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Abstract. In SMT processors several threads run simultaneously to in-
crease available ILP, sharing but competing for resources. The instruc-
tion fetch policy plays a key role, determining how shared resources are
allocated.
When a thread experiences an L2 miss, critical resources can be monop-
olized for a long time choking the execution of the remaining threads. A
primary task of the instruction fetch policy is to prevent this situation.
In this paper we propose novel improved versions of the three best pub-
lished policies addressing this problem. Our policies significantly enhance
the original ones in throughput, and fairness, also reducing the energy
consumption.

Keywords: SMT, multithreading, fetch policy, long latency loads, load
miss predictors

1 Introduction

Multithreaded and Simultaneous Multithreaded Processors (SMT) [3], [8], [9],
[10] concurrently run several threads in order to increase available parallelism.
The sources of this parallelism come from the instruction level parallelism (ILP)
of each thread alone, from the additional parallelism that provides the freedom of
fetching instructions from different independents threads, and from mixing them
in appropriate way to the processor core. Problems arise because shared resources
have to be dynamically allocated between these threads. The responsibility of
the fetch policy will be to decide which instructions (and from which thread)
come into the processor, hence it determines how this allocation is done, playing
a key role in obtaining performance.

When a thread experiences an L2 cache miss, following instructions spend
resources for a long time while making little progress. Each instruction occupies
a ROB entry and a physical register (not all) from the rename stage to the com-
mit stage. It also uses an entry in the issue queues while any of its operands is
not ready, and a functional unit (FU). Neither the ROB nor the FUs represent
a problem, because the ROB is not shared and the FUs are pipelined. The issue
queues and the physical registers are the actual problems, because they are used
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for a variable, long period. Thus, the instruction fetch (I-fetch) policy must pre-
vent an incorrect use of these shared resources to avoid significant performance
degradation.

Several policies have been proposed to alleviate the previous problem. As
far as we know, the first proposal to address it was mentioned in [11]. The
authors suggest that a load miss predictor could be used to predict L2 misses
switching between threads when one of them is predicted to have an L2 miss. In
[4] the authors propose two mechanisms to reduce load latency: data pre-fetch
and a policy based on a load miss predictor (we will explain these policies in
the related work section). STALL [7], fetch-stalls a thread when it is declared to
have an L2 missing load until the load is resolved. FLUSH [7] works similarly
and additionally flushes the thread which the missing load belongs to. DG [2]
and PDG [2] are two recently proposed policies that try to reduce the effects of
L1 missing loads. Our performance results show that FLUSH outperforms both
policies, hence we will not evaluate DG and PDG in this paper.

In the first part of this paper we analyze the space of parameters of STALL,
FLUSH and a policy based on the usage of load miss predictors (L2MP), and
compare their effectiveness. As we will see none of them outperforms all other in
all cases, but each behaves better depending on the metric and on the workload.
Based on this initial study, in the second part we propose improved versions of
each of them. Throughput and fairness [5] results show that in general improved
versions achieve important performance increments over the original versions for
a wide range of workloads, ranging from two to eight threads.

The remainder of this paper is structured as follows: we present related work
in Section 2. Section 3 presents the experimental environment and the met-
rics used to compare the different policies. In Section 4 we explain the current
policies. Section 5 compares the effectiveness of those policies. In Section 6 we
propose several improvements for the presented polices. Section 7 compares the
improved policies. Finally Section 8 is devoted to the conclusions.

2 Related Work

Current I-fetch policies address the problem of L2 missing loads latency in sev-
eral ways. Round Robin [8] is absolutely blind to this problem. Instructions
are alternatively fetched from available threads, even when any of them has in-
flight L2 misses. ICOUNT [8] only takes into account the occupancy of the issue
queues, and disregards that a thread can be blocked on an L2 miss, while mak-
ing no progress for many cycles. ICOUNT gives higher priority to those threads
with fewer instructions in the queues (and in the pre-issue stages). When a load
misses in L2, dependent instructions occupy the issue queues for a long time. If
the number of dependent instructions is high, this thread will have low prior-
ity. However, these entries cannot be used by the other threads degrading their
performance. On the contrary, if the number of dependent instructions after a
load missing in L2 is low, the number of instructions in the queues is also low,
so this thread will have high priority and will execute many instructions that
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cannot be committed for a long time. As a result, the processor can run out of
registers. Therefore, ICOUNT only has a limited control over the issue queues,
because it cannot prevent threads from using the issue queues for a long time.
Furthermore, ICOUNT ignores the occupancy of the physical registers.

More recent policies, implemented on top of ICOUNT, focus in this problem
and add more control over issue queues, as well as control over the physical
registers.

In [11] a load hit/miss predictor is used in a super-scalar processor to guide
the dispatch of instructions made by the scheduler. This allows the scheduler to
dispatch dependent instructions exactly when the data is available. The authors
propose several hit/miss predictors that are adaptations of well known branch
miss predictors. The authors suggest adding a load miss predictor in an SMT
processor in order to detect L2 misses. This predictor would guide the fetch,
switching between threads when any of them is predicted to miss in L2.

In [4] the authors propose two mechanisms oriented to reduce the problem
associated to load latency. They use data prefetching and conclude that it is not
effective because, although the latency of missing loads is reduced, this latency
is still significant. Furthermore, as the number of threads increases, the gain
decreases due the pressure put on the memory bus. The second mechanism uses
a load miss predictor, and when a load is predicted to miss the corresponding
thread is restricted to use a maximum amount of available resources. When the
missing load is resolved the thread is allowed to use the whole resources.

In [7] the authors propose several mechanisms to detect an L2 miss (detection
mechanism) and different ways of acting on a thread once it is predicted to have
an L2 miss (action mechanism). The detection mechanism that presents the best
results is to predict miss every time that a load spends more cycles in the cache
hierarchy than needed to access the L2 cache, including possible resource conflicts
(15 cycles in the simulated architecture). Two action mechanism present good
results: the first one, STALL, consists of fetch-stalling the offending thread. The
second one, FLUSH, flushes the instructions after the L2 missing load, and also
it stalls the offending thread until the load is resolved. As a result, the offending
thread temporarily does not compete for resources, and what is more important,
the resources used by the offending thread are freed, giving the other threads full
access to them. FLUSH results show performance improvements over ICOUNT
for some workloads, especially for workloads with a few number of threads.
However, FLUSH requires complex hardware, and increase the pressure on the
front-end of the machine because it requires squashing all instruction after a
missing load. Furthermore, due to the squashes, many instructions need to be
re-fetched and re-executed. STALL is less aggressive than FLUSH, does not
require hardware as complex as FLUSH, and does not re-execute instructions.
However, in general its performance results are worse.

In this paper we present improved versions of FLUSH, STALL, and L2MP
that clearly improves the original ones in both throughput and fairness.
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3 Metrics and Experimental Setup

We have used three different metrics to make a fair comparison of the policies:
the IPC throughput, a metric that balances throughput and fairness (Hmean),
and a metric that takes into account the extra energy used due the re-execution
of instructions (extra fetch or EF).

We call the fraction IPCwld/IPCalone the relative IPC, where the IPCwld

is the IPC of a thread in a given workload, and the IPCalone is the IPC of a
thread when it runs isolated. The Hmean metric is the harmonic mean of the
relative IPC of the threads in a workload [5]. Hmean is calculated as shown in
Formula 1.

Hmean =
#threads

∑
threads

IPCalone

IPCwld

. (1)

The extra fetch (EF) metric measures the extra instructions fetched due to
the flush of instructions (see Formula 2). Here we are not taking into account the
flushed instructions due to branch mispredictions, but only those related with
the loads missing in L2. EF compares the total fetched instructions (flushed and
not flushed) with the instructions that are fetched and not flushed. The higher
the value of the EF the higher the number of squashed instructions respect to
the total fetched instructions. If no instructions is squashed, EF is equal to zero
because the number of fetched instructions is equal to the number of fetched and
not squashed instructions.

EF =
TotalFetched ∗ 100

Fetched and not squashed
− 100 (%) . (2)

We have used a trace driven SMT simulator, based on SMTSIM [9]. It consists
of our own trace driven front-end and a modified version of SMTSIM’s back-end.
Baseline configuration is shown in Table 1 (a).

Traces were collected of the most representative 300 million instruction seg-
ment following the idea presented in [6]. The workload consists on all programs
from the SPEC2000 integer benchmark suite. Each program was executed us-
ing the reference input set and compiled with the −O2 − non shared options
using DEC Alpha AXP-21264 C/C++ compiler. Programs are divided in two
groups based on their cache behavior (see Table 1 (b)): those with an L2 cache
miss rate higher than 1%1 are considered memory bounded (MEM), the rest
are considered ILP. From these programs we create 12 workloads, as shown in
Table 2, ranging from 2 to 8 threads. In the ILP workloads all benchmarks have
good cache behavior. All benchmarks in the MEM workloads have an L2 miss
rate higher than 1%. Finally, the MIX workloads include ILP threads as well as
MEM threads. For MEM workloads some benchmarks were used twice, because
there are not enough SPECINT benchmarks with bad cache behavior. The repli-
cated benchmarks are boldfaced in Table 2. We have shifted second instances of
replicated benchmarks by one million instructions in order to avoid both threads
accessing the cache hierarchy at the same time.
1 The L2 miss rate is calculated with respect to the number of dynamic loads
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Table 1. From left to right. (a) Baseline configuration; (b) L2 behavior of isolated
benchmarks

Processor Configuration  
Fetch /Issue /Commit Width  8 

Fetch Policy  ICOUNT 2.8  
Queues Entries  32 int, 32 fp, 32 ld/st  
Execution Units  6 int, 3 fp, 4 ld/st  

Physical Registers  384 int, 384 fp  
ROB S ize /  thread 256 entries  

Branch Predictor  Configuration  
Branch  Predictor  2048 entries gshare  

Branch Target Buffer  256 entry, 4 -way associative  
RAS  256 entries  

Memory  Configuration  

 L1 Icache, Dcache  
64K bytes, 2 -way, 8-banks, 
64 -byte lines , 1 cycle access  

L2 cache  
512K bytes, 2 -way, 8-banks, 
10 cycles lat., 64-byte lines  

Main Memory latency  100 cycles  
TLB miss penalty  160 cycles  

 

 

 L2 miss rate  Thread typ e 
mcf 29.6 

twolf  2.9 
vpr  1.9 

parser  1.0 

MEM 

gap 0.7 
vortex  0.3 

gcc 0.3 
perlbmk  0.1 

bzip2 0.1 
crafty  0.1 
gzip 0.1 
eon 0.0 

ILP 

 

Table 2. Workloads

Num. of 

threads 

Thread 

type 
Benchmarks 

ILP gzip, bzip2 

MIX gzip, twolf 2 

MEM mcf, twolf 

ILP gzip, bzip2, eon, gcc 

MIX gzip, twolf , bzip2, mcf 4 

MEM mcf, twolf, vpr, twolf 

ILP gzip, bzip2, eon, gcc crafty, perlbmk 

MIX gzip, twolf, bzip2, mcf, vpr, eon 6 

MEM mcf, twolf, vpr, parser, mcf, twolf 

ILP gzip, bzip2, eon, gcc crafty, perlbmk, gap, vortex 

MIX gzip, twolf, bzip2, mcf, vpr, eon, parser, gap  8 

MEM mcf, twolf, vpr, parser, mcf, twolf, vpr, parser 

4 Current Policies

In this section we discuss several important issues about the implementation of
the policies that we are going to evaluate: L2MP, STALL and FLUSH.

In this paper we evaluate a policy that uses predictors to predict L2 misses.
We call this policy L2MP. The L2MP mechanism is shown in Figure 1. The
predictor acts in the decode stage. It is indexed with the PC of the loads: if a
load is not predicted (1) to miss in L2 it executes normally. If a load is predicted
(1) to miss in L2 cache, the thread it belongs to is stalled (2). This load is tagged
indicating that it has stalled the thread. When this load is resolved (either in
the Dcache (3), or in the L2 cache(4)) the corresponding thread is continued.
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(1)

(2)
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Fig. 1. L2MP mechanism

We have explored a wide range of different load miss predictors [1]. The
one that obtains the best results is the predictor proposed in [4], what we call
predictor of patterns.

About FLUSH and STALL, in [7] a load is declared to miss in L2 when
it spends more than 15 cycles in the memory hierarchy. We have experiment
different values for this parameter, and 15 presents the best overall results for
our baseline architecture. Three additional considerations about FLUSH and
STALL are: a data TLB miss also triggers a flush (or stall); a 2-cycle advance
indication is received when a load returns from memory; and this mechanism
always keeps one thread running. That is, if there is only one thread running, it
is not stopped even when it experiences an L2 miss.

5 Comparing the Current Policies

In this section we will determine the effectiveness of the different policies ad-
dressing the problem of load latency. We will compare the STALL, FLUSH and
L2MP policies using the throughput and the Hmean.

In Figure 2 we show the throughput and the Hmean improvements of STALL,
FLUSH, and L2MP over ICOUNT. L2MP achieves important throughput incre-
ments over ICOUNT, mainly for 2-thread workloads. However, fairness results
using the Hmean metric indicates that for the MEM workloads the L2MP is more
unfair than ICOUNT. Only for 8-thread workloads L2MP outperforms ICOUNT
in both throughput and Hmean. Our results indicate that it is because L2MP
hurts MEM threads and boosts ILP threads, especially for few-thread workloads.

If we compare the effectiveness of L2MP with other policies addressing the
same problem, like STALL, we observe that L2MP only achieves better through-
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Fig. 2. Comparing current policies. (a) throughput increment over ICOUNT; (b)
Hmean increment over ICOUNT

put than STALL for MEM workloads. However, L2MP heavily affects fairness.
We will explain why L2MP does not obtain results as good as STALL soon.

The results of FLUSH and STALL are very similar. In general FLUSH slightly
outperforms STALL, especially for MEM workloads and when the number of
threads increases. This is because when the pressure on resources is high it is
preferable to flush delinquent threads, and hence free resources, than stall these
threads holding resources for a long time.

As stated before, no policy outperforms the other neither for all workloads,
nor for all metrics. Each one behaves better depending on the particular metric
and workload.

6 Improved Policies

6.1 Improving L2MP

We have seen that L2MP alleviates the problem of load latency, but it does not
achieve results as good as other policies addressing the same problem. The main
drawback of L2MP are the loads missing in L2 cache that are not detected by
the predictor. These loads can seriously damage performance because following
instructions occupy resources for a long time. Figure 3 depicts the percentage of
missing loads that are not detected by the predictor of patterns. This percentage
is quite significative (from 50% to 80%), and thus the problem still persists.

We propose to add a safeguard mechanism to “filter” this undetected loads.
That is, this mechanism acts on loads missing on L2 that are not detected by the
predictor. The objective is to reduce the harmful effects caused by these loads.
In this paper we have used STALL [7] as safeguard mechanism.

Our results show that, when using L2MP, the fetch is absolutely idle for
many cycles (i.e. 15% for the 2-MEM workload) because all threads are stalled
by the L2MP mechanism. Another important modification that we have made
to the original L2MP mechanism is to maintain always one thread running in
order to avoid idle cycles of the processor.

The Figures 4 (a) and (b) show the throughput and the Hmean increment of
L2MP+ over L2MP. Throughput results show that for MEM workloads L2MP
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Fig. 4. L2MP+ vs. L2MP. (a) throughput results; (b) Hmean results

outperforms L2MP+ (5.1% on average), and for MIX L2MP+ outperforms
L2MP (16% on average).

We have investigated why L2MP improves L2MP+ for MEM workloads. We
detected that L2MP+ significantly improves the IPC of mcf (a thread with a
high L2 miss rate), but this causes an important reduction in the IPC of the
remaining threads. And given that the IPC of mcf is very low, the decrement in
the IPC of the remaining threads affects more the overall throughput than the
increment in the IPC of mcf . Table 3 shows the relative IPC of mcf and the re-
maining threads for each MEM workload. In all cases L2MP+ improves the IPC
of mcf and degrades the IPC of the remaining threads. This indicates that the

Table 3. Relative IPCs

RELATIVE IPCs  L2MP L2MP+ Increment  
mcf 0.32 0.64 100 

2 – MEM  
remaining  0.72 0.60 -17.01 

mcf 0.30 0.48 61.36  
4 – MEM  

remaining  0.39 0.35 -10.07 
mcf 0.29 0.39 33.72  

6 – MEM  
remaining  0.30 0.27 -7.63 

mcf 0.28 0.34 21.69  
8 – MEM  

remaining  0.19 0.19 0.48 
 



78 Francisco J. Cazorla et al.

original policy favors ILP threads but it is at the cost of hurting MEM threads.
Hmean results, see Figure 4 (b), confirm that the L2MP+ policy presents a
better throughput-fairness balance than the L2MP policy. L2MP+ only suffers
slowdowns lower than 1%.

6.2 Improving FLUSH

The FLUSH policy always attempts to leave one thread running. In doing so,
it does not flush and fetch-stall a thread if all remaining threads are already
fetch-stalled. The Figure 5 shows a timing example for 2 threads. In the cycle c0
the thread T0 experiences an L2 miss and it is flushed and fetch-stalled. After
that, in cycle c1, thread T1 also experiences an L2 miss, but it is not stalled
because it is the only thread running. The main problem of this policy is that
by the time the missing load of T0 is resolved (cycle c2), and this thread can
proceed, the machine is presumably filled with instructions of thread T1. These
instructions occupy resources until the missing load of T1 is resolved in cycle c3.
Hence, performance is degraded.

The improvement we propose is called Continue the Oldest Thread (COT),
and it is the following: when there are N threads, N-1 of them are already stalled,
and the only thread running experiences an L2 miss, it is effectively stalled and
flushed, but the thread that was first stalled is continued. In the previous example
the new timing is depicted in Figure 6. When thread T1 experiences an L2 miss
it is flushed and stalled, and T0 is continued. Hence, instructions of T0 consume
resources until cycle c2 when the missing load is resolved. However, this does
not affect to the thread T1 because it is stalled until cycle c3. In this example
COT improvement has been applied to FLUSH, but it can be applied to any
of the fetch-gating policies. We have applied it also to STALL. We call the new
versions of FLUSH and STALL, FLUSH+ and STALL+.

Figure 7 (a) shows the throughput and the Hmean increments of FLUSH+
over FLUSH. We observe that FLUSH+ improves FLUSH for all workloads. We

T0

time

T1

c0 c1 c2 c3

Load resolvedL2 miss

Fig. 5. Timing of the FLUSH policy
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Fig. 6. Timing of the improved FLUSH policy
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Fig. 7. FLUSH+ vs. FLUSH. (a) throughput and Hmean results; (b) EF results

also observe that for MEM workloads FLUSH+ clearly outperforms FLUSH, for
both metrics, and the improvement decreases as the number of thread increases.
This is because as the number of threads increases the number of time that only
one thread is running and the remaining are stopped is lower. For MIX and ILP
workloads the improvement is lower than for the MEM workloads because the
previous situation is also less frequent. Concerning to flushed instructions, in
Figure 7(b) we see the EF increment of FLUSH+ over FLUSH (remember the
lower the value the better the result). We observe that, on average, FLUSH+
decrements by 60% FLUSH for MEM workloads and only increments by 20%
FLUSH for MIX workloads. These results effectively indicate that FLUSH+
presents a better throughput-fairness balance than FLUSH, and also reduces
extra fetch.

6.3 Improving STALL

The improved STALL policy, or STALL+, consists of applying the COT im-
provement to STALL.
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Figures 8 (a) and (b) show the throughput and the Hmean increment of
STALL+ over STALL. We observe that the improvements of STALL+ over
STALL are less pronunced than the improvements of FLUSH+ over FLUSH.
Throughput results show that in general STALL+ improves STALL, and only
for the 2-MEM workload there is a remarkable slowdown of 3%. The Hmean
results show that STALL+ outperforms STALL for all workloads, and especially
for MEM workloads. The EF results are not shown because the STALL and
STALL+ policies do not squash instructions.

We analyzed why STALL outperforms STALL+ for the 2-MEM workload.
We observe that the cause is the benchmark mcf . The main characteristic of this
benchmark is its high L2 miss rate. On average, one of every eight instructions
is a load failing in L2. In this case the COT improvement behaves as show in
Figure 9: in cycle c0 the thread T0 (mcf) experiences an L2 miss and it is
fetch-stalled. After that, in cycle c1, T1 experiences an L2 miss it is stalled and
T0 (mcf) is continued. Few cycles after that, mcf experiences another L2 miss,
thus the control is returned to thread T1. The point is that with FLUSH every
time a thread is stalled it is also flushed. With STALL this is not the case, hence
from cycle c1 to c2 mcf allocates resources that are not freed for a long time
degrading the performance of T1. That is, COT improvement for STALL policy
improves the IPC of benchmarks with high L2 miss rate, mcf in this case, but
it hurts the IPC of the remaining. This situation is especially acute for 2-MEM
workloads. To solve this problem, and other ones, we develop a new policy called
FLUSH++.

6.4 FLUSH++ Policy

This policy tries to obtain the advantages of both policies, STALL+ and FLUSH+,
and it focuses in the following points:

– For MIX workloads STALL+ presents good results. It is an alternative to
FLUSH+ avoiding instruction re-execution.

– Another objective is to improve the IPC of STALL+ for MEM workloads
with a moderate increment in the re-executed instructions.
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T0

time

T1

c0 c1 c2 c3

Load
resolvedL2 miss

c4

L2 miss

Fig. 9. Timing when the mcf benchmark is executed

# threads >
4 ?

Only 1
thread
running
(COT)?

FLUSH+

FLUSH+ STALL+

NO

NOYES

YES

Fig. 10. FLUSH++ policy

– The processor knows every cycle the number of threads that are running.
This information can be easily obtained for any policy at runtime.

FLUSH++ works differently depending on the number of running threads,
see Figure 10.

– If the number of running threads is less than four, it combines STALL+
and FLUSH+. In a normal situation it behaves like STALL+, but when the
COT improvement is triggered it acts as FLUSH+. That is, the flush is only
activated when there is only one thread running and it experiences an L2
miss. In the remaining situations threads are only stalled.
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– When there are more than four threads running, we must consider two fac-
tors. On the one hand, the pressure on resources is high. In this situation is
preferable to flush delinquent threads instead of stalling it because freed re-
sources are highly profited by the other threads. On the other hand, FLUSH+
improves FLUSH in both throughput and fairness for four-or-more thread
workloads. For this reason, if the number of threads is greater than four, we
will use the FLUSH+ policy.

In Figure 11 we compare FLUSH++ with the original STALL and FLUSH
policies, as well as with the improved versions STALL+ and FLUSH+. The
Figure (a) shows the throughput results, and the Figure (b) the Hmean results.
We observe that FLUSH++ outperforms FLUSH in all cases in throughput
as well as in Hmean. Furthermore, in Figure 12 it can been seen that for 2-,
and 4-thread workloads FLUSH++ clearly reduces the EF. Concerning STALL,
throughput results show that FLUSH++ only suffers slight slowdowns lower
than 3% for the 6-MIX workload. Hmean results show that FLUSH++ always
outperforms STALL.
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For ILP and MIX workloads FLUSH++ outperforms FLUSH+ and for MEM
workloads it is slightly worse. The most interesting point is that, as we can see
in the Figure 12 FLUSH++ considerably reduces the EF of FLUSH+. For 6-,
and 8-thread workloads the results are the same that for FLUSH+.

7 Comparing the Improved Policies

In the previous section we saw that FLUSH++ outperforms FLUSH+ and
STALL+. In this section we will compare FLUSH++ with L2MP+.

Figure 13 depicts the throughput and Hmean increments of L2MP+ over
FLUSH++. The throughput results show that L2MP+ improves FLUSH++ for
MIX workloads, and that FLUSH++ is better than L2MP+ for MEM workloads.
The Hmean results indicate that only for 6-, and 8-thread workloads L2MP+ is
slightly more fair than FLUSH++ for ILP and MIX workloads, for the remaining
workloads FLUSH++ is more fair.

In general, FLUSH++ outperforms L2MP+, however for some configurations
this is not the case. This confirms that each policy presents better results than
the remaining depending on the particular workload and metric.

8 Conclusions

SMT performance directly depends on how the allocation of shared resources is
done. The instruction fetch mechanism dynamically determines how the alloca-
tion is carried out. To achieve high performance it must avoid the monopolization
of a shared resource by any thread. An example of this situation occurs when a
load misses in the L2 cache level. Current instruction fetch policies focus on this
problem and achieve significant performance improvements over ICOUNT.

A minor contribution of this paper is that we compare three different policies
addressing this problem. We show that none of the presented policies clearly out-
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performs all others for all metrics. The results vary depending on the particular
workload and the particular metric (throughput, fairness, energy consumption,
etc). The main contribution is that we have presented four improved versions of
the three best policies addressing the described problem. Our results show that
this enhanced versions achieve a significant improvement over the original ones:

– The throughput results indicate that L2MP+ outperforms L2MP for MIX
workload (16% on average) and is worse than L2MP only for 2-, 4- and 6-
MEM workloads (8% on average). The Hmean results show that L2MP+
outperforms L2MP especially for 2-thread workloads.

– The FLUSH+ policy outperforms FLUSH in both throughput and fairness
especially for MEM workloads. Furthermore, it reduces extra fetch by 60%
for MEM workloads and only increments extra fetch by 20% for MIX work-
loads.

– Throughput results show that in general STALL+ improves STALL, and
only for the 2-MEM workload there is a remarkable slowdown of 3%. The
Hmean results show that STALL+ outperforms STALL for all workloads,
and especially for MEM workloads.

– FLUSH++, a new dynamic control mechanism, is presented. It adapts its be-
havior to the dynamic number of “alive threads” available to the fetch logic.
Due to this additional level of adaptability, it is remarkable that FLUSH++
policy fully outperforms FLUSH policy in both, throughput and fairness.
FLUSH++ also reduces EF for the 2- and 4-thread workloads, and moder-
ately increases EF for the 6-MIX and 8-MIX workloads. Regarding STALL+,
FLUSH++ outperforms STALL+ policy, with just a slight exception in
throughput in 6-MIX workload.
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