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In this article, an undulatory description of the Innsbruck teleportation experiment is given,
grounded in the role of the zero-point field (ZPF). The Wigner approach in the Heisenberg
picture is used, so that the quadruple correlations of the field, along with the subtraction of
the zero-point intensity at the detectors, are shown to be the essential ingredients that
replace entanglement and collapse. This study contrasts sharply with the standard
particle-like analysis and offers the possibility of understanding the hidden mechanism
of teleportation, relying on vacuum amplitudes as hidden variables.
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1 INTRODUCTION

Since Bennett et al. proposed teleportation in 1993 [1], quantum state transmission has become
essential for developing quantum computing and quantum communication [2, 3]. The standard
theoretical approach to teleportation is based on the peculiar properties of Einstein–Podolsky–Rosen
(EPR) pairs [4] in the Hilbert space. Entanglement and the projection postulate, along with the
classical communication between the sender and receiver, often called Alice and Bob, respectively,
constitute the fundamental elements of the teleportation protocol.

In the late 1990s, teleportation was achieved in experiments performed by the Universities of
Innsbruck [5] and Rome [6], by using entangled photons generated in parametric downconversion
(PDC). There is a discrepancy regarding who first performed genuine quantum teleportation [7]. On
the one hand, the Innsbruck experiment used two pairs of entangled photons, and one of the four
photons was used as a trigger to generate the single-particle state to be teleported [5, 8]. A remarkable
characteristic of the four-photon source is the first experimental implementation of entanglement
swapping [9, 10]. Nevertheless, given that the four polarization Bell states of two photons were not
distinguishable using entanglement only in one degree of freedom and linear optics [11], the
teleportation protocol described in Ref. 1 cannot be accomplished with 100% success in the
Innsbruck scheme. Moreover, a controversial aspect of this experiment was the postselective or
nonpostselective nature of teleportation [12–14]. On the other hand, in the Rome teleportation
experiment, a pair of downconverted photons was used, and the state to be teleported was encoded in
one of two degrees of freedom of one photon [15], which made a difference with respect to the work
in Ref. 1. In contrast, the Bell state measurement (BSM) was accomplished with 100% success. In Ref.
16, a different implementation of the theoretical proposal given in Ref. 15 was carried out.

TheWigner formalism constitutes a complementary approach to the orthodox formulation in the
Hilbert space for the study of quantum optical experiments implemented with PDC [17–25]. The
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Wigner function of PDC is positive and allows for an intuitive
picture in terms of stochastic processes. In the Wigner
representation within the Heisenberg picture (WRHP), the
dynamics is contained in the electric field and the Wigner
distribution is time-independent, corresponding to the Wigner
function of the vacuum state. In this approach, the linearity of the
field equations of motion in the setup PDC plus linear optics can
be exploited, to achieve relevant conclusions about quantum
versus classical electrodynamics, by looking directly at the
fields and their correlation properties. Recently, a more formal
foundation of PDC has been developed using the Weyl–Wigner
formalism [26].

One of the most interesting features of the WRHP approach is
that the zero-point field (ZPF) appears in a natural form, which
contributes to it being considered as a real stochastic field [27, 28].
The role of ZPF at the nonlinear crystal and idle channels of the
optical devices placed between the source and detectors should be
analyzed for a deeper understanding of the underlying physics. In
this picture, photon entanglement can be understood as an interplay
of correlated modes through the contribution of ZPF amplitudes in
the polarization components of the field. Moreover, collapse is
related to the subtraction of the zero-point intensity at the
detectors, so that this approach clearly emphasizes the wave
nature of light. The fact that detectors have a threshold gives rise
to all nonclassical features of entangled photon pairs generated
by PDC.

The standard analysis of a PDC experiment with the WRHP
approach consists of the following steps:

i. Expression of the electric field amplitude corresponding to
narrow light beams outgoing the nonlinear source is
calculated. These beams are a linear transformation of the
ZPF entering the crystal [17–19].

ii. Propagation of these fields throughout the experimental
setup is conducted, following the rules of classical optics.
At this step, the zero-point beams entering the idle channels
of the optical devices must be considered.

iii. Calculation of the detection rates constitutes the main
difference with respect to classical physics. In the case of
single counts, the zero-point intensity is the threshold for
detection, but the subtraction is more involved in the case of
joint and multiple detection rates.

iv. The detection rates are expressed in terms of the field
correlations mediated by the ZPF, allowing for a picture
in terms of stochastic processes.

v. New physical insights emerge through the analysis of the
different zero-point inputs. The role of the amplitude and
phase of the fields in the light intensity at the detectors
becomes relevant to the description of an internal
mechanism leading to the different results. This analysis
cannot be conducted with the standard treatment in the
Hilbert space.

The combination of the possibility of transmitting and storing
quantum information via the ZPF has revealed that the WRHP
formalism is a very useful tool in analyzing the influence of the
vacuum field in experiments on optical quantum communication

[29–34]. Specifically, this approach has been applied to the
analysis of teleportation experiments, such as entanglement
swapping [32] and the Rome teleportation experiment [33].
The study of the Rome experiment showed the great
importance of the zero-point inputs in BSM [31], in such a
way that the distinguishability of the four polarization-
momentum Bell states of a single photon can be understood
from a sufficient balance between the zero-point inputs at the
source of entanglement and those that intervening in the Bell state
analyzer. More recently, the role of the zero-point amplitudes as
hidden variables on Bell state distinguishability and their
application to teleportation [16] have been investigated [34].

In this article, a new picture of the Innsbruck teleportation
experiment [5] is given, by using the WRHP approach. The
importance of this proposal lies in understanding the physical
properties of ZPF inputs that intervene in the experiment and
emphasizing the wave nature of light and causal propagation of
the fields involved. The article is organized as follows. In Section
2, the Wigner formalism in the Heisenberg framework is briefly
reviewed. In Section 3, a general setup, including the one given in
Ref. 5, is analyzed to investigate the relationship between
teleportation and quadruple correlations. In Section 4, the
relationship between different ZPF inputs at the setup and
optimality of the BSM at Alice’s station is analyzed. Section 5
is devoted to the calculation of the fourfold detection probabilities
in the Innsbruck experiment. Finally, in Section 6, the main
conclusions of this work are presented along with further steps of
this research line.

2 THE WIGNER REPRESENTATION WITHIN
THE HEISENBERG PICTURE APPROACH
FOR PARAMETRIC DOWNCONVERSION
EXPERIMENTS

In this section, the mathematical tools used in the development of
this work are described [17–19]. The field radiated by a nonlinear
crystal is produced from the coupling between the ZPF and a
classical wave representing the laser pumping beam. The vacuum
is represented as a sum of two mutually complex conjugate
amplitudes as follows:

Ev(r, t) � E(+)
v (r, t) + E(−)

v (r, t), (1)

with

E(+)
v (r, t) � i∑

k,λ

(Zωk

2L3
)1/2αk,λuk,λe

i(k·r−ωk t), (2)

E(−)
v (r, t) � −i∑

k,λ

(Zωk

2L3
)1/2α*k,λuk,λe

−i(k·r−ωk t). (3)

The subscripted letter “v” denotes the vacuum field or ZPF. L3 is
the normalization volume, αk,λ(t) is the amplitude corresponding
to a mode whose wave vector is k and polarization vector is uk,λ,
with ωk � c|k|, and λ takes values in the set {H,V}, where H(V)
means horizontal (vertical).
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Stochastic variables α*k,λ and αk,λ follow a distribution given by
the following Gaussian equation:

W(α) �∏
k,λ

2
π
e−2
∣∣∣∣αk,λ∣∣∣∣2 ; α ≡ {αk,λ}. (4)

On the other hand, the beam corresponding to the laser is
represented by a plane wave with wave vector kp and
frequency ωp. We have the following:

V(r, t) � (Vp(t)exp[i(kp · r − ωpt)] + c.c.)u; u⊥kp, (5)

where c.c. denotes complex conjugation. Given that the coherence
time of the laser beam is usually large compared to most of the
times involved, the amplitude Vp(t) will be considered as a
constant.

The electric field corresponding to a (narrow) light beam
emitted by a nonlinear crystal is represented by the following
slowly varying amplitude:

F(+)(r, t) � ieωs t ∑
k ∈ [k]s ,λ

(Zωk

2L3
)1/2αk,λ(0)uk,λe

i(k·r−ωk t), (6)

where ωs represents the central frequency of the beam and [k]s
constitutes a set of wave vectors centered at ks. Amplitude
αk,λ(t � 0) has been calculated elsewhere to second order in a
characteristic coupling constant (g) [17–19]. Type II PDC
contains amplitudes αk,λ (k ∈ [k]s), belonging to the zero-
point beam entering the crystal in the direction of the signal,
and the amplitudes αk′ ,λ′ (k′ ∈ [k]i; λ′ ≠ λ), concerning the zero-
point beam corresponding to the so-called idler photon, fulfilling
the matching conditions ωk + ωk′ ≈ ωp and k + k′ ≈ kp. For t > 0,
there is a free evolution. The concrete expression of the fields
exiting the crystal and the description of entanglement in the
WRHP approach are reviewed in the next section.

Field amplitude F(+) propagates through free space according
to the following expression:

F(+)(r2, t) � F(+)(r1, t − r12
c
)eiωs(r12/c) ; r12 � |r2 − r1|. (7)

Let us now review the theory of photodetection. The single
detection probability at a given detector Da is as follows:

Pa(r, t) � Ka〈Ia(r, t) − Iv,a(r)〉, (8)

where 〈 . . . 〉 represents an average with theWigner density given
in Eq. 4. Ia ∝E(+)

a · E(−)
a � F(+)a · F(−)a , in appropriate units, is the

intensity of light arriving at the detector and Iv,a corresponds to
the average intensity of the ZPF. On the other hand, Ka is a
constant related to the effective efficiency of the detection process
at detector Da.

In experiments involving polarization, the joint detection
probability is calculated by using the following expression:

Pab(r, t; r′, t′) � KaKb ×∑
λ,λ′

∣∣∣∣∣〈F(+)
a,λ (ϕa; r, t)F(+)

b,λ′(ϕb; r′, t′)〉∣∣∣∣∣2, (9)

where ϕA and ϕB, appearing in the cross-correlation 〈F(+)
a,λ F

(+)
b,λ′

〉,
represent setup parameters. In the situation where the operators

corresponding to fields in detectorsDa andDb commute, as in the
case of Bell-type experiments [35], the previous expression is
equivalent to the average of product KaKb(Ia − Iv,a)(Ib − Iv,b).
Nevertheless, in a general situation, the subtraction of the pure
zero-point contribution is more involved.

Finally, in experiments involving fourfold detection, the
detection probability can be obtained as the sum of sixteen
addends. We have the following:

Pabcd(r, t;r′, t′;r″, t″;r-, t-)�KaKbKcKd

× ∑
λ,λ′ ,λ″ ,λ′′′

∣∣∣∣∣〈F(+)
a,λ (ϕa;r, t)F(+)

b,λ′(ϕb;r′, t′)F(+)
c,λ′′(ϕc;r″, t″)F(+)

d,λ′′′(ϕd;r-, t-)〉∣∣∣∣∣2,
(10)

where the quadruple correlation 〈F(+)
a,λ F

(+)
b,λ′

F(+)
c,λ′′

F(+)
d,λ-〉 can be

calculated in terms of the cross-correlation properties of the
fields, by taking into account the fact that the field amplitudes
in PDC are Gaussian. That is,

〈F(+)
a,λ F

(+)
b,λ′

F(+)
c,λ″F

(+)
d,λ′′′

〉 � 〈F(+)
a,λ F

(−)
b,λ′

〉〈F(−)
c,λ″F

(+)
d,λ′′′

〉 + 〈F(+)
a,λ F

(+)
c,λ″〉

× 〈F(+)
b,λ′

F(+)
d,λ′′′

〉 + 〈F(+)
a,λ F

(+)
d,λ′′′

〉〈F(+)
b,λ′

F(+)
c,λ″〉.
(11)

In actual experiments, Eqs 8–10 must be integrated over the
surface aperture of the detectors and appropriate detection
windows.

3 THE MEANING OF TELEPORTATION IN
TERMS OF THE QUADRUPLE
CORRELATIONS
The standard description of teleportation in the Hilbert space [1]
uses three particles, one of them (particle 1) in an unknown
quantum state to be teleported,

∣∣∣∣ϕ〉1 � α|H〉1 + β|V〉1, and two
entangled particles (particles 2 and 3) in a singlet state, |ψ−〉23.
The state of the three-particle system is given by the tensor
product:∣∣∣∣ψ〉123 � ∣∣∣∣ϕ〉1∣∣∣∣ψ−〉23

� − 1
2

∣∣∣∣ψ−〉12(α|H〉3 + β|V〉3) − 1
2

∣∣∣∣ψ+〉12(α|H〉3 − β|V〉3)
+ 1
2

∣∣∣∣ϕ−〉12(β|H〉3 + α|V〉3) + 1
2

∣∣∣∣ϕ+〉12(β|H〉3 − α|V〉3),
(12)

where the four Bell-base states are

∣∣∣∣ψ ± 〉ij �
1�
2

√ [|H〉i|V〉j ± |V〉i|H〉j], (13)

∣∣∣∣ϕ ± 〉ij �
1�
2

√ [|H〉i|H〉j ± |V〉i|V〉j]. (14)

A BSM on particles 1 and 2 leaves particle 3 in a state that can be
modified after classical communication, to reproduce the initial
state of particle 1. If the BSM indicates the detection of a singlet
state of particles 1 and 2, then teleportation is directly achieved.
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In the Innsbruck experiment, two independent pairs of
downconverted photons are “simultaneously” produced in the
state |Π〉1234 � |ψ−〉14 |ψ−〉23. Photon 4 is used as a trigger to
generate the state described in Eq. 12, once a given
transformation is applied on photon 1.

In the WRHP approach, a deep understanding of this
experiment requires the analysis of the quadruple correlation
properties of the field. Let us consider the sketch of the
experimental setup described in Figure 1. The notation used
in this figure is similar to the one given in Ref. 5, with the goal of
an easier reading of this article and the possibility of comparing it
with the original setup. In addition, ZPF inputs are represented
for understanding the original ideas displayed in this work and its
relationship with the standard description in the Hilbert space
formulation. Four two-by-two correlated beams represent two
couples of polarization-entangled photons. The input fields F(+)v1
and F(+)v4 (F(+)v2 and F(+)v3 ), each containing two sets of vacuum
modes, are coupled with the laser, giving rise to the correlated

signals F(+)1 and F(+)4 (F(+)2 and F(+)3 ). The quantum information is
carried out by eight sets of ZPF modes that are amplified at the
source, that is,

NZPF,S � 8. (15)

The exiting fields at the center of the nonlinear source can be
expressed to second order in the coupling parameter using the
following amplitudes (for simplicity, space-time notation is
discarded):

F(+)
1 � [ F(+)

s

F(+)
p
] � [ (1 + g2|V |2J)F(+)

v1,H + gVGF(−)
v4,V(1 + g2|V |2J)F(+)

v1,V + gVGF(−)
v4,H

], (16)

F(+)
4 � [ F(+)

q

eiπF(+)
r

] � [ (1 + g2|V |2J)F(+)
v4,H + gVGF(−)

v1,V

eiπ[(1 + g2|V |2J)F(+)
v4,V + gVGF(−)

v1,H] ], (17)
F(+)
2 � ⎡⎢⎢⎣ F′(+)

s

F′(+)
p

⎤⎥⎥⎦ � [ (1 + g2|V |2J)F(+)
v2,H + gV ′GF(−)

v3,V(1 + g2|V |2J)F(+)
v2,V + gV ′GF(−)

v3,H

], (18)

FIGURE 1 | General setup for teleportation based on the Innsbruck experiment, showing the principles involved in quantum teleportation and all the zero-point
entries for the analysis with the WRHP approach. The number of sets of ZPF modes is written between brackets. (A) Source (NZPF ,S � 8). Each of the vacuum inputs at
the source contains two sets of ZPF modes. (B) Trigger. The first detection is produced at the trigger detection area. The ZPF beam entering the idle channel of PBST
introduces two sets of vacuum modes. (C) Preparer. Beam F(+)

1 is modified through the action of a linear optical device P. In the case of a linear polarizer, a zero-
point contribution F(+)

ZPFP must be considered. (D) Alice’s station. It consists of a balanced beam splitter and two detection areas f1 and f2. Each area includes an
arrangement with a PBS and two detectors fiH and fiV (i � {1, 2}). Each of the ZPF inputs, F(+)

ZPFf1 and F(+)
ZPFf2, introduces two sets of vacuummodes. (E)Bob’s station. The

setup at Bob’s side is intended to check that teleportation has been successful. It consists of an optical device A and a polarizing beam splitter PBSA followed by two
detectors d1 and d2. The optical device C can be used after classical communication between Alice and Bob.
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F(+)
3 � ⎡⎢⎢⎣ F′(+)

q

eiπF′(+)
r

⎤⎥⎥⎦ � [ (1 + g2|V |2J)F(+)
v3,H + gV ′GF(−)

v2,V

eiπ[(1 + g2|V |2J)F(+)
v3,V + gV ′GF(−)

v2,H] ],
(19)

where G and J are linear operators defined elsewhere [17–19] and
are related to the selection of modes fulfilling the matching
conditions. On the other hand, V ′ � −V due to the reflection
of the pumping beam at mirror M1. It will be considered that M1
is in a fixed position, such that the condition of temporal overlap
at the beam splitter is fulfilled [5].

Equations 16–19 correspond to the WRHP description of the
state vector |Π〉1234 � |Ψ−〉14|Ψ−〉23, the crucial point being the
interplay of correlated fields, through the action of the zero-point
amplitudes: the only nonnull cross-correlations are those
concerning the labels (p, q) and (r, s) of beams 1–4 and the
same for the beams 2–3. This can be easily understood by taking
into account the fact that F(+)

vj,X(j � {1, 2, 3, 4},X � {H,V}) is only
correlated with F(−)

vj,X , being a direct consequence of Eq. 4. Any of
the four cross-correlations can be expressed, at any position and
time, in terms of the corresponding one at the center of the
nonlinear source (see Eq. 7). We have the following:

〈F(+)
p (0, t)F(+)

q (0, t′)〉 � 〈F(+)
r (0, t)F(+)

s (0, t′)〉 � gV](t − t′),
(20)

where ](t − t′) is a function that vanishes when |t − t′|> τ, t being
the correlation time between the downconverted photons. Similar
relations hold for the corresponding primed amplitudes. In
addition, the exponential factor (eiπ) in Eqs 17 and 19 gives
rise to a sign difference between the two correlations,
corresponding to orthogonal polarization amplitudes,
involving the couple of beams 1 − 4 (2–3). This sign difference
identifies the physical properties of the singlet state in the WRHP
formalism [29, 30].

Moreover, the amplitude F(+)p verifies the following
autocorrelation property:

〈F(+)
p (0, t)F(−)

p (0, t′)〉 − 〈F(+)
v1,V(0, t)F(−)

v1,V(0, t′)〉 � g2|V |2μ(t − t′),
(21)

where μ(t − t′) is a function that goes to zero when |t − t′|> τ.
Similar relations hold for the rest of the field amplitudes given in
Eqs 16–19.

By taking into account Eq. 20, the two nonnull cross-
correlations concerning beams 1 and 4 can be expressed in the
following compact form:

〈F(+)
4,X (0, t)F(+)

1,U(0, t′)〉 � (−1)n(X)gV](t − t′)[1 − δXU ], (22)

where X and U can take values in the set {H,V}. On the other
hand, n(H) � 2 and n(V) � 1. A similar expression holds for the
correlations involving beams 2 and 3, that is,

〈F(+)
2,X (0, t)F(+)

3,U(0, t′)〉 � (−1)n(X)+1gV ′](t − t′)[1 − δXU ]. (23)

The quadruple correlations representing the fields given in Eqs
16–19 can be calculated using Eq. 11. Given that beam 1 (2) is
only correlated with 4 (3), there are four nonnull correlations:

〈F(+)
4,X (0, t)F(+)

1,U(0, t′)F(+)
2,W(0, t″)F(+)

3,Z (0, t-)〉
� (−1)n(X)+n(W)+1g2VV ′](t − t′)](t″ − t-)[1 − δXU ][1 − δWZ],

(24)

where X, U, Z, and W can take values in the set {H,V}.
From now on, for notation simplicity, an identical distance

between the source and the different detectors will be considered,
so that the phase shift in Eq. 7 will not be considered in the
expression of the fields. Moreover, for the time being, the
dependence of the fields on position and time will be
discarded. Nevertheless, the reader’s attention can be drawn,
wherever necessary, to any reintroduction of space-time
variables.

In the Innsbruck experiment, the first detection is produced at
the trigger detector. Let us suppose that the trigger detection area
involves a polarizing beam splitter PBST that transmits (reflects)
horizontal (vertical) polarization. Two detectors, TH and TV, are
placed at each of the exiting channels. The fields at the detectors
have a noise component coming from the ZPF entering the idle
channel of PBST, that is,

F(+)
TH � ( F(+)

q

iF(+)
ZPFT ,V

); F(+)
TV � ( F(+)

ZPFT,H

−iF(+)
r

). (25)

Let us now consider the action of a linear optical device on beam
1. The transmitted field amplitude F(+)1P is

F(+)
1P � P̂ F(+)

1 � [ LH RH

LV RV
][ F(+)

s

F(+)
p
] � [ LHF(+)

s + RHF(+)
p

LVF(+)
s + RVF(+)

p

],
(26)

where P denotes the word “preparer” and L (R) is the left (right)
column of P̂.

In the case of a circular polarizer of angle θ with respect to
horizontal, LH � cos2θ, RH � LV � cosθsinθ, and RV � sin2θ. In
this situation, a zero-point contribution F(+)ZPFP must be added in
Eq. 26. This ZPF amplitude is uncorrelated with the rest of the
fields. Thus, F(+)1P can be generally expressed as follows:

F(+)
1P � ⎡⎣PH(F(+)

s , F(+)
p )

PV(F(+)
s , F(+)

p ) ⎤⎦, (27)

where

PH(F(+)
s , F(+)

p ) � LHF(+)
s + RHF(+)

p + F(+)
ZPFP,H ,

PV(F(+)
s , F(+)

p ) � LVF(+)
s + RVF(+)

p + F(+)
ZPFP,V .

(28)

The general transformation given in Eq. 28 represents a great
variety of experiments with different preparations so that the
analysis displayed in this article goes beyond the experimental
situation given in Ref. 5, where a linear polarizer acts on beam
F(+)1 . As a matter of fact, the previous analysis of entanglement
swapping given in Ref. 32, where P̂ � Î, can be seen as a particular
case of the results presented in this work.

Using Eqs 17, 20, 27, and 28, we have the following four cross-
correlations concerning beams F(+)1P and F(+)4 :

〈F(+)
4,X F

(+)
1P,U〉 � (−1)n(X)gV](0)F(X,U), (29)
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where the bivariate function F(X,U) is given by

F(X,U) � LUδX,V + RUδX,H . (30)

This leads to a duplication of the nonnull quadruple correlations,
from four to eight. Using Eqs 11, 23, and 29, we have the
following:

〈F(+)
4,X F

(+)
1P,UF

(+)
2,WF(+)

3,Z 〉�〈F(+)
4,X F

(+)
1P,U〉〈F(+)

2,WF(+)
3,Z 〉

�(−1)n(X)+n(W)+1g2VV ′]2(0)F(X,U)[1−δWZ].
(31)

Let us now calculate the fields at Alice’s station. Beams F(+)1P and
F(+)2 are superposed at a balanced beam splitter (see Figure 1) so
that the number of sets of amplified modes entering the Bell state
analyzer is as follows (see Eq. 15) [33]:

NZPF,A � NZPF,S

2
� 4. (32)

From Eqs 18, 27, and 28, the exiting beam (F(+)fj j � 1, 2) is given
by the following superposition:

F(+)
fj � −ij(−1)

jF(+)
1P + iF(+)

2�
2

√ � − ij�
2

√ ⎡⎢⎢⎢⎣ (−1)jPH(F(+)
s ,F(+)

p ) + iF′(+)
s

(−1)jPV(F(+)
s ,F(+)

p ) + iF′(+)
p

⎤⎥⎥⎥⎦.
(33)

Now, to get the electric field at the detector fjX (X� {H,V}), a ZPF
component coming from the idle channel of PBSfj must be
included. That is,

F(+)
fjH � − ij�

2
√ [(−1)jPH(F(+)

s , F(+)
p ) + iF′(+)

s ] + iF(+)
ZPFfj,V , (34)

F(+)
fjV � − ij+1�

2
√ [(−1)jPV(F(+)

s , F(+)
p ) + iF′(+)

p ] + F(+)
ZPFfj,H . (35)

In the standard description of quantum teleportation [1], Alice
informs Bob of her measurement result via a classical
communication channel. In this way, Bob can apply a linear
transformation on beam F(+)3 by means of the optical device C
(see Figure 1), to reproduce the prepared state. Then, in order to
verify that teleportation has been successfully carried out, the

signal F′(+)3 � ĈF(+)3 enters an analyzer consisting of a linear
optical device A followed by a polarizing beam splitter, PBSA.
Let F(+)3A be the signal entering PBSA, that is,
F(+)3A � ÂF′(+)3 � ÂĈF(+)3 ; then, we have the following:

F(+)
3A � [ ~LH

~RH
~LV

~RV
]⎡⎢⎢⎢⎣ F′(+)

q

−F′(+)
r

⎤⎥⎥⎥⎦ � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
~AH(F′(+)

q , F′(+)
r )

~AV(F′(+)
q , F′(+)

r )
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (36)

~AH(F′(+)
q , F′(+)

r ) � ~LHF′(+)
q − ~RHF′(+)

r , (37)

~AV(F′(+)
q , F′(+)

r ) � ~LVF′(+)
q − ~RVF′(+)

r , (38)

where the matrix ÂĈ is represented by parameters ~LH , ~LV , ~RH ,
and ~RV . It has been considered that neither Ĉ nor Â introduces
additional ZPF modes.

Finally, by considering the ZPF entering the idle channel of
PBSA, the field amplitudes at detectors d1 and d2 are given by

F(+)
d2

� ⎡⎢⎢⎢⎢⎣ ~AH(F′(+)
q , F′(+)

r )
iF(+)

ZPF,AV

⎤⎥⎥⎥⎥⎦; F(+)
d1

� ⎡⎢⎢⎢⎢⎣ F(+)
ZPF,AH

i~AV(F′(+)
q , F′(+)

r ) ⎤⎥⎥⎥⎥⎦. (39)

From Eqs 18, 20, 37, and 38, the following four cross-
correlations, involving beams F(+)

2 and F(+)
3A , are obtained:

〈F(+)
2,WF(+)

3A,Z〉 � (−1)n(W)+1gV ′](0)~F(W,Z), (40)

where

~F(W,Z) � ~LZδW,V + ~RZδW,H . (41)

3.1 Analysis of the Quadruple Correlations
The quadruple correlations play a fundamental role in the
calculation of fourfold detection probabilities (see Eq. 10). Given
that the zero-point beams entering the idle channels of the PBSs
placed before the detectors are uncorrelated with the signals and
with each other, the understanding of the Innsbruck experiment
requires a detailed analysis of the correlation 〈F(+)

4,X F
(+)
fj,UF

(+)
fk,WF(+)

3A,Z〉
involving the fields given in Eqs 17, 33, and 36. Using Eq. 11 and
taking into consideration that beam 4 (3) is only correlated with 1
(2), the following expression is obtained:

〈F(+)
4,X F

(+)
fj,UF

(+)
fk,WF(+)

3A,Z〉 � 1
2
ij+k+1(−1)j[〈F(+)

4,X F
(+)
1P,U〉〈F(+)

2,WF(+)
3A,Z〉

+ (− 1)k−j〈F(+)
4,X F

(+)
1P,W〉〈F(+)

2,UF
(+)
3A,Z〉]. (42)

Now, substituting Eqs 29 and 40 into Eq. 42, we get

〈F(+)
4,X F

(+)
fj,UF

(+)
fk,WF(+)

3A,Z〉 � 1
2
ij+k+1(−1)jg2VV ′]2(0)(−1)n(X)+n(W)+1

× [F(X,U)~F(W,Z)
+ (−1)k−j(−1)n(U)−n(W)F(X,W)~F(U ,Z)].

(43)

As will be demonstrated below, a detailed analysis of Eqs 42 and
43 provides an understanding of physics behind teleportation
without the necessity of collapse as a crucial ingredient. Let us
divide this study into two parts: (i) the properties of the quadruple
correlations in terms of the fields at Alice’s station will provide a
better understanding of the indistinguishability of the four Bell
states given in Eq. 12 [11, 32]; (ii) the analysis of quadruple
correlations by looking at beams F(+)4 and F(+)3 , that is, by putting
ÂĈ � Î, will offer a complete comprehension of the Innsbruck
experiment in terms of correlated modes.

3.1.1 Quadruple Correlations and Bell State
Measurement
Let us consider the following situations, according to the values of
the polarizations U and W given in Eq. 42:

(a) First let us focus on the case of U�W. We have the
following:
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〈F(+)
4,X F

(+)
fj,UF

(+)
fk,UF

(+)
3A,Z〉 � 1

2
ij+k+1(−1)j〈F(+)

4,X F
(+)
1P,U〉〈F(+)

2,UF
(+)
3A,Z〉[1 + (−1)k−j].

(44)

a.1. The above expression is equal to zero in the case of j≠ k,
that is when the field amplitudes corresponding to the
same polarization of different beams are considered. This
result justifies that a double detection in detectors f1H and
f2H , or in f1V and f2V , cannot be produced (see Figure 1).

a.2. In the case of j � k, Eq. 44 leads to

〈F(+)
4,X F

(+)
fj,UF

(+)
fj,UF

(+)
3A,Z〉 � i〈F(+)

4,X F
(+)
1P,U〉〈F(+)

2,UF
(+)
3A,Z〉. (45)

This situation corresponds to a joint detection at any of the four
detectors located in Alice’s station and is related to the detection
of one of the two indistinguishable states

∣∣∣∣ϕ+〉12 or
∣∣∣∣ϕ−〉12 [32].

b. Let us now analyze the U≠W situation; that is, the
amplitudes at Alice’s station have orthogonal polarization.

b.1. Let us first consider the case of j�k, where both
polarizations of the same beam, namely, F(+)

fj,H and
F(+)
fj,V , are involved. From Eq. 42, we have the following:

〈F(+)
4,X F

(+)
fj,UF

(+)
fj,WF(+)

3A,Z〉 � i
2
[〈F(+)

4,X F
(+)
1P,U〉〈F(+)

2,WF(+)
3A,Z〉 + 〈F(+)

4,X F
(+)
1P,W〉

× 〈F(+)
2,UF

(+)
3A,Z〉].

(46)

From the above equation, the following symmetry property is
derived:

〈F(+)
4,X F

(+)
fj,UF

(+)
fj,WF(+)

3A,Z〉 � 〈F(+)
4,X F

(+)
fj,WF(+)

fj,UF
(+)
3A,Z〉, (47)

which implies that the correlation remains invariant under the exchange
U↔W. This property is related to the detection of the state |ψ+〉12 when
a joint detection is produced in f1H and f1V or in f2H and f2V .

b.2. Finally, the cases of U≠W and j≠ k correspond to the
situation in which the orthogonal polarization of different
beams is involved. FromEq. 42, the corresponding quadruple
correlation is

〈F(+)
4,X F

(+)
fj,UF

(+)
fk,WF(+)

3A,Z〉 � 1
2
(−1)j[〈F(+)

4,X F
(+)
1P,U〉〈F(+)

2,WF(+)
3A,Z〉

− 〈F(+)
4,X F

(+)
1P,W〉〈F(+)

2,UF
(+)
3A,Z〉], (48)

and the following antisymmetric property can be easily deduced:

〈F(+)
4,X F

(+)
fj,UF

(+)
fk,WF(+)

3A,Z〉 � −〈F(+)
4,X F

(+)
fj,WF(+)

fk,UF
(+)
3A,Z〉. (49)

This sign difference under the exchange U↔W is related to the
detection of the state |ψ−〉12 when a joint detection is produced at
detectors f1H and f2V , or in f1V and f2H .

3.1.2 Quadruple Correlations and Teleportation
From now on, let us focus on the situation in which no
transformation is applied on beam F(+)3 , that is, Ĉ � Â � Î, so
that F(+)3A � F(+)3 . In Ref. 32, it is demonstrated that, for P̂ � Î, a
joint detection in f1H and f2V (f1V and f2H) leads to the transfer of
the correlation properties that characterize the singlet state |Ψ−〉12
to the beams F(+)4 and F(+)3 , mediated by the quadruple
correlations of the field, even when F(+)4 and F(+)3 are
uncorrelated (entanglement swapping in the WRHP
approach). The key point in that analysis is the sign flip in the
correlations involving orthogonal polarization components of
beams F(+)4 and F(+)3 , for j≠ k and U≠W, under the exchange
X↔Z (see equations (33)–(36) of Ref. 32).

Let us now address the action of a linear polarizer on beam
F(+)1 , so that F(+)1P represents linearly polarized light. Given that
the correlation properties corresponding to the beams exiting
the crystal (see Eqs 16–19) are rotationally invariant [29],
F(+)4 behaves like a polarized beam with orthogonal
polarization to the one corresponding to F(+)1P , mediated by
the cross-correlation properties given in Eq. 29. As
demonstrated below, once detection is produced at the
trigger area, a joint detection in f1H (f1V ) and f2V (f2H)
gives rise to the teleportation of the polarization properties
from F(+)1P to F(+)3 .

To demonstrate teleportation in the WRHP approach, a sign
flip is required under the exchange X↔Z in Eq. 48, for Ĉ � Â � Î.
In this case, ~LH � ~RV � 1 and ~RH � ~LV � 0, so that ~F(U ,W) �
1 − δUW (see Eq. 41). In this situation, Eq. 43, for j≠ k andU≠W,
leads to

〈F(+)
4,X F

(+)
fj,UF

(+)
fk,WF(+)

3,Z 〉 � (−1)j
2

(−1)n(X)+n(W)+1g2VV ′]2(0)
× [F(X,U)(1 − δWZ)
+ F(X,W)(1 − δUZ)]. (50)

Given that U≠W, one of the two addends must be zero. Let us
take, for instance, Z�U. Then, X�W; that is,

〈F(+)
4,WF(+)

fj,UF
(+)
fk,WF(+)

3,U〉 � (−1)j+1
2

g2VV ′]2(0)F(W,U). (51)

Exchanging X and Z in Eq. 50 and taking U�Z, we get

〈F(+)
4,UF

(+)
fj,UF

(+)
fk,WF(+)

3,W〉 � (−1)j
2

g2VV ′]2(0)F(U ,W). (52)

Now, dividing Eqs 51 and 52, the searched result is found:

〈F(+)
4,WF(+)

fj,UF
(+)
fk,WF(+)

3,U〉
〈F(+)

4,UF
(+)
fj,UF

(+)
fk,WF(+)

3,W〉
� − F(W,U)

F(U ,W). (53)

The minus sign in the above expression is independent of
the concrete matrix P̂ representing the transformation of
beam F(+)1 .

Equation 53 is only fulfilled in the cases of U≠W and j≠ k. In
the cases of U≠W and j � k, there is no sign flip under the
exchange X↔Z, as it can be easily demonstrated using Eq. 43, by
putting ~F(U ,W) � 1 − δUW . We have the following:
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〈F(+)
4,WF(+)

fj,UF
(+)
fj,WF(+)

3,U〉
〈F(+)

4,UF
(+)
fj,UF

(+)
fj,WF(+)

3,W〉
� F(W,U)
F(U ,W). (54)

In this case, Alice must only inform Bob about her result via a
classical communication channel, and Bob would modify beam
F(+)3 by applying a phase shift of p between the vertical and
horizontal components of F(+)3 ; that is,

Ĉ � ( 1 0
0 −1)0F′(+)

3 � ĈF(+)
3 � ⎛⎝ F′(+)

q

F′(+)
r

⎞⎠. (55)

In this situation, using Eq. 43 for Â � Î, that is, F(+)3A � F′
(+)
3

, the
following result was obtained:

〈F(+)
4,WF(+)

fj,UF
(+)
fj,WF′(+)3,U〉

〈F(+)
4,UF

(+)
fj,UF

(+)
fj,WF′(+)3,W〉

� − F(W,U)
F(U ,W). (56)

At this point, a comment is in order. Given that Bob must wait
to receive the classical information coming from Alice’s station,
the description of teleportation in the WRHP formalism admits
a causal interpretation. Let Tcc be the time interval
corresponding to the classical communication. If, for
instance, the field amplitudes F(+)4 and F(+)fj (j � 1, 2) are
defined at time tA, then the signal at Bob’s station, F′(+)3 ,
must be defined at time tB � tA + Tcc. For simplicity, let us
consider an identical path length, dSA, between the source
and any of the detectors TH, TV , fjH , and fjV . And let dSB be
the corresponding path length between the crystal and the
position where Bob applies the transformation given in Eq.
55. From Eqs 7 and 20, the following condition must be fulfilled
to achieve the teleportation protocol [33]:∣∣∣∣∣∣∣Tcc + dSA − dSB

c

∣∣∣∣∣∣∣≤ τ. (57)

4 ZERO-POINT FIELD INPUTS AND BELL
STATE MEASUREMENT IN THE
INNSBRUCK EXPERIMENT
The role of the ZPF inputs in Bell state analysis has been
investigated in previous works [31, 33, 34] by focusing on Bell
state distinguishability of two photons, entangled in n dichotomic
degrees of freedom, which are not mixed at the analyzer, and BSM
of the one-photon polarization-momentum Bell states. The
common denominator is the relationship between
distinguishability of Bell states and an adequate balance
between the number of amplified sets of ZPF modes entering
the analyzer and the number of the sets of ZPF modes entering
the idle channels located inside the analyzer.

The situation described in Figure 1 is more involved. The
information concerning the two couples of downconverted
photos is carried out by the eight sets of ZPF modes entering
the crystal. Two uncorrelated beams, F(+)1P and F(+)2 , are brought
together at the beam splitter for Bell state analysis. Although this

situation needs further consideration, the impossibility of
measuring the four polarization Bell states will be addressed
on the basis of the arguments set out below.

Let us analyze the interference of beams F(+)1P and F(+)2 at the
beam splitter (see Eqs 18 and 26) to give the exiting fields F(+)f 1 and
F(+)f 2 shown in Eq. 33. The intensity corresponding to F(+)fj(j � 1, 2) is

Ij � F(+)
fj · F(−)

fj � IH,j + IV ,j, (58)

where IX,j (X � {H,V}) is the intensity corresponding to the
polarization component X. By putting F(+)

1P,X �
∣∣∣∣∣F(+)

1P,X

∣∣∣∣∣exp(iφ1P,X)
and F(+)

2,X �
∣∣∣∣∣F(+)

2,X

∣∣∣∣∣exp(iφ2,X) , it is immediate that

IX,j � 1
2
[∣∣∣∣F(+)

1P,X

∣∣∣∣2 + ∣∣∣∣F(+)
2,X

∣∣∣∣2 + 2(−1)j+1∣∣∣∣F(+)
1P,X

!!!!F(+)
2,X

∣∣∣∣sin(φ2,X − φ1P,X)],
(59)

where IX,1 and IX,2 contain an identical contribution,
(
∣∣∣∣∣F(+)

1P,X

∣∣∣∣∣2 + ∣∣∣∣∣F(+)
2,X

∣∣∣∣∣2)/2, along with an addend that represents the
interference between F(+)

1P,X and F(+)
2,X , with opposite values for IX,1

and IX,2. This result is similar to the anticorrelation after a beam
splitter described in stochastic optics [28], the only difference
being that, in this case, both input channels contain one photon.

By taking into consideration the zero-point beam entering
PBSfj and Eqs 34 and 35, the intensity at the detector fj,X is

Ifj,X � IX,j +
∣∣∣∣∣F(+)

ZPFfj,Y

∣∣∣∣∣2;Y ≠X. (60)

Given that detection implies noise subtraction (see Eq. 8), the
intensity above the zero-point background is

Ifj,X − (Ifj,X)vac � IX,j − (IX,j)vac, (61)

so that the zero-point contribution coming from FZPFfj and the
pure zero-point contribution coming from the beams entering
Alice’s station are subtracted.

At this point, the following conjecture is applied: for an ideal
detector fjX (KfjX � 1), a detection is produced when a
constructive interference between F(+)

1P,X and F(+)
2,X is produced;

that is, (−1)j+1 sin(φ2,X − φ1P,X) � 1, which necessarily implies a
destructive interference at detector fk,X (k≠ j). For this reason, a
joint detection in detectors f1,H (f1,V ) and f2,H (f2,V ) cannot be
produced. In terms of the quadruple correlations properties of the
field, this result is explained in Eq. 44.

If detection is produced in, for example, f1,H , it is revealed that
φ2,H − φ1P,H � π(1 + 4n)/2, n � 0, 1, 2.... Then, the second
detection event could be produced at the same detector f1,H or
in one of the detectors f1,V and f2,V . The question that arises is
how many sets of ZPF modes, coming from the idle channels
located inside the analyzer, must be subtracted to complete the
phase information at Alice’s station? The answer is as follows: as a
minimum, one of the sets of ZPF modes entering f1,V and f2,V ,
coming from the PBSs placed at Alice’s station, should be
subtracted, so that the different possibilities for the second
detection would be identified.

The classical information that can be obtained in the
measurement entails the subtraction of a sufficient number of
sets of ZPF modes entering the idle channels inside the analyzer

Frontiers in Physics | www.frontiersin.org December 2020 | Volume 8 | Article 5884158

Casado et al Realistic Description of Innsbruck Teleportation Experiment

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


from the number of amplified sets of modes that enter the
analyzer (see Eq. 32). Hence, the difference 4 − 1 � 3 gives
the maximum distinguishability, which corresponds to the
experimental situation.

5 FOURFOLD COINCIDENCES IN THE
INNSBRUCK EXPERIMENT

Let us consider the experimental arrangement in Figure 2 [5].
The signal F(+)1 is sent to a polarizer P of angle θ � 45°(θ � −45°)
with respect to horizontal. The corresponding expression for F(+)1P
is given by Eqs 27 and 28, where LH � RV � 1/2 and RH � LV �
1/2 (−1/2). In this situation, Eq. 30 leads to F(U ,W) � F(W,U),
so that (see Eq. 53)

〈F(+)
4,WF(+)

fj,UF
(+)
fk,WF(+)

3,U〉 � −〈F(+)
4,UF

(+)
fj,UF

(+)
fk,WF(+)

3,W〉. (62)

The polarization analyzer consists of a half-wave plate (HWP)
that rotates the polarization plane of F(+)3 by an angle of 45°
around the propagation direction and a PBS that transmits
(reflects) horizontal (vertical) polarization. The field
amplitudes at the detectors d1 and d2 are given by Eq. 39,

where ~AH and ~AV are given by Eqs 37 and 38, respectively,
with ~LH � ~RH � ~LV � 1/

�
2

√
and ~RV � −1/ �

2
√

. In this particular
setting, a fourfold detection in T, f1, f2, and d2 (d1) is produced for
θ � 45° (θ � −45°).

The quadruple correlations can be calculated by using Eq. 43.
We get the following:

Case I (θ � +45°).

〈F(+)
4,VF

(+)
fj,HF

(+)
fk,VF

(+)
3A,H〉 � g2VV ′]2(0)

2
�
2

√ (−1)j, (63)

〈F(+)
4,HF

(+)
fj,HF

(+)
fk,VF

(+)
3A,H〉 � g2VV ′]2(0)

2
�
2

√ i(−1)j, (64)

〈F(+)
4,VF

(+)
fj,HF

(+)
fk,VF

(+)
3A,V〉 � 〈F(+)

4,HF
(+)
fj,HF

(+)
fk,VF

(+)
3A,V〉 � 0. (65)

Case II (θ � −45°).

〈F(+)
4,HF

(+)
fj,HF

(+)
fk,VF

(+)
3A,V〉 � g2VV ′]2(0)

2
�
2

√ (−1)j, (66)

〈F(+)
4,VF

(+)
fj,HF

(+)
fk,VF

(+)
3A,V〉 � g2VV ′]2(0)

2
�
2

√ i(−1)j, (67)

〈F(+)
4,HF

(+)
fj,HF

(+)
fk,VF

(+)
3A,H〉 � 〈F(+)

4,VF
(+)
fj,HF

(+)
fk,VF

(+)
3A,H〉 � 0. (68)

FIGURE 2 | Scheme corresponding to the Innsbruck teleportation experiment. The areas f1, f2, and T consist of single detectors. F(+)
ZPFP represents a ZPF beam

entering the polarizer, which gives rise to a vacuum contribution at the output channel.
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A quick look at Eqs 63–65 shows that only the two correlations
involving the horizontal component of F(+)3A are different from
zero. This situation reveals the teleportation of the polarization
properties of beam F1P (polarized at +45°) to F3A,H (detection in
d2). Similarly, the teleportation from F(+)1P (polarized at −45°) to
F(+)
3A,V can be inferred from Eqs 66–68.
To obtain the fourfold detection probabilities in the WRHP

formalism, Eq. 10 must be used, with a ≡ T , b ≡ f1, c ≡ f2, and
d � di(i � 1, 2). Each summation has sixteen addends. Given that
the vacuum contribution at di(i � 1, 2) coming from F(+)ZPFA is
uncorrelated with the other signals and the quadruple
correlations involving the same polarization at detectors f1 and
f2 are zero (see Eq. 44), the sum is reduced to four addends. By
using Eqs 63–68, the corresponding detection probabilities are as
follows:

• For θ � 45°,

PT ,f 1,f 2,d1 � 0, (69)

PT ,f 1,f 2,d2

KTKf 1Kf 2Kd2
� g4|V |4|](0)|4

8
. (70)

• For θ � −45°,
PT ,f 1,f 2,d1

KTKf 1Kf 2Kd1
� g4|V |4|](0)|4

8
, (71)

PT ,f 1,f 2,d2 � 0. (72)

6 DISCUSSION AND CONCLUSION

In this article, it has been shown that the quintessential
experiment on quantum teleportation, the Innsbruck
experiment, can be understood without the consideration of
collapse and entanglement as necessary ingredients. Compared
to the classical theoretical treatment of this experiment, the
consideration of the ZPF as a real field adds new physical
insights that were not previously discovered. First of all, the
quantum information is carried out by eight sets of ZPF modes
entering the crystal, so that the physical meaning of entanglement
can be found in the correlations that characterize vacuum
amplitudes distributed in the emitted signals. Second, the
projection postulate is closely related to the subtraction of the
zero-point intensity at the detectors, in such a way that the
vacuum inputs located at the idle channels inside the analyzer
limit the distinguishability at Alice’s station. In this sense, the
WRHP formalism provides a more complete description than the
one provided by the standard particle-like image in terms of
photons. This is in consonance with recent approaches to the
quantum jumps, where a deeper insight into the projection
postulate is obtained [36].

In theWRHP approach, the teleportation of the prepared state
once the trigger detector fires, under the condition of a joint
detection in areas f 1 and f 2, is discovered by means of the
quadruple correlation properties of the field and its propagation
throughout the setup. The antisymmetry requirements, fulfilled

in Eqs 49 and 62, constitute the mathematical properties leading
to teleportation in the Innsbruck experiment [5]. In a general
transformation represented by the matrix P̂, teleportation is
explained based on Eqs 49 and 53. Moreover, Eq. 53 is
required for understanding the possibility of reproducing the
prepared state, in the case of a joint detection at separated
detectors in areas f 1 or f 2 (see Eq. 56). In this sense, the
consideration of the classical communication time in the
quadruple correlation (see Eq. 57) reinforces the idea of a
causal interpretation of teleportation.

The role of the zero-point intensity as a threshold for detection
has been applied elsewhere to Bell state analysis [31, 33, 34]. In
this article, new advances have been made in this area. The
maximum Bell state distinguishability of two photons that are
mixed at a beam splitter has been treated in this work for the first
time, in the special situation of two uncorrelated beams entering
the analyzer, of the four two-by-two correlated photons emitted
by the source in the Innsbruck experiment. The possibility of
measuring only three classes of the four polarization Bell states is
based on the subtraction between the four sets of amplified modes
entering the analyzer and one of the four sets of ZPF modes that
enter the idle channels inside Alice’s station. The role of the
phases of the signals entering the analyzer as hidden variables and
the consideration of the ZPF entering the vacuum channels of the
PBSs as a source of noise that limits the capacity for
distinguishing Bell states provide new insights that require
further consideration.

At this point, some comments are in order. The statement
that the information about teleportation is carried out by field
amplitudes and supported by the quadruple correlations
sharply contrasts with the standard description in the
Hilbert space. The collapse of the four-photon state
mediated by detection at the trigger detection area leads to
a three-particle state (see Eq. 12) that constitutes the starting
point of the teleportation protocol [11]. The projection of this
vector via BSM at Alice’s station results in a nonlocal change of
the physical properties of light at Bob’s side, which is identified
throughout the classical communication between Alice and
Bob. This conundrum of the quantum theory, which
conjugates nonlocality and the superposition principle, can
be solved using the WRHP formalism. On the one hand, the
odd-order correlations are identically zero for Gaussian
processes, so that no information about teleportation can
be extracted by looking at the “triple” correlation properties
of the fields F(+)1P , F(+)2 , and F(+)3 . Furthermore, the Wigner
distribution of the four-photon state is positive, so that a
picture in terms of stochastic processes is plausible. In
contrast, the corresponding one to the state given in Eq. 12
is not positive-definite. In this sense, we emphasize that the
physical properties of photon 1 are inherently linked to
photon 4 through the cross-correlation properties of the
light field. Hence, the consideration of the prepared state as
a single-photon state is an oversimplification that hides the
essential nature of teleportation, that is, the possibility of
transferring the physical properties from one location to
another, mediated by the zero-point fluctuations of the
electromagnetic field.
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TheWRHP formalism bridges the gap between quantum optics
and stochastic optics [37] by considering the vacuum field as a real
stochastic field. Moreover, one of the main advantages of using this
approach is the possibility of investigating the role of ZPF
amplitudes as hidden variables to obtain information regarding
the internal mechanism leading to teleportation. This analysis will
be further developed in future studies.
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