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Abstract. The relationship between cointegration and error correction (EC) models is
well characterized in a linear context, but the extension to the nonlinear context is still a
challenge. Few extensions of the linear framework have been done in the context of
nonlinear error correction (NEC) or asymmetric and time varying error correction models.
In this paper, we propose a theoretical framework based on the concept of near epoch
dependence (NED) that allows us to formally address these issues. In particular, we
partially extend the Granger Representation Theorem to the nonlinear case.
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1. INTRODUCTION

Granger (1981) introduced the concept of cointegration but it was not until Engle
and Granger (1987) and Johansen (1988, 1991) that this concept achieved
immense popularity among econometricians and applied economists. The great
impact those papers had on the profession was due to the fact that they showed
how we should work statistically with economic variables that are non-stationary,
so as to avoid the problem of spurious regressions (Granger and Newbold, 1974;
Phillips, 1986). Furthermore, most of the estimation and inference procedures
changed dramatically from the classical statistical frameworks when dealing with
variables that have unit roots and are cointegrated. By now, it is clear how to deal
with integrated and cointegrated data in a linear context (Watson, 1994), but
almost no research has been dedicated to the simultaneous consideration of non-
stationarity and nonlinearity, even though many economist agree that those are
dominant and likely properties of large amounts of economic data. How can it be
possible that so little research has been dedicated to this topic? The answer is
clear; it is difficult to work with nonlinear time series models within a stationary
and ergodic framework and, therefore, even more difficult within a nonstationary
context.
An introduction to the state of the art in econometrics relating nonlinearity and

nonstationarity within a time series context can be found in Granger and
Teräsvirta (1993) and Granger (1995). Those authors discussed the concepts of
long-range dependence in mean and extended memory which generalize the linear
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concept of integration, I(1), to a nonlinear framework. The main disadvantage of
those definitions is that they have no Laws of Large Numbers (LLN), nor
Functional Central Limit Theorems (FCLT) associated with them and, therefore,
it is hard to obtain estimation and inference results. On the other hand, there are
interesting empirical macroeconomic applications where nonlinearity has been
found in a non stationary context and, therefore, there is a need to justify those
results econometrically. This paper starts filling this major gap with the analysis of
nonlinear error correction models.
As an empirical application of nonlinear error correction (NEC) models. We

have the case of the UK money demand from 1878 to 1970. Hendry and Ericsson
(1991) used the NEC model suggested by Escribano (1986) in the specification of
their money demand as an alternative to the linear money demands suggested by
Friedman and Schwartz (1982), Hendry and Ericsson (1991) and Longbottom
and Holly (1985). The variables in Hendry and Ericsson (1991) are: m, log money
stock (millions); i, log real net national product; p, deflator of i; rs, log of short
term interest rate; rl, log of long term interest rate; and RS, short term interest
rate. L is the lag operator such that Lkxt ¼ xt�k. Let ûut be the residuals from the
cointegrating relationship estimated by OLS, then the two step approach of Engle
and Granger (1987) is given by

ûut ¼ ðm p yÞt þ 0:309þ 7RSt

ð1 LÞðm pÞt ¼ 0:45ð1 LÞðm pÞt�1 ð1 LÞ2ðm pÞt�2 0:60ð1 LÞpt
þ 0:39ð1 LÞpt�1 0:021ð1 LÞrst 0:062ð1 L2Þrlt
2:55ðûut�1 0:2Þûu2t�1 þ 0:005þ 3:7ðD1þ D3Þ þ �t

where D1 and D3 are dummy variables for the two world wars. The term ûut�1
enters nonlinearly, and the nonlinear adjustment is a cubic polynominal. Other
empirical examples of NECs models or nonlinear cointegration are given by
Granger and Lee (1989), Balke and Fomby (1992), Burgess (1992), Kunst (1992),
Granger and Swanson (1995), Escribano and Granger (1998) and Escribano and
Pfann (1998).
The structure of this paper is as follows: in Section 2, we propose an alternative

concept of integration, I(0) and I(1), which could also be extended to nonlinear
cointegration. Section 3 presents some auxiliary results. In Section 4, we propose a
representation theorem which relates the concept of linear cointegration to the
nonlinear error correction introduced by Escribano (1986, 1987). Section 5 suggest
some extensions. Section 6 presents the main conclusions.

2. DEFINITIONS

Following Lo (1991), Kwiatowski et al. (1992) and Stock (1994), a general
concept of I(0) for a sequence fmtg is given by the ‘high level’ condition that mt

verifies a FCLT, i.e. that
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T�1=2
X½Tr	
t 1

mt !
d
BðrÞ

where BðrÞ is a Brownian motion. In a nonlinear dynamic model, this FCLT holds
for functions of the exogeneous variables and underlying disturbances that have a
sufficiently fading memory. The concept of mixing is appropriate to modelize the
fading memory without restricting the heterogeneity of the process, and our
definitions will be based on that concept, which is formalized as follows.

DEFINITION 1. (Strong mixing) Let fvtg be a sequence of random variables.
Let F t

s � rðvs; . . . ; vtÞ be the generated sigma algebra. Define the a mixing
coefficients

am � sup
t

sup
fF2F t

1;G2F1
tþmg

jPðG \ F Þ PðGÞPðF Þj

The process fvtg is said to be strong mixing (also a mixing) if am ! 0 as m ! 1.
The coefficient am measure the amount of dependence between events involving
variables separated by at least m time periods. If am ¼ OðmkÞ for all k < a, then
am is said to be of size a.
However, the mixing property is, for some purposes, a too restrictive one, since

a function of a mixing sequence that depends on an infinite number of lags may
not be mixing. An alternative concept is needed that allows the application of
limit theorems. Different approaches to modelize these dynamics have been
developed: Bierens (1981) employs the concept of stochastically stable w.r.t. an
a mixing sequence; Gallant and White (1988) or Wooldridge and White (1988)
employ the concept of near epoch dependence (NED) w.r.t. an a mixing sequence.
Both concepts require the assumption that the exogenous variables and the
disturbances are a mixing so as to provide useful results. The definition of I(0)
that we are going to use is based on the concept of NED.

DEFINITION 2. (NED) Let fwtg be a sequence of random variables with
Efw2

t g < 1 for all t. It is said that fwtg is NED on the underlying sequence fvtg
of size a if /ðnÞ is of size a, where /ðnÞ given by

suptkwt Etþn
t�nðwtÞk2 � /ðnÞ

where Etþn
t�nðwtÞ ¼ Eðwtjvt�n; . . . ; vtþnÞ and k � k2 is the L2 norm of a random variable,

defined as E1=2j � j2.

We assume that the future values of vt do not improve the conditional
expectation of wt, in the sense of Sims (1972), such that the forward values
vtþrðr ¼ 1; . . . ; nÞ are useless, but harmless. When /ðnÞ goes to zero at an
appropriate rate, then wt depends essentially on the recent epoch of vt. If wt

depends on a finite number of lags of vt then it is NED of any size. More general
definitions of NED can be used see, for instance, Davidson (1994) but we use
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the one given in Gallant and White (1988). One useful feature of NED sequences
is that, under some conditions, functions of NED sequences are NED, which
greatly simplifies working with NED sequences. As it was explained above, the
existence of a FCLT is the central feature to characterize an I(0) sequence. A
simplified version of a FCIT for NED variables is as follows (Wooldridge and
White, 1988; Davidson, 1994).

THEOREM 1. (FCLT for NED) Consider the assumptions:

(i) fwtg is a mean zero sequence of random variables, uniformly Lr bounded and
NED of size 1

2 on an a mixing process of size r=ðr 2Þ; and
(ii) T�1Eð

PT
t 1 wtÞ2 ! r2 where 0 < r2 < 1

Then WT ðrÞ ! r2BðrÞ where WT ðrÞ ¼ T�1=2P½Tr	
t 1 wt and BðrÞ is the standard

Brownian motion.

The above considerations motivate the following definition.

DEFINITION 3. A sequence fwtg is I(0) if it is NED on an underlying a mixing
sequence fvtg but the sequence fxtg given by xt ¼

Pt
s 1 ws is not NED on fvtg. In

this case, we will say that xt is I(1)

Notice that if xt is I(1) then Dxt is I(0). This definition excludes Ið 1Þ series as
I(0), like zt ¼ et et�1 for a mixing sequences et, since in this case

P
zt is

a mixing. Notice the conditions of Theorem 1 ensure a FCLT for an I(0) series.
The following definition of cointegration is based on the concepts presented.

DEFINITION 4. Two I(1) sequences fytg and fxtg are (linearly) cointegrated
with cointegrating vector b� ¼ ½1; b�

12	
0, if yt b�

12xt is NED on a particular
a mixing sequence but yt d12xt is not NED for d12 6¼ b�

12

In this definition, we have assumed a normalization of the cointegrating vector
b� as ½1; b�

12	. Notice that this definition allows us to extend the notion of
cointegration to a nonlinear context by defining the nonlinear function gðyt;wt; dÞ
as NED if and only if d ¼ b�. This approach avoids the difficulties faced by
Escribano (1987) or Granger and Hallman (1991) when characterizing the time
series properties of nonlinear transformations of series that are I(0) or I(1). The
above definitions are the basis of a formulation of NEC mechanisms.

DEFINITION 5. A NEC model of the ðn� 1Þ and I(1) vector Xt is a balanced
relation between an autoregressive linear model (VAR) for the differences DXt, and
a nonlinear term for the lag of the levels, say F ðXt�1Þ, plus an error term. say vt.

The models that we want to generalize are the VAR EC models. The general
model that we study is a NEC in the form
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DXt ¼ W1DXt�1 þ F ðXt�1Þ þ vt ð1Þ
Notice that the linear part of the model depends on the differenced variable DXt,
whereas only the nonlinear part depends on the levels Xt. In this sense, the model
generalizes the VAR EC models by allowing a nonlinear error correction but
keeping the linear terms in differences. Therefore, the generalization keep the
linear modelling for the general specification of the model, but allows a nonlinear
specification for the particular role of the correction. Recall that vt is a mixing,
not NED. There is only one lag but this is not restrictive (a redefinition of Xt is
enough to consider more lags). The following model provides an example of
generating mechanisms for NEC models. Consider the series defined as

Dxt ¼ w11Dxt�1 þ v1t
zt ¼ zt�1 þ k1Dxt�1 hJ2ðzt�1Þ þ ðv1t hv2tÞ ð2Þ

Dyt ¼ w21Dxt�1 þ J2ðzt�1Þ þ v2t

with jw11 < 1, k1 ¼ w11 hw21, and j1 h @J2
@z j < 1. This mechanism provides a

NEC as (1) where the cointegrating relation is zt ¼ xt hyt (in this case
b ¼ ½1 h	0Þ, Xt ¼ ½xt yt	0, vt ¼ ½v1t v2t	, and

W1 ¼
w11 0
w21 0

� �
F ðXt�1Þ ¼

0
J2ðzt�1Þ

� �

3. AUXILIARY RESULTS

Before characterizing the representation theorem, it would be useful to introduce
some results that will be instrumental in the proof. For any vector norm kXk we
can define a matrix norm kAk, which is a subordinate matrix norm, such that for
any vector X it is true that

kAXkOkAkkXk

The following theorem finds a suitable matrix norm which will be useful for our
purposes.

THEOREM 2. For any given matrix A and any number � > 0, there exists at least
one subordinate matrix norm k � kS such that

kAkSOSRðAÞ þ �

where SRðAÞ is the spectral radius of A, i.e. the largest eigenvalue of the matrix A.

PROOF. See the Appendix.

The above norm approximates the spectral radius as closely as we want from
above, and this will be the appropriate norm to work with. Now we extend the
definition for random variables.
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DEFINITION 6. Let Yt be a random vector. We define its Sr norm as

kYtkSr � ðEðkYtkrSÞÞ
1=r � E1=rðkYtkrSÞ

Note that this is usually called the Lr norm when random variables appear instead
of random vectors and k � kS is changed by the absolute value.

LEMMA 1. If W is a random vector, the function defined by kWkSr is a norm.

PROOF. See the Appendix.

Consider the following nonlinear dynamic model

Zt ¼ HðZt�1; cÞ þ ut ð3Þ

where Zt and ut are r � 1, and Hð�; cÞ : Rr ! Rr is a differentiable function of Z on
an open set of Rn. This nonlinear autoregressive model will play an important role
for the study of our basic model (1). In Theorem 3, we prove that there are enough
conditions to guarantee that Zt is NED. Assumption 1 describe the conditions.

ASSUMPTION 1.

(a) The sequence futg is a mixing of size r=ðr 2Þ for r > 2.
(b) (Boundedness Condition) We have

SRðrZHðZ; cÞÞO1 d

for all Z, where Hð�; cÞ is continuously differentiable in each argument in an open set
of Rr, and rZHðZ; cÞ is the matrix of first partial derivatives w.r.t. Z.

(c) For some finite constant Du, Ekutk2SODu.

Assumption 1(b) says that the spectral radius of the matrix of first partial
derivatives is smaller than 1. This boundedness condition imposed on the
nonlinear function plays an important role. Notice that taking � < d, we obtain
kDZHðZ; cÞkO1 d þ � < 1. This is a generalization of the concept of a nonlinear
contraction. Theorem 3 ensures that the boundedness condition is sufficient to
obtain a NED sequence. The proof extends the ideas of Gallant and White
(1988).

THEOREM 3. Under Assumption 1, the sequence fZtg given in (3) is NED for
k � kS , on the underlying a mixing sequence futg of any size.

PROOF. See the Appendix.

We still need a technical Lemma that will be used later on. It essentially ensures
that a nonlinear arbitrary function of a NED sequence is still a NED sequence.
See Gallant and White (1988) or Davidson (1994) for a proof.
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LEMMA 2. Let Zt be a vector sequence where each component is NED on fvtg of
size a. Assume JðZtÞ is bounded in L2 norm of size a, and the generalized
Lipschitz condition

jJðZÞ JðYÞjOBðZ;YÞdðZ;YÞ a:s:

holds for a non negative measurable BðZ;YÞ and a metric dð�; �Þ, such that for
1OqO2 kBðZt;Etþm

t�mZtÞkq=ðq�1Þ < 1

kdðZt;Etþm
t�mZtÞkq < 1

and for r > 2

kBðZt;Etþm
t�mZtÞdðZt;Etþm

t�mZtÞkr < 1

Then fJðZtÞg is L2 NED on fvtg of size aðr 2Þ=2ðr 1Þ.

In Section 4, we provide sufficient conditions to ensure that model (1) is
correctly specified in a sense detailed below. This can be understood as a partial
generalization of Granger’s Representation Theorem presented in Engle and
Granger (1987) and Johansen (1991).

4. A REPRESENTATION THEOREM

Now we have the tools to give a representation theorem for a nonlinear error
correction with linear cointegration, in the sense that we provide sufficient
conditions to ensure a balanced specification of NEC models.

THEOREM 4. (Representation Theorem) Consider the nonlinear error correction
model for the ðn� 1Þ vector Xt, given by (1). Assume that

(a) vt is a mixing of size s=ðs 2Þ for s > 2
(b) Rtvt is not NED on an a mixing sequence
(c) Ekvtk2SODv

(d) F ðXt�1Þ ¼ JðZt�1Þ, where Zt � b0Xt, for some vector ðr � 1Þb, and a
continuously differentiable function Jð�Þ, which satisfies the generalized
Lipschitz conditions of Lemma 2,

(e) SRðW1Þ < 1, where SRðMÞ is the spectral radius of the matrix M, and
(f) for some fixed d 2 ð0; 1Þ

SR
W1 rZJðZÞ

b0W1 Ir þ b0rZJðZÞ

� �
O1 d

The above conditions ensure that
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(i) DXt and Zt are simultaneously NED on the a mixing sequence ðvt; utÞ, where
ut ¼ b0vt; and

(ii) Xt is I(1).

PROOF. (i) Define the ðn� 1Þ vector Wt ¼ DXt and the ðr � 1Þ vector
Zt ¼ b0Xt. If we multiply (1) by b0 and write both systems we obtain

Wt ¼ W1Wt�1 þ JðZt�1Þ þ vðtÞ
Zt ¼ Zt�1 þ b0W1Wt�1 þ b0JðZt�1Þ þ ut

where ut ¼ b0vt. This system that can be written

Yt ¼ GðYt�1Þ þ et

where Y ¼ ½W0 Z0	0,

GðYÞ ¼ W1Wt�1 þ JðZt�1Þ
Zt�1 þ b0W1Wt�1 þ b0JðZt�1Þ

� �

and et½v0t u0t	. Then we have a Markovian system with a mixing errors. The
matrix of partial derivatives with respect to Wt and Zt given by rY GðYÞ is

rYGðYÞ ¼
rWG1 rZG1

rWG2 rZG2

� �
¼ W1 rZJ

b0W1 Iþrzb0J

� �

where G1ð�Þ and G2ð�Þ are defined according to the system above. Notice that rZ

and b0 commute. We are in the assumptions of Theorem 3, which ensures that
SRðrY GðYÞÞO1 d is a sufficient condition for Yt to be NED on et, since the
moment conditions and differentiability hold. This proves that W and Z are NED
on an a mixing sequence.
(ii) The Vector Xt can be written

Xt ¼ ð1 LÞ�1ð1 W1LÞ�1ðJðZt�1Þ þ vtÞ

Consider the sequence Qt, given by

Qt ¼ ð1 W1LÞ�1ðJðZt�1Þ þ vtÞ:

The result of Lemma 2 ensures that JðZtÞ is NED. Now SRðW1Þ < 1, implies that
the infinite summation

X1
n 0

Wn
1JðZt�ðnþ1ÞÞ þ vt�n

is a NED sequence. However the sequence ð1 LÞ�1Qt is not NED, because
ð1 LÞ�1vt is not NED. This completes the proof.
The above condition for the example give in (2) becomes

SR
w11 0 0
w21 0 J 02
k1 0 1 hJ 02

0
@

1
A < 1 d
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and since the characteristic polynomial associated with this is
ðw11 kÞð kÞð1 hJ 02 kÞ, then the condition becomes jw11j < 1 and
j1 hJ 02j < 1 d2. Of course, cross conditions may be required for more general
NEC systems.

5. EXTENSIONS

The results of the former section can be extended to more general specifications
but, perhaps, at the expense of a less clear exposition. Consider, for instance, the
case when the error correction function depends on say two lags Xt�1 and Xt�2
(time varying error correction models). Theorem 4 could be extended to include
this case. Consider the NEC model

DXt ¼ W1DXt�1 þ F ðXt�1;Xt�2Þ þ vt ð4Þ

An example of these types of models is the smooth transition regression (STR)
function given in Granger and Teräsvirta (1993), where the transition depends on
some equilibrium errors of the long run relationship specified by the cointegrating
relation. For example, if we have Xt ¼ ½yt xt	0, then the first equation of (4) may
be written as

Dyt ¼ w11Dyt�1 þ w12Dxt�1
þ ðc11Dyt�1 þ c12Dxt�1Þð1þ expð c13ðyt�1 b�

12xt�1ÞÞ þ v1t

In this case, the dynamics of Dyt have an autoregressive representation with
exogenous variables, whose parameters change depending on the long run
relationship.

6. CONCLUSIONS

There is large evidence of empirical applications in economics and finance where
nonlinearities are found in error correction contexts. However, there are no
formal studies that justify the empirical use of error correction models within a
nonlinear framework. To start filling this gap, we extend certain results of linear
integrated and cointegrated variables to a nonlinear framework, by introducing a
concept of integration based on near epoch dependence requirements. Within this
framework, we are able to generalize certain properties of Granger’s represen
tation theorem to the nonlinear case. We found that if the variables are I(1) with a
nonlinear error correction system then they are linearly cointegrated under certain
conditions on the nonlinear adjustment. In particular, we give sufficient
conditions for the NEC to be well specified and balanced.
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APPENDIX

MATRIX NORMS Recall that

kAk1 maxi
X
j

jaijj and kYk1 maxi jYij

Given a matrix A of size ðn� nÞ let
A MJM 1

its Jordan decomposition such that J is a diagonal matrix with boxes in its diagnol. The
boxes are of the form

J

J1 0 0

0 J2 0

0

0 0 Js

0
B@

1
CA where Ji

ki 1 0 0
0 ki 1 0

0
0 0 0 1
0 0 0 ki

0
BBB@

1
CCCA

Let us define the matrix Dd as

Dd

1 0 0
0 d 0

0
0 0 dn 1

0
B@

1
CA

If we take the matrix norm k kS as
kAkS � kðMDdÞ 1AðMDdÞk1

then it is clear that kAkSOSRðAÞ þ d, because ðMDdÞ 1AðMDdÞ is equal to the matrix J
where the boxes Ji are substituted by boxes J�i of the form

J�i

ki d 0 0
0 ki d 0

0
0 0 0 d
0 0 0 ki

0
BBB@

1
CCCA

In this case, the vector norm is

kYkS kðMDdÞYk1
and then the matrix norm is a subordinate norm. A very similar definition is given in
Ciarlet (1989).

PROOF OF LEMMA 1
(i) Triangular inequality: By the Minkowsky inequality, we have

EðkWþ ZkrSÞ EðkWþ ZkSkWþ Zkr 1
S Þ

OEððkWkS þ kZkSÞðkWþ Zkr 1
S ÞÞ

EðkW kSkWþ Zkr 1
S Þ þ EðkZkSkWþ Zkr 1

S Þ
The Holder inequality states that

EðjXYjÞOE1=pjXjpE1=qjYjq for 1
p þ 1

q 1

Taking p r; q ðr 1Þ=r, jXj kWkS and jYj kWþ Zkr 1
S (and analogously for the

second term in the summation) we have
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E kWþ ZkrS
� �

OE1=rkWkrS Eðr 1Þ=r kWþ Zkr 1
S


 �r=ðr 1Þ

þ E1=rkZkrSEðr 1Þ=r kWþ Zkr 1
S


 �r=ðr 1Þ

El=rkWkrS þ E1=rkZkrS

 �

Eðr 1Þ=r kWþ Zkr 1
S


 �r=ðr 1Þ

E1=rkWkrS þ E1=rkZkrS

 �

E1 1=r kWþ ZkrS
� �

therefore

1O E1=rkWkrS þ E1=rkZkrS

 �

E 1=r kWþ ZkrS
� �

or

E1=r kWþ ZkrS
� �

O E1=rkWkrS þ E1=rkZkrS

 �

as we want

(ii) Scalar multiplication:

kaXkrS E1=rkaXkrS E1=rjajrkXkrS jajEl=rkXkrS jajkXkrS

PROOF OF THEOREM 3 Define

�ZZt
HðZt 1Þ for t > 0
0 for t O 0

�

and

ZZ
m
t;s

HðZt 1;sþ1Þ þ ut for s+1 O m

ZZt for s+1 > m

�

then it is clear that ZZ
m
t;0 is rðut; . . . ; ut mþ1Þ measurable. The difference between Zt and its

predictor �ZZt is bounded for t > 0 because

kZt �ZZtkS kH Zt 1ð Þ þ ut H �ZZt 1ð ÞkS
OkutkS þ kH Zt 1ð Þ H �ZZt 1ð ÞkS

and by the Mean Value Theorem

HðZtÞ Hð �ZZtÞ
H1ðZtÞ H1ð �ZZtÞ

..

.

HrðZtÞ Hrð �ZZtÞ

0
BB@

1
CCA

@H1

@z1
ð €ZZÞtðzlt �zz1tÞ þ þ @H1

@zr
ð €ZZtÞðzrt �zzrtÞ

..

. . .
. ..

.

@Hr
@z1

ð €ZZÞtðzlt �zzltÞ þ þ @Hr
@zr

ð €ZZtÞðzrt �zzrtÞ

0
BBB@

1
CCCA

@Hr
@z1

€ZZt
� �

@H1

@zr
€ZZt

� �
..
. ..

.

@Hr
@z1

€ZZt
� �

@Hr
@zr

€ZZt
� �

0
BBB@

1
CCCA

zlt �zzlt

..

.

zrt �zzrt

0
BB@

1
CCA

rZH €ZZt
� �

Zt �ZZtð Þ
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Now, since k kS is a subordinate matrix norm

kZt �ZZtkSOkutkS þ krZHð €ZZtÞkSkðZt 1
�ZZt 1ÞkS

Odut þ dZkðZt 1
�ZZt 1ÞkS

for some du;t and since Z0
�ZZ0 0. Then, by iteration

kZt �ZZtkSO
Xt 1

j 0

du;t jd
j
Z

kZt �ZZtk2SO
Xt 1

j 0

d2u;t jd
2j
Z þ

Xt 1

j 0

Xt 1

i6 j
du;t id

iþj
Z

EkZt �ZZtk2SODZ ZZ

for some bound Dð2Þ
Z ZZ . Now, likewise we have

kZt ZZ
m
t;0kS kH Zt 1ð Þ HðZZm

t 1;1ÞkS
and again by the Mean Value Theorem

kH Zt 1ð Þ H ZZ
m
t 1;1


 �
kSOkrZHðZÞkSkZt 1 ZZ

m
t 1;1kS

However, since krZHðZÞkSOdZ , we have

kZt ZZ
m
t;0kSOdZkZt 1 ZZ

m
t 1;1kS

and by iteration

kZt ZZ
m
t;0kSOdmZ kZt m �ZZt mkS

and taking expectations

EkZt ZZ
m
t;0k

2
SOd2mZ EkZt m �ZZt mk2S

and since 0 < dZ < 1 we obtain

lim
m!1

EkZt ZZ
m
t;0kS 0

Now, given Et mðZtÞ � EðZtjut; . . . ; ut mþ1Þ, we can obtain a bound for

kZt Et mðZtÞkS2. Since ZZ
m
t;0 is r ðut; . . . ; ut mþ1Þ measurable then

kZt Et mðZtÞkS2OdKkZt ZZ
m
t;0kS2

dKE1=2kZt ZZ
m
t;0k

2
S

and given that EkZt ZZ
m
t;0k

2
S ! 0 at exponential rate then fZtg is NED on the underlying

sequence futg of any size.
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