE and the maximum PSNR and SSIM values also shown in previous charts.  

Table 6. Average single band best metric results for the 4 Breast Histology Images 

  159 Bands Breast Cube 

RMSE 
Mean Min Value 0.1121 

Wavelength (nm) 425.9470 

PSNR (dB) 
Mean Max Value 19.0209 

Wavelength (nm) 425.9470 

SSIM 
Mean Max Value 0.9481 

Wavelength (nm) 740.2600 

 

From the previous Table 6, we can observe that SSIM measure is in the range of 650 – 750 

nm, as for the brain histology images, but RMSE and PSNR best quality measure are not in 

this range. However, they are in the range of the blue and violet region (~400-490 nm), 

which are also present colors in this type of images. Moreover, although for RMSE and 

PSNR,  minimum  and maximum values, respectively, are found in wavelength 425 nm, 

values in the range 650 – 750 nm are also really close to them, as we can see in Figure 33 

 

 

a)                                                                                     b)  
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5.2.3. Final Image Selection 

Once the frame, overlap and wavelength range were selected, we tested several image 

configurations to evaluate their behavior. Firstly, from the results from the independent 

band stitching, we selected 10 and 3 bands with SSIM values higher than 0.75 and 

wavelengths between 650 and 750 nm (Table 7 and Table 9, respectively).   

Table 7. 10 bands selection with it correspondent SSIM values for Brain Cubes 

5 Brain Histology Images 

Wavelength (nm) Mean SSIM Value 

653.68 0.76 ± 0.10 

664.59 0.81 ± 0.07 

675.51 0.86 ± 0.05 

686.42 0.89 ± 0.04 

697.33 0.91 ± 0.02 

708.25 0.92 ± 0.01 

719.16 0.93 ± 0.01 

730.07 0.93 ± 0.01 

740.99 0.93 ± 0.01 

751.90 0.93 ± 0.01 
Table 8. 3 bands selection with it correspondent SSIM values for Brain Cubes 

5 Brain Histology Images 

Wavelength (nm) Mean SSIM Value 

686.42 0.89 ± 0.04 

719.16 0.93 ± 0.01 

751.90 0.93 ± 0.01 

 

From the 10 and 3 bands selected, new cubes were generated. Furthermore, grayscale 

cubes were generated from the mean of the 10 and 3 bands, respectively. Table 9 presents 

the mean value of the SSIM for the aforementioned cubes using different configurations 

strategies for comparison purposes.    

Table 9. Mean Values of SSIM for different Brain cube configurations 

5 Brain Histology Images 

Configuration Name Mean SSIM Value 

Best single band (719.16 nm) 0.93 ± 0.01 

10 selected bands  0.88 ± 0.04 

10 selected bands grayscale 0.91 ± 0.03 

3 selected bands 0.92 ± 0.01 

3 selected bands grayscale 0.94 ± 0.01 
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As we can appreciate in Table 9, composite image is not much better than the best single 

band by its own. However, we must consider the application we are stitching these images 

for. In this Master Thesis, stitching is performed to generate macro images where 

histopathologists will be able to find anomalies for brain cancer detection. Moreover, 

machine learning algorithms may also use this type of images to automatically predict these 

anomalies. Thus, single band images are not interesting for these applications and 

composites of several bands should be made. Overall, the new cubes produce good mosaic 

results (SSIM > 0.85) and so, they could be used for the aforementioned applications. In 

Figure 34, we can observe the qualitative results for the mosaic of the best band (Figure 

34.b), the 3-band cube (Figure 34.c) and the gray image extracted from the mean of the 3 

selected bands (Figure 34.d), compared to the original RGB image (Figure 34.a). However, 

as the bands composing these mosaics are between 650 and 750 nm, all the structures 

present in original image are not present in the mosaics, as they were not at these 

wavelengths.  

 

Figure 34. a) Original synthetic RGB brain histology image (275 bands), b) Mosaic of best single band (grayscale 

representation), c) Mosaic of 3 selected bands (false color image) and d) Mosaic of 3 selected bands grayscale. 

 

a)                                                                                        b)  

c)                                                                                        d)  
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Lastly, and as in the previous steps, the procedure was repeated with the breast cancer 

cubes. Same 10 and 3 bands were selected, and cubes made. Table 10, Table 11 and Table 

12 show the corresponding results. Similarly, to the brain histology images, breast histology 

images results are not much better in one configuration than another. It is necessary to be 

able to form different channel cubes for the application we need the mosaics for, and in 

Table 12 it is shown that it is possible to do it obtaining good stitching results (SSIM > 0.93). 

Table 10. 10 bands selection with it correspondent SSIM values for Breast Cubes 

4 Breast Histology Images 

Wavelength (nm) Mean SSIM Value 

652.95 0.75 ± 0.04 

663.86 0.82 ± 0.02 

674.78 0.87 ± 0.01 

685.69 0.91 ± 0.01 

696.61 0.93 ± 0.00 

707.52 0.94 ± 0.00  

718.43 0.95 ± 0.00 

729.35 0.95 ± 0.00  

740.26 0.95 ± 0.00  

751.17 0.91 ± 0.04 
Table 11. 3 bands selection with it correspondent SSIM values for Breast Cubes 

4 Breast Histology Images 

Wavelength (nm) Mean SSIM Value 

685.69 0.91 ± 0.01 

718.43 0.95 ± 0.00 

751.17 0.91 ± 0.04 

 

Table 12. Mean Values of SSIM for different Breast cube configurations 

4 Breast Histology Images 

Configuration Name Mean SSIM Value 

Best single band (718.43 nm) 0.95 ± 0.00 

10 selected bands  0.93 ± 0.00 

10 selected bands grayscale 0.95 ± 0.00 

3 selected bands 0.94 ± 0.00 

3 selected bands grayscale 0.93 ± 0.01 
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5.2.4. Manual vs Automatic Stitching 

Next, a comparison between the different methods employed in this Master Thesis is 

presented. In Table 13 we show a summary of the results achieved with the manual and 

the automatic stitching methods, in yellow and green color columns respectively. To be 

able to do the comparison, the RGB of the manual algorithms was compared to the 3 

selected bands from the automatic one. Same procedure was done for the 10 band images. 

For the gray image, in the manual stitching algorithm the mean of all the band was used, 

but for the automatic one, it was used the band which produced the most accurate result.  

Table 13. Summary of main Results (Yellow is for manual and green for automatic stitching). 

 Brain Histology Images 

 
Manual 

RGB 

Automatic 3 

Selected 

Bands 

Manual 

10 bands 

Automatic 

10 Selected 

Bands 

Manual 

Grayscale 

Automatic 

Best Single 

Band 

RMSE 0.10 ± 0.02 0.12 ± 0.00 0.08 ± 0.01 0.12 ± 0.01 0.07 ± 0.01 0.12 ± 0.00 

PSNR 

(dB) 
19.88 ± 1.70 18.63 ± 0.34 22.02 ± 0.89 18.25 ± 0.41 23.54 ±0.62 18.59 ± 0.17 

SSIM 0.83 ± 0.03 0.92 ± 0.01 0.89 ± 0.02 0.88 ± 0.04 0.84 ± 0.04 0.93 ± 0.01 

 

Results of Table 13 show that metrics are slightly better in green columns than in yellow 

ones. Furthermore, qualitative results show that the results of the automatic algorithm are 

better than the manual algorithms ones. Thus, we can conclude that Lang et al. [61] 

algorithm performs accurately when mosaicking hyperspectral histologic images.   

In Figure 35 it is shown how these methods would behave in a real situation. Firstly, Figure 

35.a and Figure 35.b show how is the original image, and how does it look when it is zoomed 

in. As taken at low magnification, spatial resolution is not the best. Moreover, Figure 35.c 

and Figure 35.d show how does it look a manually assembled mosaic. Single frames where 

taken at higher magnification and mosaicked one next to each other. The result is a high 

spatial resolution image, but bad alignment in the borders of the small frames because of 

the translational error produced by the platform. Finally, Figure 35.e and Figure 35.f show 

the result of an automatic stitching. Single frames were taken in the same way as the 

precious method, but assembled using the algorithm of Lang et al. [61] (3 frames at 67% 

overlap). The result is again a high spatial resolution image, but it does no reconstruct all 

the original image (just 83% of it) and we lose some quality at the borders of the mosaic. 

However, we consider that qualitatively the automatic method is better than the manual 

one since usually important features and characteristic which pathologist are looking for in 

a histology slide are located at the center of it. Thus, we are interested in a method that 

produces a good quality image in the center, and we are not much worried about the 

borders.  
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Figure 35. Simulation of a real situation. a) Original RGB image, b) Zoom of a produces a frame of low spatial 

resolution, c) Manual Stitched RGB Image, d) Zoom of c produces a frame of high spatial resolution but 

misalignments in the joints between frames, e) Automatic Stitched RGB Image, f) Zoom of e produces a frame of high 

spatial resolution but e image does not reconstruct the whole original image a.  

5.3. Resources 

In this last section, the resources employed in each test are shown and briefly commented. 

They were calculated using MATLAB R2019b in a Windows environment (Microsoft 

Windows 10) with an Intel i5-4210U 1.70 GHz CPU and 16 GB RAM. Time was obtained 

from the profile function, already incorporated in MATLAB. The output is displayed in 

seconds. The memory that each band need was measured using the function 

MONITOR_MEMORY_WHOS developed by Gardner, J. et al. [74], which uses the WHOS 

command and evaluates inside the BASE workspace and sums up the bytes.  The output is 

displayed in MB. Once we had the time and memory that each frame consumes, we 

proceeded to calculate two mean values. On one hand, the mean of every configuration 

used in the frame and overlap selection, and, on the other hand, the mean of the values 

obtained in for every band in the band selection phase. 

 

 

 

a)                                                                 c)                                                                  e) 

b)                                                    d)                                                      f) 
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Table 14. Resource employed by the different tests 

  Memory (MB) Time (seconds) Time (minutes) 

Frames and 
overlap 

selection 

RGB 2.49 331.87 5.52 

10 bands 6.83 816.18 13.60 

Grayscale 0.68 165.96 2.77 

Band Selection 0.08 67.57 1.12 

 

For the first step were the optimum overlap and frames were found, we can see some 

consistency since the 10 bands images spent more resources over the others, and so did 

the RGB images over the Grayscale ones. Furthermore, for the second step were the 

stitching algorithm was applied over every single band, we can see how the mean values of 

the resources were very low, since each single band did not have that much information.  

Conclusions 

In this chapter, the results obtained when applying the stitching to the HS histological 

images were shown and discussed. Firstly, the manual stitching images were shown to 

produce in general good quality mosaics, but presented bad alignment in the joint areas 

between frames. Then, it was found out that 3 frames gave the best metrics values and 

67% overlap reproduced most of the original image for the frames selected. Afterwards, 

out of all the bands in the HS cube, the range 650-750 nm was shown to provide the best 

stitching results. Finally, several channel combinations were made as well as the resources 

cost of the different tests were briefly analyzed.  
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Chapter 6: Discussion and 

Conclusions 

In the following section, the previously obtained results are discussed. This will lead us to 

conclude which is the minimum overlap and band methods necessary to achieve an 

accurate stitched image. Furthermore, the main limitations found during the experiments 

are described, as well as the future research lines for this project. 

6.1. Fulfilled Objectives 

The main goal of this master thesis was to apply stitching algorithms for automatic 

assembly of HS histological images. To this aim, the HS technology and its application in the 

medical field were exhaustive studied. Furthermore, the actual state-of-art algorithms 

currently used in the literature for image stitching was deeply studied. In this literature 

review, it was found that the number of studies applying stitching to HS images was very 

limited. Consequently, we hypothesized that an already existing image stitching algorithm, 

such as the one developed by Lang et al. [61], could be adapted to our type of data and its 

input image parameters further optimized.  

In this work we proposed the use of two different type of stitching algorithms, manual and 

automatic. The first one, consisted in simply assembly the frames one next to each other, 

and the second one was designed by Lang et al. [61]. They presented a multichannel 

mosaicking algorithm which applies pairwise normalized cross-correlation as a basis for 

frame registration. They used sequential frames with large overlapping areas (94%) to 

produce the mosaic. Consequently, we hypothesized that smaller overlap region between 

frames could be used to still acquire an accurate stitched image. Furthermore, other 

variables such as the number of frames and the bands employed could improve the final 

assembly result.  

A Wald Protocol was designed, where 20× brain histological images were firstly cut into 

pieces, introducing a small translational error similar to the one the microscope platform 
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would cause. Then, these small FOV frames were stitched (using both manual and 

automatic algorithms) together into a large FOV image. Finally, the mosaicked image would 

be compared against the original one in order to measure the quality of the image.  

On one hand, the mosaics obtained from the manual stitching algorithm produced good 

metrics (RMSE =  0.10 ±  0.02, PSNR =  19.88 ±  1.70, and SSIM =  0.83 ±  0.03) 

because most of the image remains the same. However, qualitatively we can observe how 

the joints between images do not match, and since most of the time what is really 

interesting in a histological slide is located at the center of it, this method did not provide 

a valid solution.  

On the other hand, the input images to the automatic algorithm developed by Lang et al. 

[61] were optimized. In the first step, all the overlaps from 50% to 92% with all their 

correspondent frames were tested for 5 brain histological images in the form of RGB, 10 

bands and grayscale cubes. From the mean metric values results it was found that the 

optimal frames would be 3 and the overlap 67%. From these selected overlaps and frames, 

the stitched image reconstructs the 83% of the original image with good quality metrics 

(RGB images: RMSE =  0.13 ±  0.01, PSNR =  17.33 ±  0.93, SSIM =  0.78 ±  0.05). 

Additionally, when observing them qualitatively, they show to be a really accurate 

assembly of the original image.  

Afterwards, single band stitching was performed. Charts representing metrics versus 

wavelength gave an idea of which channels performed better stitching for these kind of 

histology images. Specifically, the range of 650 to 750 nm gave the best results, having a 

maximum around the wavelength of 700 nm. Finally, several cubes assembly were 

performed. Two sets of 3 and 10 channels were chosen from the best performing channels, 

and new cubes were created. Grayscale images were also formed from the mean of each 

set independently. Thus, four image configuration were tested, being the 10-band image 

the worst one, followed by its grayscale image (mean of the 10 bands), the 3-band image 

and finally its grayscale one (mean of the 3 bands). This makes sense since the 10 bands 

were composed of worse wavelength performance than the 3 band selection cubes.    

All the procedures were repeated for 4 breast histology images to prove the repeatability 

of the tests. Furthermore, the computational cost of each stitching approach was 

computed in order to be aware of the resources employed and take them into account for 

further acceleration and implementation into a whole slide image software.  
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6.2. Conclusions 

Nowadays, the study of histology slides is regarded as the gold standard for the clinical 

diagnosis of cancer, and the trend is to digitalize histology slides for further automatic 

disease classification [16]. HSI is an emerging technology in the biomedical field which 

provides a large number of adjacent spectral bands allowing detection of materials in a 

scene with higher precision. Thus, the information provided by a HS image can be analyzed 

to detect, identify, or discriminate objects and patterns as well as the chemical composition 

of the material present at the scene [9].  

However, spatial information provided by one HSI frame is usually low. Additionally, high 

magnification images are desired because of its high resolution but they have a lack of 

broad FOV. Microimage mosaicking enables stitching many small scenes together to aid 

visualization, quantitative interpretation, and mapping of microscale features, but 

achieving both microscopic resolution and macroscopic FOV optical imaging remains a 

central challenge in the field. 

In this Master Thesis, it was studied the state-of-art referring the stitching algorithms of HS 

histology images. Experimental tests were performed, employing manual and automatic 

algorithms. Although, manual tests showed good results metrics, the joint between images 

were not as good. Lang et al. [61] algorithms proportioned good results when applying 3 

frames to reconstruct the original image and a 67% of overlap between them. Single band 

stitching was also performed, finding a range of wavelength between 650 and 750 nm that 

provided accurate mosaics. Several combinations of bands within this range were tested 

and proved to be quantitative and qualitative good. According to our results, a single band 

image produced the best stitching result. However, since we need several wavelengths to 

be able to detect anomalies in the image, single band images are not the ideal for us. 3 and 

10 band images gave also good results (SSIM > 0.85) and can be employed in the 

aforementioned application.  

In conclusion, the main and partial objectives of these Master Thesis have been achieved. 

Although, a novel stitching algorithm have not been developed, several important findings 

have been made in order to create our own algorithm in a close future.  

6.3. Limitations and Future Work 

The main limitations that we can find in this work come from the actual nature of the 

algorithm. At the beginning of the project it was intended to develop our own stitching 

algorithm using registration images tools. However, obtained results were no satisfactory 

and we realized that its development was out of a Master Thesis timeframe. Thus, this 

project is based on an external algorithm where the majority of the parameters cannot be 

modified (such as the input of square images or the maximum number of HS bands 
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restricted to 10). This is the main reason for which it is proposed to develop our own 

algorithm in a future project. This new stitching algorithm will be based, as the Lang et al. 

[61] one, in frame registration. For each pair of frames assembly, frame registration will be 

made for all the bands of the histology cubes, and the registration providing the most 

accurate stitching would be applied to the rest of the channels. Thus, it is hypothesized, the 

more channels introduced into the algorithm the more likely it is to find the optimal 

alignment. Using such custom algorithm, we will be able of assembly HS cubes with a large 

number of channel, being able to use the resulting cube for creating HS cubes from an 

entire slide, which will can be subsequently used in tumor classification algorithms.   
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