
DCache Warn: an I-Fetch Policy to Increase SMT Efficiency

Francisco J. Cazorla, Alex Ramirez, Mateo Valero
Departament d’Arquitectura de Computadors

Universitat Politècnica de Catalunya
Jordi Girona 1-3, D6

08034 Barcelona, Spain
�fcazorla, aramirez, mateo�@ac.upc.es

Enrique Fernández
Universidad de Las Palmas de Gran Canaria

Edificio de Informática y Matemáticas
Campus Universitario de Tafira

35017 Las Palmas de G.C., Spain
efernandez@dis.ulpgc.es

Abstract

Simultaneous Multithreading (SMT) processors in-
crease performance by executing instructions from multiple
threads simultaneously. These threads share the processor’s
resources, but also compete for them. In this environment, a
thread missing in the L2 cache may allocate a large number
of resources for a long time, causing other threads to run
much slower than they could.

To prevent this problem we should know in advance if a
thread is going to miss in the L2 cache. L1 misses are a
clear indicator of a possible L2 miss. However, to stall a
thread on every L1 miss is too severe, because not all L1
misses lead to an L2 miss, and this would cause an unnec-
essary stall and resource under-use. Also, to wait until an
L2 miss is declared and squash the thread to free up the
allocated resources is too expensive in terms of complexity
and re-executed instructions.

In this paper we propose a novel fetch policy, which we
call DWarn. DWarn uses L1 misses as indicators of L2
misses, giving higher priority to threads with no outstand-
ing L1 misses. DWarn acts on L1 misses, before L2 misses
happen in a controlled manner to reduce resource under-
use and to avoid harming a thread when L1 misses do not
lead to L2 misses. Our results show that DWarn outper-
forms previously proposed policies, in both throughput and
fairness, while requiring fewer resources and avoiding in-
struction re-execution.

1 Introduction

Multithreaded and Simultaneous multithreaded (SMT)
architectures have demonstrated to be very promising for
achieving high performance by better using processor re-
sources [5][12][13][14], with a moderate area overhead
over a superscalar processor [2][6][9]. In an SMT processor

several threads run together with the objective of increasing
available instruction level parallelism (ILP). Co-scheduled
threads use exclusively some machine resources, like the re-
order buffer (ROB), and share others like the issue queues,
the functional units, and the physical registers. Shared re-
sources are dynamically allocated between threads compet-
ing for them. The instruction fetch (I-Fetch) policy deter-
mines how shared resources are filled, hence it directly af-
fects processor performance.

An inappropriate use of the shared resources by a thread
can seriously damage the performance of the remaining
threads. An example of inadequate resource utilization oc-
curs when a load misses in the L2 cache. In this case, in-
structions later in the thread hold shared resources for a long
time while making little progress. Each instruction occupies
a ROB entry and a physical register from the rename stage
to the commit stage. It uses an entry in the issue queues
while any of its operands is not ready, and also requires a
functional unit (FU). However, neither the ROB, nor the
FUs represent a problem, because the ROB is not shared
and the FUs are pipelined. The actual problems are the is-
sue queues and the physical registers, because they are used
for a variable, long period. Thus, the I-fetch policy must
prevent an inappropriate use of these shared resources to
avoid performance degradation.

If the processor would know in advance which loads are
going to miss in the L2 cache this problem would be solved.
A clear in-advance indicator of L2 misses are L1 misses, be-
cause a load only misses in L2 if it previously missed in L1.
Data Gating policy (DG) [3] is based on this fact, and stalls
a thread every time it has an L1 miss. However, not all L1
misses cause an L2 miss. Our results show that for memory
bounded threads less than 50% of L1 misses cause an L2
miss. Thus, to stall a thread every time it experiences an L1
miss is too severe and causes resource under-use. On the
other hand, to react when the L2 miss is declared only alle-
viates the problem, because the problem still persists until
then, what may be too late. FLUSH [11] works in this way

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

and when the L2 miss is detected the thread it belongs to
is flushed from the pipeline and fetch-stalled until the of-
fending load is resolved. However, our results show that
for memory bounded threads, the flushed instructions rep-
resent 35% of all fetched instructions. Obviously, this in-
creases power consumption since many instructions need to
be fetched several times.

The policy we propose in this paper, DWarn, also ad-
dresses this problem. The implementation of DWarn im-
plies neither extensive hardware complexity nor additional
power consumption. DWarn does not squash instructions in
the pipeline. Furthermore, it adapts to pressure on resources
reducing resource under-use. DWarn uses L1 data cache
misses as indicators of a possible L2 miss. Threads experi-
encing an L1 data cache miss are given lower fetch priority
than threads with no data cache misses. The key idea is to
prevent the damage before it occurs, instead of waiting until
an L2 miss is produced, when probably some damage has
already been done. However, given that we are preventing
possible damage (an L2 miss) and we are not sure that this
damage will really occur (not all L1 misses cause an L2
miss), we prefer to lower the priority of threads instead of a
more drastic measure like stalling threads entirely.

The remainder of this paper is structured as follows: we
present related work in Section 2. In section 3 we explain
our policy. Section 4 presents the experimental environ-
ment. Sections 5 and 6 present the results. Finally, conclu-
sions are explained in Section 7.

2 Related work

Tullsen et al. [12] observe that the throughput is quite
sensitive to the I-Fetch policy and propose several policies,
from which ICOUNT achieves the best results. ICOUNT
is defined by two parameters ICOUNT.x.y. Where � indi-
cates the number of threads that can be asked for instruc-
tions each cycle, and � indicates the maximum number
of instructions that can be fetched each cycle. ICOUNT
prioritizes threads with fewer instructions in the pre-issue
stages, and presents good results for threads with high ILP.
However, SMT has difficulties with threads that experience
many loads that miss in L2. When this situation happens,
then ICOUNT does not realize that a thread can be blocked
on an L2 miss and will not make progress for many cycles.
When a load misses in L2, dependent instructions occupy
the issue queues for a long time. On the one hand, if the
number of dependent instructions is high, this thread will
receive low priority. However, these entries cannot be used
by other threads, degrading their performance. On the other
hand, if the number of dependent instructions after a load
missing in L2 is small, the number of instructions in the
queues is also small. Hence this thread will receive high
priority and will execute many instructions that will not be

committed for a long time. As a result, the processor may
run out of registers. Therefore, ICOUNT only has a limited
control over the issue queues and ignores the occupancy of
the physical registers.

2.1 Classifying current policies focused on the
long latency problem

The performance of fetch policies dealing with load miss
latency depends on the following two factors: the detection
moment (DM) and the response action (RA). The DM in-
dicates the moment in which the policy detects a load that
fails or is predicted to fail in cache. Possible values range
from the fetch of the load until the moment that the load
finally fails in the L2 cache. Two characteristics associated
with the DM are the reliability and the speed. The higher
the speed of a method to detect a delinquent load, the lower
its reliability. On the one hand, if we wait until the load
misses in L2, we know for certain that it is a delinquent
load: totally reliable but too late. On the other hand, we
can predict which loads are going to miss by adding a load
miss predictor to the front-end [7]. In this case, the speed
is highest, but the reliability is low due to predictor mispre-
dictions. The RA indicates the behavior of the policy once
a load is detected or predicted to miss in cache, that is, it
defines the measures that the fetch policy takes for delin-
quent threads. With these two parameters, we will classify
all current policies related to long latency loads.

In [7], a mechanism called DC-PRED is presented. It
uses a load miss predictor to detect the L2 missing loads in
the fetch stage (we call this DM �����) and for the RA,
the corresponding thread is restricted to use a maximum
amount of available resources (��	��
���
���). When
the missing load is resolved the thread is allowed to use all
resources. The main problem of this policy is that the �����
DM does not detect all loads missing in L2 and hence some
loads that actually fail in the cache and that are not predicted
to miss, can clog the shared resources.

In [11] two main mechanisms are propose, both using the
� ������ ����
 ���� DM. When this DM is used, a load is
declared to miss in the L2 cache when it spends more cycles
in the cache hierarchy than needed to access the L2 cache,
including possible resource conflicts. The first mechanism
flushes the instructions of the delinquent thread after the L2
missing load and also stalls the offending thread as long as
the load is not resolved (����� RA). We call this com-
bination FLUSH. As a result of applying FLUSH, the of-
fending thread temporarily does not compete for resources
and, more importantly, the resources used by this thread are
freed, giving the other threads full access to them. In [11],
the STALL policy is also proposed. Unlike FLUSH it only
stalls the offending thread without squashing it (���� RA).
It is less aggressive than FLUSH, does not require hardware

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

as complex as FLUSH, and does not re-execute instructions.
However, its performance results are worse.

In [3], two mechanisms are proposed to reduce clog in
the issue queues caused by loads that miss in the L1 data
cache. The first mechanism, data gating (DG), stalls a
thread when it has more than � outstanding misses. The sec-
ond one, predictive data gating (PDG), is more aggressive
than DG and adds an L1 data cache miss predictor. PDG
stalls a thread when the number of loads predicted to miss
plus the number of loads predicted to hit that in reality miss,
is higher than �. In [3] the authors use the value � � �,
hence with DG a thread is stalled on each L1 miss. That is,
it uses the �� DM and the ���� RA. With PDG threads are
stalled on each predicted miss (����� DM and ���� RA).
The main problem of the DG and PDG policies arises when
there are few threads, because the exposed parallelism and
the pressure on resources are low. Consequently, to stall
a thread every time it has an L1 data miss may cause an
under-utilization of the resources.

As all previous policies, our DWarn policy is built on
top of ICOUNT. Hence it achieves good results for ILP
threads, even outperforming ICOUNT, and, in addition, it
improves ICOUNT for memory bounded threads. Further-
more, DWarn does not squash instructions from the pipeline
like FLUSH; it is not predictive, like PDG; and it adapts to
pressure on resources more efficiently than DG and STALL.

3 The Dcache Warn policy (DWarn)

Our DWarn policy is designed to prevent the negative ef-
fects caused by loads that miss in the L2 cache and to reduce
the resource under-use. DWarn uses the �� DM and defines
a new RA, namely, 	�
��� �	�	�� (see the last row in Ta-
ble 1). There are two main reasons why we use the �� DM.
First, unlike the ����� DM, the �� DM detects all loads that
miss in L2, because a load misses in the L2 cache if and
only if it has previously missed in the L1 cache. Second, to
wait � cycles after the issue of the load to take measures
for the delinquent thread may be too late, because during
that time the delinquent thread can have allocated many re-
sources. In conclusion, the �� DM is both reliable and early
enough, avoiding that resources are clogged before the RA
is carried out.

The novel 	�
��� �	�	�� RA is based on the combi-
nation of two ideas, namely, classification of threads, and
prioritization of threads instead of gating threads.

� Classification: at each cycle available threads are clas-
sified into two groups: the first group, called Dmiss
group, contains those threads that have one or more in-
flight L1 data cache misses. The remaining threads be-
long to the second group, called Normal group. Once
this dynamic classification is done, we know which

 DM

RA
FETCH L1

X cycles after

load issue
L2

GATE PDG DG STALL

SQUASH FLUSH

LIMIT

RESOURCES
DC-PRED

REDUCE

PRIORITY
 DWARN

Table 1. Detection Moment-Response Action
space

threads are less-promising (Dmiss) to fetch from. We
consider them to be less-promising because instruc-
tions after a missing load are more likely to be in the
processor for a longer time than those instructions be-
longing to a thread with no in-flight data cache misses.

� Prioritization: once the classification is done, the fetch
priority of the less-promising (Dmiss) threads is re-
duced. This is done by prioritizing fetch from Nor-
mal threads, and fetching instructions from the Dmiss
threads only if there are not enough available instruc-
tions from the Normal threads. This situation happens,
for example, when all Normal threads experience an
instruction cache miss, or when there is only one Nor-
mal thread available. Threads in each group are sorted
using ICOUNT.

By reducing the priority of the Dmiss threads, the oppor-
tunity of keeping the fetch bandwidth fully used is given
to Normal (more-promising) threads. Threads are never
stalled, and hence, even if a thread is in the Dmiss group,
it has some opportunity to fetch instructions. The idea be-
hind this is that not all L1 misses cause an L2 miss. The
fourth column of Table 2(a) shows the percentage of L1
data misses that cause an L2 miss. For MEM workloads
less than 50% of L1 misses cause an L2 miss (except for
the ��� benchmark). Hence, to stall a thread on each L1
data miss would be too strict a measure. However, when
2-thread workloads are executed, especially the 2-MIX and
the 2-MEM workloads, very specific problems arise, which
the 	�
��� �	�	�� RA cannot prevent. As stated in [1] the
fetch fragmentation due to branches and cache line bound-
aries reduces fetch efficiency. Consequently, assuming that
we fetch instructions from 2 threads each cycle and that
the Normal thread cannot fully use the fetch bandwidth,
when there are one Dmiss thread and one Normal thread,
the Dmiss thread can still fetch instructions into the proces-
sor, even when it has the minimum priority. As a result,
many instructions from the Dmiss thread are fetched into
the processor. Little by little, internal resources are frozen

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

by these instructions, which will remain in the processor for
a long time thereby degrading overall performance.

Ultimately, to harness an 8-instruction-wide processor
we need either to fetch instructions from several threads
in a single cycle, or use new fetch organizations that pro-
vide high fetch performance for 1.X instruction fetch poli-
cies [4]. In the former case, when we use a 2.8 fetch mech-
anism and only 2 threads are executed, the issue queue en-
tries and physical registers can be occupied for a long time
by threads that make little or no progress. The main reason
is that the classification made by DWarn is not effective be-
cause even when the Dmiss threads are given low priority,
the processor often fetches instructions from them1.

Different workloads present different behavior depend-
ing on the number of threads and their cache miss rate.
Knowing the behavior of a thread at runtime is not easy,
but the number of running threads is known by the proces-
sor at any time. Hence, a way of addressing this variable
behavior consists of using an I-Fetch policy that varies its
behvaior based on the number of executing threads. We pro-
pose a hybrid mechanism that uses different RAs based on
this number. If there are less than three threads running we
will use two RAs. When a load misses in L1 the priority of
its (Dmiss) thread is reduced. After that, if the load finally
misses in L2 its thread is gated. In this way we prevent the
Dmiss thread from clogging shared resources. If the num-
ber of execution threads is higher than 2 we will only reduce
the priority of the Dmiss threads, because this is enough to
prevent Dmiss threads from clogging the shared resources.

Additional hardware required to implement this tech-
nique consists of a data miss counter for each hardware con-
text. These counters are incremented every time a thread
experiences a data cache miss and decremented when the
data cache fill occurs. If the counter of a thread is zero this
thread will belong to the Normal group, otherwise it will
belong to the Dmiss one.

4 Simulation methodology

We use a trace driven SMT simulator, based on SMTSIM
[13]. The simulator consists of our own trace driven front-
end and an improved version of SMTSIM’s back-end. The
simulator allows the execution of wrong path instructions
by using a separate basic block dictionary that contains all
the static instructions.

The baseline configuration is shown in Table 3, which
represents a 9-stage-deep pipeline. Two important issues
related to fetch policies are the following. First, the fetch
is aware that a load has missed in the L1 cache 5 cycles
after this load is fetched into the processor (if no resource
conflicts happen). Second, it takes 10 cycles more from the

1In section 6 DWarn is evaluated for an 1.X fetch mechanism

Processor Configuration

Fetch /Issue /Commit Width 8

Fetch Policy ICOUNT 2.8

Queues Entries 32 int, 32 fp, 32 ld/st

Execution Units 6 int, 3 fp, 4 ld/st

Physical Registers 384 int, 384 fp

ROB Size / thread 256 entries

Branch Predictor Configuration

Branch Predictor 2048 entries gshare

Branch Target Buffer 256 entry, 4-way associative
RAS 256 entries

Memory Configuration

Icache, Dcache
64K bytes, 2-way, 8-banks,

64-byte lines, 1 cycle access

L2 cache
512K bytes, 2-way, 8-banks,

10 cycles lat., 64-byte lines

Main Memory latency 100 cycles

TLB miss penalty 160 cycles

Table 3. Baseline configuration

L1 data miss to access the L2 cache (again, if no resource
conflicts happen).

Traces are collected of the most representative 300 mil-
lion instruction segment following the idea presented in
[10]. The workload consists on all programs from the
SPEC2000 integer benchmark suite. Each program is ex-
ecuted using the reference input set and compiled with the
������� ������ options using DEC Alpha AXP-21264
C/C++ compiler. Programs are divided in two groups based
on their cache behaviour (see Table 2 (a)): those with an
L2 cache miss rate higher than 1%2 are considered memory
bounded (MEM), the rest is considered ILP.

In [11] STALL and FLUSH are evaluated for 2-, and 4-
thread workloads. In [3] DG and PDG are evaluated only
for 8-thread workloads. Properties of workloads vary de-
pending on the number of threads they have. In addition,
their properties also depend on the cache behavior of the
threads. In order to make a broad and fair comparison of
the policies, and to avoid that our results are tuned for a
special workload, we have created 12 workloads, as shown
in Table 2 (b). These workloads range from 2 to 8 threads.
In the ILP workloads all benchmarks have good cache be-
havior. All benchmarks in the MEM workloads have an
L2 miss rate higher than 1%. Finally, the MIX workloads
include ILP threads as well as MEM threads. For MEM
workloads some benchmarks are used twice, because there
are not enough SPECINT benchmarks with bad cache be-
havior. The replicated benchmarks are set in boldface in
Table 2(b). We have shifted second instances of replicated
benchmarks by one million instructions to avoid that both
threads access the cache hierarchy at the same time.

2The L2 and L1 miss rate are calculated with respect to the number of
dynamic loads

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

L1 miss rate L2 miss rate L1�L2 Thread type

mcf 32.3 29.6 91.6

twolf 5.8 2.9 49.3
vpr 4.3 1.9 44.7

parser 2.9 1.0 36.0

MEM

gap 0.7 0.7 94.0

vortex 1.0 0.3 33.3

gcc 0.4 0.3 82.2

perlbmk 0.3 0.1 42.7

bzip2 0.1 0.1 97.9

crafty 0.8 0.1 6.9

gzip 2.5 0.1 2.0

eon 0.1 0.0 2.1

ILP

Num. of

threads

Thread

type
Benchmarks

ILP gzip, bzip2

MIX gzip, twolf 2

MEM mcf, twolf

ILP gzip, bzip2, eon, gcc

MIX gzip, twolf , bzip2, mcf 4

MEM mcf, twolf, vpr, parser

ILP gzip, bzip2, eon, gcc crafty, perlbmk

MIX gzip, twolf, bzip2, mcf, vpr, eon 6

MEM mcf, twolf, vpr, parser, mcf, twolf

ILP gzip, bzip2, eon, gcc crafty, perlbmk, gap, vortex

MIX gzip, twolf, bzip2, mcf, vpr, eon, parser, gap 8

MEM mcf, twolf, vpr, parser, mcf, twolf, vpr, parser

Table 2. From left to right: (a) cache behavior of isolated benchmarks; (b) workloads

5 Performance evaluation

In this section we compare the efficiency of DWarn with
FLUSH [11], STALL [11], DG [3], and PDG [3].

Several metrics have been proposed to measure the per-
formance of SMT processors. These metrics attempt to bal-
ance throughput and fairness [8]. In [11] the authors evalu-
ate STALL and FLUSH using Weighted Speedup; in [3] the
Harmonic mean (Hmean) of the relative IPCs [8] is used
to evaluate DG and PDG. We feel that throughput, the sum
of IPCs of each thread in a given workload, is a metric as
valid as the previous ones. It measures the efficient use of
resources. The higher the throughput, the better the use
of resources. However, it is not always valid, because to
increase its value we only need to give more resources to
those threads with higher IPC. Hence, to make a fair com-
parison, in addition to throughput, we want to use a met-
ric that balances both throughput and fairness. In [8] it is
shown that Hmean gives better throughput-fairness balance
than the Weighted Speedup, hence we will use Hmean.

Before showing our results, we discuss several important
issues about the implementation of the STALL, FLUSH,
DG and PDG policies. Concerning STALL and FLUSH,
in [11] a load is supposed to miss in L2 when it spends
more than 15 cycles in the memory hierarchy. We have ex-
perimented with different values for this parameter and we
found that 15 presents the best overall results for our base-
line architecture. STALL and FLUSH have the following
three additional properties: first, a data TLB miss also trig-
gers a stall (flush); second, a 2-cycle advance indication is
received when a load returns from memory; and third, this
mechanism always keeps one thread running. That is, if
there is only one thread running, it is not stopped even when
it experiences an L2 miss.

About DG, we have experimented with the number of
L1 missing loads that a thread can experience before it is
stalled: a low value can lead to over-stalling, a high value

causes that when there are few L1 misses these are not
filtered. That is, the thread they belong to is not stalled
causing internal shared resources to be clogged. The value
� � �, the same used in [3], presents the best overall results.

5.1 Throughput results

Figure 1 (a) shows the absolute IPC values for the dif-
ferent policies and Figure 1(b) shows the throughput im-
provement of DWarn over each of the others policies. It
shows that DWarn outperforms all previous policies, except
FLUSH for the MEM workloads. On average, DWarn out-
performs ICOUNT by 18% and this improvement is higher
as the number of threads increases: when there are many
threads running, the pressure on shared resources is very
high. Consequently, tolerating the latency of L1 misses
causes a significant performance drop in the other threads.
DWarn reduces the fetch priority of threads experiencing L1
misses alleviating this problem. ICOUNT does not act on
an L1 miss and suffers a significant performance penalty.

Regarding DG, DWarn outperforms it for all workloads:
3% for the ILP, 8% for the MIX and 9% for the MEM work-
loads. This improvement gradually decreases as the num-
ber of threads increases. This is because as the number of
threads increases, competition for resources also increases
and then it is more difficult for a thread to allocate resources.
The DG policy gates a thread on each L1 miss, so it sacri-
fices MEM threads in order to give more resources to ILP
threads. However, if the number of threads is low, there
are not enough ILP threads to use all these available re-
sources. This means that MEM threads are unnecessarily
stopped. Even worse, for MEM threads, less than 50% of
L1 misses cause an L2 miss (recall the fourth column of
the Table 2(a)), hence the number of unnecessary stalls is
higher. With the DWarn policy no thread is stopped (for
4 or more threads), but a thread experiencing an L2 miss
is executed at a lower priority. In this way, if none of the

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

0

1

2

3

4

5

6

7

ILP MIX MEM ILP MIX MEM ILP MIX MEM ILP MIX MEM

2 4 6 8

T
h

ro
u

g
h

p
u

t
IC STALL FLUSH

DG PDG DWarn

(a) Throughput results of the policies

-10

0

10

20

30

40

50

IL
P

M
IX

M
E

M

IL
P

M
IX

M
E

M

IL
P

M
IX

M
E

M

IL
P

M
IX

M
E

M

IL
P

M
IX

M
E

M

2 4 6 8 avg

T
h

ro
u

g
h

p
u

t
im

p
ro

ve
m

en
t

(%
)

Dwarn / IC Dwarn / STALL Dwarn / FLUSH Dwarn / DG Dwarn/ PDG

60%

(b) Throughput improvement of DWarn over the other policies

Figure 1. Throughput results

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

available Normal threads with higher priority can use the
resources they are given to this thread. Thus, resource-
underutilization is reduced.

Regarding PDG, it suffers the same problems as DG, but,
in addition, PDG presents 2 additional problems: the first is
the predictor mistakes. If the predictor erroneously indi-
cates that a load will miss in the L1 cache and in fact the
load does not, this causes an additional unnecessary stop,
degrading the performance of the thread. The second prob-
lem is the load serialization. Our results (not shown here)
indicate that many cache misses occur close in time. Hence,
to stop on each missing load in the fetch stage causes load
serialization and loss of the available memory parallelism.
DWarn improves PDG by 5% for the ILP, 13% for the MIX
and 30% for the MEM workloads.

Regarding STALL, DWarn improves it for all workloads.
The improvements are of 2% for the ILP workloads, 6% for
the MIX workloads and 7% for the MEM workloads.

DWarn also outperforms FLUSH, for the ILP and MIX
workloads, by 3% and 6% respectively, and only suffers a
slowdown of 3% for the MEM workloads. The main cause
is that for the 6-MEM and 8-MEM workloads the pressure
over resources is too high, hence it is more preferable to
free resources by flushing the delinquent threads than to
freeze resources by stalling these threads. However, this im-
provement of 3% achieved by FLUSH comes at a high cost.
First, DWarn does not require such a complex hardware as
FLUSH, and second, it does not re-execute instructions. As
shown in Figure 2, the number of squashed instructions due
to the FLUSH policy represents a significant percentage of
the fetched instructions (35% for the MEM workloads).

7

2

35

0

5

10

15

20

25

30

35

40

45

IL
P

M
IX

M
E

M

IL
P

M
IX

M
E

M

IL
P

M
IX

M
E

M

IL
P

M
IX

M
E

M

IL
P

M
IX

M
E

M

2 4 6 8 AVG

%
 o

f
fl

u
sh

ed
 in

st
ru

ct
io

n
s

Figure 2. Flushed instructions with respect to
fetched instructions (FLUSH policy)

The problem of FLUSH is that, like STALL, it reacts too
late, namely, when the L2 miss has been detected, and in
a drastic way by flushing all the instructions after the load.
The former problem implies that as long as the L2 miss is
not declared, instructions after the missing load compete

RELATIVE IPCs

thread 1

ILP

thread 2

ILP

thread 3

MEM

thread 4

MEM

Hmean

ICOUNT 0.36 0.41 0.50 0.79 0.47

STALL 0.42 0.65 0.38 0.63 0.49

FLUSH 0.41 0.64 0.34 0.59 0.46

DG 0.43 0.70 0.34 0.46a 0.45

PDG 0.40 0.72 0.28 0.31a 0.38

DWARN 0.44 0.69 0.43 0.70a 0.53

Table 4. Relative IPC of each thread in the 4-
MIX workload

for resources with instructions of other threads that could
contribute to final IPC, degrading performance. The latter
problem directly affects the thread being flushed, reducing
its performance. DWarn acts earlier, when an L1 miss oc-
curs, and in a controlled manner by reducing the presumed
delinquent thread’s priority. As a result, only when the re-
maining threads are not able of using machine resources,
these are given to the delinquent thread and hence its per-
formance is less affected.

5.2 Harmonic Mean results

The second metric we have used is the Harmonic Mean
(Hmean) [8]. The Hmean metric attempts to avoid artificial
improvements achieved by giving more resources to threads
with high ILP.

Figure 3 depicts the Hmean improvement of DWarn pol-
icy over the other policies. Average results indicate that
DWarn improves all other policies for ILP, MIX and MEM
workloads, only suffering a slowdown of 2% respect to
FLUSH. Let us illustrate why DWarn outperforms all previ-
ous policies by an example. Table 4 shows the relative IPC
of each thread in the 4-MIX workload for all policies. The
second and the third columns indicate the relative IPC of
the two ILP threads in the workload. Likewise, the two fol-
lowing columns indicate the relative IPC of the two MEM
threads. The point is that DWarn achieves an IPC for the
ILP threads that is as high as the one obtained by the other
policies, but it does not significantly affect the IPC of the
MEM threads as the other policies do. The reason for this is
that DWarn never stalls or squashes threads even when they
are in the Dmiss group for four or more threads. As a result,
if there are available resources and the Normal threads can-
not use them, these resources are given to the Dmiss threads.
Regarding ICOUNT, we observe that ICOUNT achieves the
highest result for the MEM threads, but it heavily degrades
the performance of the ILP threads.

Concluding, the DWarn policy presents the best balance
between achieving high IPC for the ILP threads and harm-

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

-10

0

10

20

30

40

50

ILP MIX MEM ILP MIX MEM ILP MIX MEM ILP MIX MEM ILP MIX MEM

2 4 6 8 avg

H
m

e
a
n

 i
m

p
ro

v
e
m

e
n

t
(%

)

Dwarn / IC Dwarn / STALL Dwarn / FLUSH Dwarn / DG Dwarn/ PDG

81%

Figure 3. Hmean improvement of DWarn over the other policies

ing as little as possible the IPC of MEM threads. As a re-
sult, on average, DWarn achieves better Hmean results than
the other policies for all types of workloads. It only ex-
periences a slowdown of 2% with respect to FLUSH for
the MEM workloads. However, as we saw in Figure 2,
FLUSH achieves this is at the cost of increasing the number
of fetched instruction by 35%.

We have seen that depending on the number of running
threads, workloads present very different properties. When
there are few threads, reducing priority is not enough to
avoid Dmiss threads from using shared resources for a long
time. This is because thread level parallelism is low and
Normal threads do not use all the fetch bandwidth. When
there are 6 and 8 threads, the pressure on resources is very
high and hence the competition for them is high too. A
general purpose I-fetch policy must be aware of the num-
ber of executing threads to better adapt to the properties of
each workload. Overall results show that our hybrid mech-
anism, which combines the ���� and the ������ ��	
�	��

RAs when there are two threads running, and uses the
������ ��	
�	�� RA in the remaining cases, outperforms
all previous proposed policies.

6 DWarn on different architectures

The time needed to determine whether a load has caused
an L1 data cache miss or an L2 miss are two key factors in
the previous policies. Another important factor is the num-
ber of threads that can fetch instructions into the processor
each cycle. In this section, we experiment with two variants
of the original architecture in order to analyze the effect of
these factors.

The first architecture represents a less aggressive proces-
sor than presented in Table 3. This is a 4-wide, 4-context
processor with an 1.4 fetch mechanism. There are 256 phys-
ical registers and 3 integer, 2 floating point, and 2 load/store
functional units. In this architecture, we can fetch instruc-
tions only from one thread each cycle, and hence, the Dmiss
threads cannot fetch if there is at least one Normal thread.
On the one hand, it is beneficial because Dmiss threads can
unlikely clog resources. On the other hand, MEM threads
are now more damaged. Figures 4 (a) and (b) show the
throughput and Hmean improvement of the DWarn policy
over the other ones. Hmean results show that for the MIX
workloads DWarn is outperformed by ICOUNT, by 5% on
average. The main cause for this slowdown is that the MEM
threads are now heavily damaged. Regarding the other
policies addressing the load miss latency problem, DWarn

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

0

10

20

30

40

50

60

ILP MIX MEM ILP MIX MEM ILP MIX MEM

2 4 avg

T
h

ro
u

g
h

p
u

t
im

p
ro

ve
m

en
t

(%
)

Dwarn / IC

Dwarn / STALL

Dwarn / FLUSH

Dwarn / DG

Dwarn/ PDG

87% 64%

-10

0

10

20

30

40

50

60

70

ILP MIX MEM ILP MIX MEM ILP MIX MEM

2 4 avg

H
m

ea
n

 im
p

ro
ve

m
en

t
(%

) DWarn / IC

DWarn / STALL

DWarn / FLUSH

DWarn / DG

DWarn / PDG

110% 80%

Figure 4. From left to right: (a) Throughput improvement of DWarn over the other policies; (b) Hmean
improvement (smaller architecture)

-20

-10

0

10

20

30

40

50

60

70

ILP MIX MEM ILP MIX MEM ILP MIX MEM ILP MIX MEM ILP MIX MEM

2 4 6 8 avg

T
h

ro
u

g
h

p
u

t
im

p
ro

ve
m

en
t

(%
)

DWarn / IC DWarn / STALL DWarn / FLUSH DWarn / DG DWarn / PDG

-20

-10

0

10

20

30

40

50

60

70

80

ILP MIX MEM ILP MIX MEM ILP MIX MEM ILP MIX MEM ILP MIX MEM

2 4 6 8 avg

H
m

ea
n

 im
p

ro
ve

m
en

t
(%

)

DWarn / IC DWarn / STALL DWarn / FLUSH DWarn / DG DWarn / PDG

91%

Figure 5. From left to right: (a) Throughput improvement of DWarn over the other policies; (b) Hmean
improvement (deeper architecture)

clearly outperforms them in both throughput and Hmean.
The throughput improvements for the MIX and the MEM
workloads are: 5% over STALL, 23% over DG, 10% over
FLUSH, and 40% over PDG. Hmean improvements for the
MIX and the MEM workloads are: 5% over STALL, 28%
over DG, 10% over FLUSH, and 50% over PDG.

The second architecture represents a deeper and more
aggressive processor than presented in Table 3. This is a
16-stage-depth processor, with a 2.8 fetch mechanism, and
64-entry issue queues. The time to determine an L1 miss
has been incremented by 3 cycles, the latency from the L1
cache to the L2 from 10 to 15 cycles, and the memory la-
tency has also been incremented to 200 cycles. Figures 5
(a) and (b) show the throughput and Hmean improvement
of the DWarn policy over the other ones. As we see in the
average results, DWarn throughput and Hmean results indi-
cate that it improves all other policies for all type of work-
loads, except for the MEM where it suffers a slowdown of

6% with respect to FLUSH. The main cause for this high
average slowdown is the 8-MEM workload. In that case,
there is an over-pressure on resources (our results show that
the throughput for the 4-MEM workload is almost the same
than for the 6-, and the 8-MEM workloads), whereby flush-
ing is much more effective than stalling threads. However,
our results (not shown here) show that this is at the cost of
increasing the number of fetched instructions due to flushes.
This increment is 56% on average for the MEM workloads.

7 Conclusions

The performance of an SMT processor directly depends
on how the dynamic allocation of shared resources is done.
The instruction fetch policy dynamically determines how
this allocation is carried out. To achieve high performance,
the fetch policy must avoid the monopolization of a shared
resource by any thread. An example of this situation occurs

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

when a load misses in the L2 cache level. ICOUNT [12]
reacts too late and suffers significant performance degrada-
tions, in particular for 2-thread workloads where this prob-
lem is most acute. In this case, FLUSH [11] clearly outper-
forms ICOUNT. However, the problem of FLUSH is that it
does not prevent damage, but drastically cures it once it has
happened. Other policies [3] try to prevent this damage by
acting before the L2 miss occurs. DG stalls threads on an
L1 miss and PDG on a predicted L1 miss in the fetch stage.
However, when there are few threads, these policies are too
strict and cause resource under-utilization and an important
performance degradation.

In this paper, we propose a novel policy that deals with
this problem (DWarn). DWarn is not predictive and requires
minimum hardware resources. It does not flush instructions
reducing overall processor complexity and wasted power.
Furthermore, DWarn adapts to pressure on resources better
than the other policies. If there are few running threads,
it avoids resource under-utilization. When the number of
threads increases, reducing fetch priority is enough to avoid
Dmiss threads from holding resources for a long time.

On average, DWarn throughput results show that it im-
proves all other policies for all types of workloads, espe-
cially for the MIX and MEM ones: 27% over ICOUNT, 6%
over STALL, 2% over FLUSH, 8% over DG and 22%over
PDG. DWarn only suffers a loss of 3% with respect to
FLUSH for the MEM workloads. However, this comes at
the cost of increasing hardware complexity for these poli-
cies and the number of fetched instructions (35% for mem-
ory bounded threads). Fairness results show that DWarn
clearly presents the best throughput-fairness balance, only
suffering a slowdown of 2% with respect to FLUSH for
the MEM workloads. The improvement for the MIX and
MEM workloads are: 13% over ICOUNT, 5% over STALL,
3% over FLUSH, 11% over DG and 36%over PDG. If we
take into consideration all these results, DWarn presents as
the best solution to the problem of long latency loads for
throughput, fairness, complexity, and power.

Acknowledgments

This work has been supported by an Intel fellowship and
the Ministry of Science and Technology of Spain under
contract TIC-2001-0995-C02-01, and grant FP-2001-2653
(Francisco J. Cazorla). The authors would like to thank
Oliverio J. Santana, Ayose Falcón, Fernando Latorre and
Peter Knijnenburg for their comments and work in the sim-
ulation tool. The authors also would like to thank the re-
viewers for their valuable comments.

References

[1] J. Burns and J.-L. Gaudiot. Exploring the SMT fetch bottle-
neck. In Proceedings of the 3rd Workshop on Multithreaded
Execution, Architecture, and Compilation, 1999.

[2] J. Burns and J.-L. Gaudiot. Quantifying the SMT layout
overhead- does SMT pull its weight? In Proceedings of the
6th Intl. Conference on High Performance Computer Archi-
tecture, pages 109–120, Jan. 2000.

[3] A. El-Moursy and D. Albonesi. Front-end policies for im-
proved issue efficiency in SMT processors. In Proceedings
of the 9th Intl. Conference on High Performance Computer
Architecture, pages 31–42, Feb. 2003.

[4] A. Falcon, A. Ramirez, and M. Valero. A low complexity,
high-performance fetch unit for simultaneous multithread-
ing processors. Proceedings of the 10th Intl. Conference on
High Performance Computer Architecture, Feb. 2004.

[5] H. Hirata, K. Kimura, S. Nagamine, Y. Mochizuki,
A. Nishimura, Y. Nakase, and T. Nishizawa. An elementary
processor architecture with simultaneous instruction issuing
from multiple threads. In Proc. of the 19th Annual ISCA,
pages 136–145, May 1992.

[6] R. Kalla, B. Sinharoy, and J. Tendler. SMT implementation
in POWER 5. Hot Chips, 15, Aug. 2003.

[7] C. Limousin, J. Sebot, A. Vartanian, and N. Drach-Temam.
Improving 3D geometry transformations on a simultaneous
multithreaded SIMD processor. In Proc. of the 15th Intl.
Conference on Supercomputing, pages 236–245, May 2001.

[8] K. Luo, J. Gummaraju, and M. Franklin. Balancing through-
put and fairness in SMT processors. In Proceedings of the
International Symposium on Performance Analysis of Sys-
tems and Software, pages 164–171, Nov. 2001.

[9] D. T. Marr, F. Binns, D. Hill, G. Hinton, D. Koufaty, J. A.
Miller, and M. Upton. Hyper-threading technology architec-
ture and microarchitecture. Intel Technology Journal, 6(1),
Feb. 2002.

[10] T. Sherwood, E. Perelman, and B. Calder. Basic block
distribution analysis to find periodic behavior and simula-
tion points in applications. In Proceedings of the 10th Intl.
Conference on Parallel Architectures and Compilation Tech-
niques, Sept. 2001.

[11] D. Tullsen and J. Brown. Handling long-latency loads in a
simultaneous multithreaded processor. In Proceedings of the
34th Annual ACM/IEEE Intl. Symposium on Microarchitec-
ture, pages 318–327, Dec. 2001.

[12] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and
R. Stamm. Exploiting choice: Instruction fetch and issue
on an implementable simultaneous multithreading proces-
sor. In Proceedings of the 23th Annual Intl. Symposium on
Computer Architecture, pages 191–202, Apr. 1996.

[13] D. Tullsen, S. Eggers, and H. M. Levy. Simultaneous multi-
threading: Maximizing on-chip parallelism. In Proceedings
of the 22th Annual Intl. Symposium on Computer Architec-
ture, pages 392–403, 1995.

[14] W. Yamamoto and M. Nemirovsky. Increasing superscalar
performance through multistreaming. In Proceedings of the
4th Intl. Conference on Parallel Architectures and Compila-
tion Techniques, pages 49–58, June 1995.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

