
Des Autom Embed Syst (2006) 10:127–155

DOI 10.1007/s10617-006-0069-7

Design, synthesis and verification of a smart imaging core
using SystemC

Wido Kruijtzer · Victor Reyes · Winfried Gehrke

Received: 3 February 2006 / Revised: 3 August 2006 / Accepted: 4 August 2006
C© Springer Science + Business Media, LLC 2006

Abstract In this paper the development of a smart imaging core following a SystemC-based

design flow is presented. The smart imaging core integrates an ARM processor and two

specific hardware blocks for image processing: a smart imaging coprocessor and a motion

estimation coprocessor. A SystemC-based design flow is applied, comprising the design,

synthesis and verification and synthesis of the two coprocessors, as well as the development

and integration of the embedded software on the smart imaging core. The two coprocessors

are successfully modeled and refined from C/C++-based algorithmic descriptions down

to architecture reference models using SystemC and TLM concepts. For the RTL imple-

mentation of the coprocessor hardware high-level synthesis tools are used. The applied

SystemC-based design flow enabled the iterative refinement of the architecture towards an

optimal RTL implementation. Furthermore, the use of SystemC TLM supports the integra-

tion of fast functional models of the coprocessors on a virtual prototype platform of the

target architecture. This virtual prototype is beneficially used during the embedded software

development phase.

Keywords System level design · SystemC · High-level synthesis · System simulation ·
Image processing

W. Kruijtzer (�)
Philips Research, High Tech Campus 31, 5656 AE Eindhoven, The Netherlands
Present address: Philips Semiconductors, High Tech Campus 46-2.84, 5656 AE Eindhoven,
The Netherlands
e-mail: wido.kruijtzer@philips.com

V. Reyes
University of Las Palmas GC, Campus de Tafira, E35017 Las Palmas, Spain
Present address: Philips Research, High Tech Campus 31, 5656 AE Eindhoven, The Netherlands

W. Gehrke
Philips Semiconductors GmbH, Georg-Heyken-Straße 1, 21147 Hamburg, Germany

Springer

128 W. Kruijtzer, V. Reyes et al.

1 Introduction

The increasing integration capabilities of technology allow to enhance video compression

cores with smart imaging functionality and to embed these cores even into low-cost camera

devices. This is the starting point for new smart imaging applications that are able to an-

alyze the content of images and video sequences enabling new consumer applications that

are targeting various domains such as mobile and automotive. Cameras embedded in mobile

phones are now becoming a commodity supporting applications like capturing and trans-

mission of still images as well as video clips (Multimedia Messaging Services). With the

increase of network bandwidth (e.g. 3G UMTS) real time mobile video links will become

feasible, enabling new applications like mobile video telephony and video chat. The ease of

use of these applications is of high importance as this is expected to be a crucial requirement

for market acceptance of such new services. Thereby not only quality issues like frame and

image stabilization are to be focused but also the user comfort. The automatic detection and

tracking of the user’s head is such an example, which helps to keep one’s face in view of the

camera during a mobile video telephone conference.

In the automotive domain, cars are equipped with more and more electronic systems that

support the driver to avoid accidents. These systems are used to analyze complex driving

situations and provide important and reliable information to the driver. Some of these driving

aids use radars like the automatic cruise control, but driving assistance systems using cameras

also appear since they have less interference with its surroundings. Furthermore, techniques

like radar lack the possibility to classify detected objects. Here two examples are low speed

obstacle detection [2], which deals with the detection of vehicles in a certain speed range,

and pedestrian detection [3], which concerns the detection of pedestrians and an impact

prediction in order to reduce the injuries of the pedestrians hit by a car.

The design and verification of complex applications such as the ones described above

requires new advances in conventional design methodologies. Often SoC design is as a se-

quential approach where hardware (HW) development at the Register Transfer level (RTL)

level precedes software (SW) development at the C and/or assembly code level. Design and

verification methods based on RTL level limits the exploration of different design alternatives

due to the enormous amount of details the designer has to handle and its slow simulations (in

the order of few hundred cycles per second) [20]. Moreover, due to the exponential growth of

embedded SW in current SoCs such sequential methodologies, in which the software cannot

be developed until the HW platform is available, are not appropriate [21]. SystemC [19] and

Transaction Level Modeling (TLM) [18] are becoming the main forces to overcome the limi-

tations of conventional SoC design methodologies [22]. On the one hand, SystemC provides

an executable specification of the system behavior, which can be used as a replacement of

the ambiguous textual specifications. Such executable specification serves as a system-level

test bench for the next steps in the design flow, which simplifies drastically the time and

effort required for the verification. On the other hand, TLM increase significantly simula-

tion speed, while still offering enough accuracy for exploring and validating implementation

alternatives at the higher levels of abstraction [23]. Besides this increase in speed, TLM

reduces the amount of detail the designer must handle, resulting in less modeling effort.

Hence, TLM SystemC models can be built well in advance before the time-consuming RTL

code development starts. This allows for embedded SW being developed in parallel with the

HW. As an example of the increasing adoption of SystemC and TLM, companies such as

Texas Instruments and STMicroelectronics have used a SystemC-based design methodology

for the design and development of their OMAP [25] and Nomadik platforms, respectively.

Furthermore, SystemC-based design flows are also able to close the gap from specification

Springer

Design, synthesis and verification of a smart imaging core using SystemC 129

to implementation by means of high-level synthesis tools, such as [14, 17, 24] or [28]. These

tools can generate high-quality RTL from behavioral or even TLM SystemC descriptions al-

lowing the rapid exploration of several implementation options. As an example, Toshiba
has recently announced the successfully completion of an advanced multimedia H.264

design using its R-Cube methodology [29]. Moreover, [26] and [27] show positive examples

of using SystemC behavioral synthesis for complex system development such as a PCI bus

interface and an MPEG2 encoder, respectively.

The aim of the work described in this paper is to develop a smart imaging core that can

be embedded in a camera applying such a SystemC-based design methodology. This core

should be low-cost, low-power and suitable of supporting the above mentioned automotive

and mobile communication applications. The resulting architecture integrates two coproces-

sors that are designed using high-level synthesis tools taking the C-language as a starting

point. Furthermore, the verification of the system architecture and the HW/SW integration

is performed using abstract transaction level SystemC models.

The remainder of this article is organized as follows. In Section 2 the structure of the

smart imaging algorithms and their mapping on an optimal smart imaging architecture is

discussed. Section 3 describes the design flow used for the development of the smart imaging

architecture. A detailed description of the coprocessors architecture and their design, vali-

dation and synthesis flows is given in Section 4. In Section 5 the virtual prototype used to

port the applications onto the smart imaging core, as well as an FPGA based prototype are

discussed. Section 6 finally presents some conclusions.

2 Smart imaging core

2.1 Algorithms description

The processing chain of a smart imaging application comprises several algorithms that can

be clustered based on their properties with respect to data access and inherent parallelism.

Throughout this paper algorithms are classified using the following three classes: low-level

algorithms (LLAs), medium-level, algorithms (MLAs) and high-level algorithms (HLAs). A

typical smart imaging application structure is depicted in Fig. 1.

The input as well as the output of LLAs is video data, i.e., pixels. The processing is typically

performed on image segments that consist of a relatively small number of neighboring pixels,

MLA1 MLA3MLA2 MLA4

HLA

LLAs LLAs LLAs LLAs

Motion

segmentation

Data
fusion engine

Output stage

MLAs
Call to LLAs

MLA1 MLA3MLA2 MLA4

HLA

LLAs LLAs LLAs LLAs

Motion

segmentation

Data
fusion engine

Output stage

MLAs
Call to LLAs

Fig. 1 Smart imaging application structure

Springer

130 W. Kruijtzer, V. Reyes et al.

which can be processed independently. As LLAs are processed on pixel-level, the amount of

data to be processed and the associated computational performance required is relatively high.

Examples of LLAs are linear kernel filtering, thresholding or morphological operations. The

LLAs used for the smart imaging algorithms are provided through the CAMELLIA Image

Processing Library (C-IPL) for which the source code can be found at Sourceforge [1].

The class of HLAs contains control tasks that deal with abstract semantic information ex-

tracted from a video scene. HLAs make the fusion between several MLAs, which individually

are not sophisticated enough to yield a good result and also comprises the output stage that

produces the result of the system. The amount of data to be processed and the computational

performance required for a real-time implementation of these tasks is relatively low.

As a link between low-level pixel-based processing and the HLAs, the class of MLAs

can be defined. Algorithms of this class are typically used for an abstraction of the scene

contents. Their input data are mostly pixel data, whereas output data represent abstracted

image data. MLAs typically rely on LLAs to perform their low-level operations. A typical

example of MLA is labeling with feature extraction of the labeled objects.

As an example, the automotive application Low Speed Obstacle Detection [2] (LSOD) is

composed of an HLA that combines the output of several vehicle detectors (MLAs) in order to

obtain an exact detection and localization of vehicles. The MLAs used in LSOD are: shadow

detection, edge detection, rear lights detection, symmetry detection and motion segmentation.

2.2 Algorithms analysis

Our goal is to bring smart imaging into the consumer market, in which high performance

general-purpose processors are not accepted as a cost efficient solution. Typically the ar-

chitectures in this domain contain a rather modest general-purpose processor (e.g ARM9)

running at a few hundred MHz.

HLAs are typically sequential and a parallel execution of parts of these algorithms is in

general not possible. They are associated with a complex irregular data-dependent control

flow. Therefore, HLAs nicely fit on such a general-purpose processor as they are control

dominated and their computational load is limited. LLAs however are associated with a high

amount of inherent parallelism and relatively simple operations. Due to the high throughput

rate required for the execution of LLAs, efficiency can be significantly improved by exploiting

data-level parallelism. This typically is not efficient on a general-purpose processor. As an

example Fig. 2 shows what processor frequency in MHz is needed to execute some LLAs on

video data at 25 frames per second with the resolution of 352 × 288 pixels per frame.

Fig. 2 ARM9 frequencies in
MHz required for processing
some LLAs

Springer

Design, synthesis and verification of a smart imaging core using SystemC 131

As can be seen both scaling and 3×3 linear kernel filtering need a 225 Mhz ARM9. The

data is based on an ARM9 processor running un-optimized C-code, overhead for address

calculations and memory latency are not considered. With optimized C-code we might achieve

each single LLA to execute for the specified frame size and rate at a 100 Mhz processor.

Still the smart imaging application would not fit as each MLA uses several LLAs and

typically a couple of MLAs are used in each application (e.g. LSOD). A further reduction of

the computational load can be achieved by trying to process only the interesting part instead of

the whole image in order to detect and track a certain object. Such interesting part is denoted as

Region Of Interest (ROI). Only the ROIs are investigated by the LLAs. Even though the ROI

based approach saves a lot of computations, it is impossible to make any assumptions about

the ROI size and the amount of ROIs. Furthermore future applications may request a higher

frame rate and higher resolution than the ones used in the example of Fig. 2. Clearly some

form of hardware acceleration that exploits the inherent parallelism of the LLAs is needed.

2.3 Architecture and mapping

The classical coprocessor architecture is selected for the realization of the system. The co-

processors execute a specific algorithm or a class of algorithms with similar computational

requirements faster than a general-purpose programmable architecture resulting in a sig-

nificantly higher ratio of computational performance and system cost compared to other

architectural approaches.

The core architecture is depicted in Fig. 3. The underlying architecture template is based

on an existing ARM9 architecture used in the mobile communications domain. The HLA

and the more control-oriented part of the MLAs are combined together, which fits well to

be mapped onto the embedded ARM9. All the LLAs are combined onto a single smart

imaging coprocessor (SI). Likewise, the pixel processing part of the motion segmentation

MLA is distinguished as an independent task, which is mapped onto a motion estimation

coprocessor (ME). With this mapping approach flexibility can be achieved for the high-level

Motion
Estimator

ARM 9xx
CPU

embed.
RAM &
(boot)
ROM

Memory
Controller

(Flash & DRAM)

ext. Flash

Peripherals*

ext. SDRAM

I/O Interface

* Timers,
 Watchdog,
 Interrupt

I/D Cache

CCIR /
Camera
Frontend

Video Input

Smart
Imaging
Copro

off-chip communication

Communication Interconnect

Data IF

Data IF

Copro

Data IF Data IF

HW Shell

Data IF

HW Shell

TTL

TTL

DTL

DTL

SW Shell

SW Shell

Data IFData IFData IF

Fig. 3 Architecture of the smart imaging core

Springer

132 W. Kruijtzer, V. Reyes et al.

processing by SW changes of the CPU program code. In order to allow for a flexibility of

the implementation of LLAs and parts of MLAs mapped onto coprocessors, architectural

efficiency has to be taken into account. This is discussed in more detail in Section 4, which

presents the coprocessor architectures. Compared to [4] and [5], this core is low-cost, low-

power and targets a wide application area unlike [6] that is optimized for a single application.

Furthermore our solution has built-in logic to work on image segments (i.e ROIs) instead of

complete images, something not present in these other solutions.

Devices communicate with each other through the DTL protocol which is a Philips propri-

etary device level interface very similar to AXI [30], whereas tasks in the system communicate

and synchronize with each other using the Task Transaction Level (TTL) interface and corre-

sponding primitives [8]. On the one hand, application developers can use TTL to build exe-

cutable specifications. On the other hand, TTL provides a platform interface for implement-

ing applications as communicating HW/SW tasks on a platform infrastructure. TTL specifies

services for inter-task communication, multitasking and task graph reconfiguration. These

services can be accessed via the TTL interface, which hides the implementation details of the

services from the tasks. Rather than offering a low-level interface and implementing e.g. syn-

chronization as part of all the tasks, TTL factors out such generic services from the tasks to im-

plement them as part of the platform infrastructure. In this way TTL effectively separates com-

putation and communication aspects, which facilitates the construction of (streaming) IPs and

makes them more reusable as they contain less implementation details. For each multiproces-

sor architecture the services can be implemented in a way that is optimal for that architecture.

TTL tasks can execute concurrently and connect with each other through unidirectional

channels. A task is connected to such a channel via a port and communicates with other

tasks by calling TTL interface functions on their ports. TTL offers seven interface types

from which designers can use the most appropriate one for their application and platform.

These types differ in the level of detail of the underlying platform that is exposed towards

the programmer and in their potential implementation efficiency on different platforms. All

interface types however are based on the same logical model, which enables interoperability

across interface types. In [8] a full coverage of all seven interface types can be found. In the SI

architecture the interface type RB (Remote, Blocking) is used that offers separate functions

for synchronization and data transfer. Below the RB functions are shown in Fig. 4.

The availability of room or data in a channel can be checked explicitly by means of a

blocking acquire function and can be signaled by means of a release function. The acquire
and release functions synchronize for vectors of count tokens at a time. Data accesses can

be performed on acquired room with the store function, which copies a vector of size
values to the acquired empty tokens. The store function can perform out-of-order accesses

on the acquired empty tokens using a relative reference offset.

The TTL interface is provided both as a hardware interface and as a software API, thereby

enabling the integration of both hardware and software IP. Figure 3 shows how the TTL

interface manifests itself in the architecture of the smart imaging core. In the bottom part of

Producer Consumer

Fig. 4 TTL interface type RB

Springer

Design, synthesis and verification of a smart imaging core using SystemC 133

Fig. 3 the TTL interface is implemented as an API of a software shell executing on the ARM

CPU. Software tasks executing on the CPU can access the platform services via the API. In

the upper part of Fig. 3 the TTL interface for integrating the SI coprocessor is available as a

hardware interface. A hardware shell implements the platform services on top of the lower

DTL interconnect.

3 Design flow

To validate the correctness (and quality) of the applications executed in the targeted system

architecture an FPGA based demonstrator or prototype is built. This validation comprises the

verification of both the implemented coprocessors (functionality and performance), as well

as the software optimizations required for its execution in an embedded system. The global

design methodology applied for building the demonstrator is depicted in Fig. 5. The starting

point is the smart imaging applications, which are developed on a standard PC using C++.

By means of profiling of the applications and detailed analysis of the LLAs the HW/SW

partitioning is derived as described in Section 2. The main part of the design flow is the

SystemC based development of both coprocessors and the embedded SW.

The design approach applied for the coprocessors is a C++/SystemC based successive

refinement of the architecture [19]. The result of this refinement is both a cycle accurate

(CA) and programmers view (PV) model, according to the terminology defined by the OSCI

A p p lic a tio n s

M a p p in g

A rc h .
T e m p la te

O ff lin e a n a ly s is
(L L A s , a p p lic a tio n p ro f ilin g)

S I M E A R M

S I
d e v e lo p m e n t

M E
d e v e lo p m e n t

E m b e d d e d S W
d e v e lo p m e n t

C A S S E V P

F P G A
S y n th e s is & In te g ra tio n

F lo w

A |R T
A R M

D e v e lo p m e n t
S tu d io

O S C I S ys te m CS I R T L

S W
re fin e m e n t,

b u g s , e tc

S I C A
m o d e l

S I P V
m o d e l

M E C A
m o d e l

M E P V
m o d e l

C + +
c o d e

M E R T L .A X F

S W

S y s te m C
S y n th e s is

T o o ls

Fig. 5 Design flow

Springer

134 W. Kruijtzer, V. Reyes et al.

TLM standard [18]. The CA models can directly be used in the C/SystemC based synthesis

tools CoCentric [17] and A|RT [14] resulting in an RTL description of the coprocessors.

The PV models are integrated in a virtual prototype (VP) to enable early SW development.

This approach allows verifying the HW/SW integration in an early stage before the FPGA

based demonstrator is available. Furthermore the ME and SI can be intensively verified

together with the software before pursuing their actual FPGA implementation by using the

VP as a system test bench. The VP is built using CASSE [7], which models architectural

elements at the higher abstraction level using transaction-level modeling techniques. More

details regarding the coprocessor development are described in Section 4. The embedded

SW development using the VP is described in Section 5.

The applied design flow results in validation of the correct functioning of the applications

at three levels. During the execution of the applications on the PC intermediate results for each

MLA composing the application, as well as high-level information regarding the expected

output, are gathered and dumped into files. Both textual files (e.g. objects position, detection

probability, etc.) and pixel images are generated at certain execution points of the application,

which are used as golden reference for a comparative check later on.

The next level of validation is based on the usage of the VP. Thereby, application function-

ality is validated by means of comparing the results (checkpoints) produced by the original

application with the results produced by the VP.

Finally, the third level of validation is based in the FPGA based demonstrator. Thanks

to the VP, software can be directly integrated in the demonstrator. However, embedded

compilation of the SW has to be tested in order to check possible inconsistencies in the

embedded execution. We ensured that both the virtual and the FPGA based prototype are

composed of the same elements, which respond in the same address range. Final verification

is carried out by comparing the application checkpoints when running in the FPGA with the

results obtained with the VP and with the reference applications.

4 Coprocessors development

This section will give an overview of the development process of both coprocessors. First

the coprocessors internal architecture is explained followed by a detailed description of

the applied SystemC based design and synthesis flow. Finally the use of SystemC in the

verification of the SI coprocessor is explained.

4.1 Coprocessor architectures

4.1.1 Smart imaging coprocessor

As smart imaging applications have a clear need for acceleration of basic image processing

tasks, the architecture of the smart imaging coprocessor (SI) is adapted for the efficient exe-

cution of this algorithmic class. The requirements of smart imaging applications are extracted

by the analysis of sample applications from different fields of smart imaging applications.

The SI accelerates most of the functions of the C-IPL including arithmetic and morphologi-

cal operations, linear kernel filtering, horizontal and vertical summing, scaling, lookup-table

based pixel mapping, histogram, moments and min-max computation.

As the coprocessor is used to accelerate the execution of these LLAs, one option is to

implement each LLA as separate dedicated HW component. In this case the combination of

all LLA functions would result in the final coprocessor. One of the major disadvantages of

Springer

Design, synthesis and verification of a smart imaging core using SystemC 135

this approach is the poor HW utilization: Only one LLA (i.e. one dedicated HW component)

would be active at a time, while the other components would be idle. Another disadvantage is

that the coprocessor’s functionality would be limited to the functionality of the implemented

dedicated components.

In order to avoid these disadvantages the coprocessor is implemented as a so-called macro-

programmable device. This approach increases the architectural flexibility while support-

ing sharing of HW resources, like arithmetic components and embedded storage elements,

among different LLAs. At the same time the overhead associated with general-purpose

micro-programmable architectures is limited as discussed later in this section.

Most of the envisaged algorithms can be implemented by exploiting data parallelism

based on concurrent processing of neighboring pixels. Thus, a classical SIMD architecture

has been chosen for the data path of the SI. This approach has been successfully integrated

as ISA extensions of general-purpose CPUs for more than a decade. An example of this

approach is the MMX instruction set extension [11]. In order to improve the performance of

the SI further, the data path is composed of several arithmetic units. Per clock cycle up to 6

arithmetic operations can be executed on each pixel. The data path is organized as a vertical

arithmetic pipeline, i.e., the arithmetic operations are executed in a fixed order. The major

advantage of this approach is the avoidance of register files with multiple ports, which can

become very costly with respect to silicon area. In order to achieve reasonable clock rates,

the arithmetic unit contains several pipeline stages. Typically, this approach would lead to

a degradation of performance for algorithms that contain data-dependent decisions due to

pipeline hazards. The implementation of the SI data path tries to minimize the impact of

hazards by moving data dependent decisions into the data path itself. As a simple example

of this approach thresholding is considered: In case of a general purpose CPU this algorithm

requires a compare operation combined with a subsequent branch instruction that depends on

the result of the compare operation. If the compare operation is associated with a significant

latency caused by the pipeline depth of the arithmetic data path, the overall performance is

degraded significantly. The SI coprocessor supports the comparison and subsequent selection

of the result as an integral part of the arithmetic pipeline. Thus, the control flow is kept data

independent and no hazards occur during the execution of this algorithm. The arithmetic

units receive up to three input operands and create one output result per clock cycle. All

operands and results are stored in local memories. Data processing and communication with

external memory can be executed in parallel. This approach allows pre-loading of a certain

image segment while the previous one is processed by the coprocessor.

For very specific functions the architecture allows the introduction of function specific

units. An example of such a unit is the RLE (Run-Length-Encoding) unit. This unit transforms

a binary image into a list of so-called runs, indicating the number of subsequent zeros or

ones in a line of the input picture.

Another important architectural aspect is the implementation of coprocessor control, i.e.,

control of the execution of arithmetic functionality. As flexibility is regarded as a very im-

portant topic in order to cope with moderate changes of the application even if the design of

a coprocessor has been finished, a programmable implementation should be preferred. On

the other hand, competitiveness for a specific application requires an area efficient system

solution. Therefore a macro-programmable coprocessor control approach is adopted: The

data path is designed to process microinstructions, which are issued by the micro control

unit. An additional macro control unit is used to control special sequences of microinstruc-

tions. The control is therefore split into two hierarchy levels, the micro control unit and the

macro control unit. At the lower level of this hierarchy the arithmetic units and the memory

accesses are controlled by a VLIW approach that supports a high degree of flexibility. In order

Springer

136 W. Kruijtzer, V. Reyes et al.

Data I/O
32bit

Mem1 Mem2 Mem3REG

RLE Unit

32bit32bit

32bit64bit

SI Copro

Control IF Data IF

Arithmetic 1

Arithmetic 2

Accu regsC
o

p
ro

ce
s s

o
r

C
o
n

tr
o

l
U

n
it

(C
C

U
)

Data I/O
32bit

Mem1 Mem2 Mem3REG

RLE Unit

32bit32bit

32bit64bit

SI Copro

Control IF Data IF

Arithmetic 1

Arithmetic 2

Accu re sC
o

p
ro

ce
s s

o
r

C
o
n

tr
o

l
U

n
it

(C
C

U
)

Fig. 6 Smart imaging
coprocessor

to avoid the drawbacks of the classical memory- and bandwidth-hungry VLIW architectures,

the macroinstruction level is introduced in the SI. This level is used to translate mighty

so-called macroinstructions into a sequence of VLIW microinstructions. Several classes of

macroinstructions are being used: I/O instructions control the data traffic with system mem-

ory and allow initiating a transfer of arbitrarily sized 2-dimensional blocks of data with a

single instruction. Execution instructions typically execute a basic image-processing algo-

rithm on an image segment previously loaded into local memory. Configuration instructions

are used to set pseudo-static data, like image base addresses, segment information and data

like filter coefficients. The described hierarchical control approach can be viewed as another

important extension to the principle of the vector based SIMD programming model of current

general-purpose CPUs. The adaptation of the data-path’s arithmetic and the chosen hierar-

chical control strategy allows choosing a well-suited trade-off between flexibility and area

efficiency for the envisaged application domain. The resulting coprocessor architecture is

depicted in Fig 6. A more detailed overview on the SI coprocessor is described in [9, 10].

4.1.2 Motion estimation coprocessor

Motion estimation is one of the time-critical tasks in the application algorithms. Its com-

putational and addressing complexity is huge due to the typical sum-of-absolute-difference

operations performed at pixel level, the required sub-pixel (quarter-pixel) accuracy, the num-

ber of motion vector candidates, the number of passes (scans) per frame, frame rate, etc.

Therefore, one of the decisions at system level is to map the motion estimation task onto a

coprocessor. The block-based Motion Estimation coprocessor (ME) accelerates the motion

segmentation MLA. The goal of motion segmentation is to identify moving objects from

their motion. The motion segmentation is integrated tightly with motion estimation through

a loop in which candidates for motion estimation are generated based on the result of seg-

mentation. First a motion model for each block is calculated after which blocks are grouped

into segments that have a similar motion model and low sum-of-absolute-differences using

a Breadth First Search algorithm.

Currently, two contrasting implementations are often considered for such high perfor-

mance video processing: ASICs and DSPs. ASICs optimally meet performance and power

requirements, but lack flexibility. DSPs are highly flexible, but have significant overhead

in achieving the performance requirements for a low power budget. The ME is therefore

designed as an Application Specific Instruction Processor (ASIP). ASIPs offer performance,

power and area that are comparable to ASICs but are superior in terms of performance, power

Springer

Design, synthesis and verification of a smart imaging core using SystemC 137

C
o

n
tr

o
l
I/
F

D
a
ta

I/
F

BI
SAB

I/OACU RAM ROMALU

C
o
p
ro

ce
ss

o
r

C
o
n
tr

o
l

U
n
it

RB
Mem Mem

C
o

n
tr

o
l
I/
F

D
a
ta

I/
F

SAD BI
SAB

I/OACU RAM ROMALU

C
o
p
ro

ce
ss

o
r

C
o
n
tr

o
l

U
n
it

Communication Bus/Network

Distributed Register Files

RB
Mem Mem

Fig. 7 Motion estimation
coprocessor

and area compared to DSPs for applications in their domain. ASIPs, tuned to an application

domain, can be based on any processor architecture template such as a VLIW architecture, or

a vector processing architecture. It is interesting to note that the choice of the ASIP template

architecture greatly depends on the characteristics of the application domain and the available

tool flow. Among the available tool flows for ASIP design, namely A|RT [14], LISA [13]

and CHESS [12], the A|RT-based tool flow is used. This tool flow uses a VLIW architecture

template.

The VLIW architecture template of A|RT is composed of: standard function units, Ap-

plication Specific Units (ASUs), a control unit and an interconnect structure of registers and

multiplexers. The standard functional units include Arithmetic-Logic Units (ALUs), Address

Calculation Units (ACUs), RAM and ROM. The ASUs are user defined units and typically

are used to accelerate critical kernels of an algorithm. In our case the ASUs are tailored for

accelerating the inner kernels of motion estimation. After analysis of the motion estimation

algorithm, the following ASUs are defined (see Fig. 7): Search Area Buffer (SAB), Reference

Block Buffer (RBB), Bi-linear Interpolation unit (BI) and a sum-of-absolute-difference unit

(SAD). The motion estimation algorithm is block-based using 8-bit pixel blocks of 16 × 16

pixels. Therefore each ASU is designed for processing 16 pixels in parallel in order to ensure

execution of the operations in the innermost loop of the motion estimation algorithm in one

cycle for each pixel line of a 16 × 16 block. The ASUs are based on an earlier developed

general ME template [15].

In order to have a predictable system design, the complete search area (from previous

frame) is stored in the Search Area Buffer (SAB). By restricting the motion vector candi-

dates to the search area, this approach results in improved performance and reduced power

dissipation. The SAB memory is organized as 6 banks, each containing 32 pixel-lines of

32 bits (four 8-bit pixels). During a read operation, a number of banks are selected and the

resulting bank outputs are concatenated and aligned to produce a single 16 pixel-line. One

16 pixel-line can be delivered every clock cycle. The Reference Block Buffer (RBB) is used

to store the reference block from the current frame. The RBB is organized as four banks,

each containing 16 pixel-lines of 32 bits. During a read operation, the four bank outputs are

concatenated to deliver 16 pixels in parallel. The Bi-linear Interpolation unit (BI) is used

for generating corresponding pixels for the SAD calculation in case sub-pixel accuracy of

motion models is required. The BI is pixel line organized and it generates 16 interpolated

pixels in one clock cycle. The sum-of-absolute-differences unit (SAD) is used to calculate

the SAD of every candidate motion model. It compares a block within the current frame and

the corresponding block within the previous frame shifted by the motion model candidates.

In contrast to the motion estimator described in [15] the ME calculates SAD values per

16 × 16 macro-blocks as a weighted sum of SADs from both luminance and chrominance

pixel blocks. Each video component (Y, U, V) is calculated sequentially by the ME using

Springer

138 W. Kruijtzer, V. Reyes et al.

three loops and the set of ASUs described above. The resulting ME coprocessor is flexible

within an application domain and can be programmed for different video applications while

benefiting from the instruction-set that accelerates motion estimation functionality.

4.2 Coprocessors design and synthesis

4.2.1 Smart imaging coprocessor

The design approach chosen for the smart imaging coprocessor (SI) is based on successive

refinement of the architecture by applying a C/SystemC based approach. An overview on the

different abstraction levels used during this refinement is depicted in Fig. 8.

Algorithmic level (AL). The starting point for the design of the coprocessor has been the

C-IPL library, which is written in plain C. This code describes only the algorithmic behavior

of the LLAs and does not take any architectural aspects into account (See Fig. 9(a)).

Programmers view (PV). Based on the analysis of the C-IPL library the partitioning into

common low-level arithmetic operations executed by the coprocessor and the control SW

executed by the system CPU has been selected. In order to verify this initial partitioning, a

model at the PV level (Fig. 9(b)) has been created. Since the functionality of the coprocessor

is done on a pure functional description without taking cycle-based timing into account,

this model can achieve a relatively high simulation speed that is close to the speed of the

AL description. The resulting SI coprocessor at the PV level is used to develop the final

application SW as explained in Section 5.

Fig. 8 Abstraction levels applied for the coprocessor modeling

Springer

Design, synthesis and verification of a smart imaging core using SystemC 139

F
ig

.9
M

o
d

el
in

g
o

f
th

e
S

I
co

p
ro

ce
ss

o
r

Springer

140 W. Kruijtzer, V. Reyes et al.

Programmers view with timing (PVT). The PV model is refined reflecting the coprocessor’s

HW partitioning and the timing of internal and external SI interfaces. This model can be

regarded as a PV model extended with timing information. The coprocessor PVT model

(Fig. 9(c)) is composed of several sub-modules according the SI internal architecture as

depicted in Fig. 6. This model reflects the internal partitioning of the coprocessor architecture

and implements the bit-true and cycle-true behavior of the register interface as well as the IO

interface, which is communicating with the shared system memory. Communication between

the sub-modules of the coprocessor is explicitly implemented. The initial timing information

used in this PVT model is based on experience of the designer.

Further optimizations of the coprocessor with respect to functionality of the sub-modules

as well as the arithmetic performance of the coprocessor are carried out at the PVT level. It

is obvious that such optimizations cannot be continued without taking the achievable clock

frequency for the target semiconductor technology into account. Therefore, it is reasonable

to perform initial logic synthesis runs as early as possible. The results of these synthesis runs

give a very important feedback on potential timing bottlenecks of the design and have to be

taken into account for the refinement of the cycle timing of the design.

As depicted in Fig. 8, it is possible to create a Verilog RTL description out of a PVT model

by a behavioral synthesis tool. This RTL description could then be used as an input to a logic

synthesis tool, which performs the mapping onto gates of the target semiconductors library

and indicates the achievable clock frequency of the design. Using high abstraction levels as

design entry limits the design effort and increase the productivity. Therefore we decided to

introduce behavioral SystemC synthesis from a PVT description into the design flow of the

SI. At the time the SI coprocessor is implemented a tool called Cocentric SystemC Compiler
was still available from Synopsys Inc. This tool supported a SystemC-based design entry

and allowed for behavioral synthesis (from PVT or CA level) as well as RTL synthesis. The

behavioral synthesis option supported an automatic generation of memory structures, data

path elements as well as the required control FSM for a specific design block. Moreover,

the tool supported several useful features like operator and memory sharing or automated

memory instantiation. In the meantime the tool is discontinued, but other tool suppliers, like

Forte Design Systems, entered the SystemC behavioral synthesis arena with tools that offer

even more functionality than Cocentric SystemC Compiler. As resource sharing, scheduling

of operations as well as the associated insertion of pipeline stages is performed automatically

by the behavioral synthesis tools, the PVT entry is very useful for dataflow-oriented designs,

aiming at a dedicated implementation of core functionality of a specific application. These

designs have typically weak constraints on the latency of the functionality. Thus, a behavioral

synthesis tool has a high degree of freedom to schedule operations and data accesses, which

lead to several alternative implementations with different data throughput, silicon area as

well as power consumption.

The situation is slightly different for microinstruction-controlled designs like the SI co-

processor. In this case one constraint is to start the execution of one microinstruction in each

clock cycle. In this case it is desired to control the behavior of the critical parts of the design,

like shared embedded memory resources, on a cycle accurate level. Therefore, the SI model

is refined by adding more accurate timing information, which finally led to a cycle-accurate

model (CA).

Cycle-Accurate (CA). An iterative optimization process is applied to create the targeted

CA representation of the coprocessor. A first iteration loop was mainly focusing on arithmetic

performance and a second iteration loop was used to improve the final silicon area occupied

by the design. The before mentioned SystemC synthesis tools are also able to use the CA

Springer

Design, synthesis and verification of a smart imaging core using SystemC 141

Fig. 10 Migration from a CA model to a SystemC-RTL description

description as entry point for behavioral synthesis. Such tools automatically generate the

FSM control for the SI coprocessor.

SystemC-RTL. The implementation of RTL allows the designer to control the functionality

on a lower level and thus it can be expected that the optimization with respect to timing and

area can be done more easily than by constraining the behavioral synthesis process from

CA level. Furthermore the benefit of automated FSM generation for blocks containing small

global control functionality is rather limited as the step from the CA representation towards

a SystemC-RTL model can be done relatively simple: Code that is placed between two

subsequent wait() statements can be moved into one branch of a global state machine of this

block. Moreover, a state variable has to be introduced which has to be assigned in every

branch of the global state machine. Figure 10 illustrates the conversion from a cycle-accurate

behavioral model into a RTL description based on a simple example.

Based on the experiences made throughout the design and implementation of the SI

coprocessor the authors conclude that a SystemC based design flow is a promising approach.

It supports a smooth iterative refinement of the architecture from a pure functional description

of the algorithms down to RTL for logic synthesis. For example, the iterative design flow

approach applied for the SI coprocessor enabled the implementation of a fully verified RTL

description and has been achieved by spending an effort of roughly one man-year.

On the other hand, the simulation speed of a model reduces drastically with increased

timing accuracy. This behavior can become a significant hurdle if a huge number of patterns

have to be simulated during the iterative refinement of the architecture. However, it is not an

issue for the design of the SI. As the coprocessor aims at the acceleration of LLAs that process

small portions of an image, the number of patterns required for simulation can be kept small.

Thus, the simulation time during the iterative refinement could be kept at a reasonable limit

(see Section 4.3) Therefore, the refinement of the models from PVT to CA and later on to

RTL are focused on the performance of the coprocessor and it is acceptable to disregard any

optimizations aiming at an increase of simulation speed.

One of the major milestones for a wider acceptance of SystemC synthesis is the de-facto

standardization of the SystemC subset supported for synthesis that is now being formalized

Springer

142 W. Kruijtzer, V. Reyes et al.

by the OSCI Synthesis Working Group. However, from a designer’s point of view it is

desirable to extend the defined subset by a standardization of pragmas or language extensions

for steering the behavioral synthesis process. Moreover, for the implementation of micro-

controlled architectures like the described SI coprocessor it is desirable to enable a convenient

automated arbitration of shared resources. It can be expected that the vendors of behavioral

synthesis tools will solve these issues in the near future. The expected increased functionality

of SystemC synthesis tool will lead to an increased acceptance of SystemC not only as

modeling language but also as a design entry language aiming at a smooth path from an

abstract description to a gate-level implementation.

4.2.2 Motion estimation coprocessor

The motion estimation coprocessor is designed using the A|RT tools [14]. In this design

method, A|RT-Builder is used for designing the Application Specific Units (ASUs), while

A|RT-Designer is used for generating the VLIW ASIP which uses the ASUs apart from stan-

dard functional units like ALUs and ACUs. Both tools use C-based specifications enhanced

with special C-types such as bit vectors and fixed-point types as input. Especially the C-based

specification for A|RT-Designer can easily be wrapped into a SystemC PV model for use

in a virtual prototype. A|RT-Builder is simply a language translation and takes a C-based

RTL specification of an ASU as input, and creates a synthesizable RTL description in either

VHDL or Verilog. The A|RT-Designer tool assists designers in the development of a hard-

ware processor, customized for the C-algorithm that has to be executed on this architecture.

The generated processor consists of a set of data path resources, controlled by a VLIW type

controller and is created in four steps.

The starting point for A|RT-Designer is a C-based algorithm that is compiled to an internal

representation during the first step. In the second step the architecture is generated by A|RT-

Designer and is composed of standard resources (like ALU, ACU, MULT, constant ROM/

RAM) and application specific resources (ASUs created with A|RT-Builder) from one or

more libraries. In the third step the algorithm is mapped onto the generated architecture.

Variables and constants are mapped on available memory resources (register files, RAM,

ROM), followed by assigning operations to the data path resources and connection of the

ASUs with a set of register files including the generation of their interconnects. Finally the

fourth step performs scheduling and register assignment in such a way that the global machine

cycle count is minimized while keeping the number of necessary registers as low as possible.

This step involves a significant manual control of the tool by the designer to optimize the

final schedule e.g. through the use of pragmas.

In order to use the A|RT tool chain the original C++ behavioral description of the motion

estimation algorithm is partitioned and translated into ANSI-C code as required by A|RT

Designer (Fig. 11). First the behavioral description of the ME (Fig. 11(a)) is partitioned into

a SW task that prepares the motion model candidates and should run on the ARM CPU

and a HW task that performs the main processing loop of the motion estimation algorithm

(Fig. 11(b)). The input parameters to the HW task consist of two parts namely frame con-

stants (e.g. frame size) and run-time parameters (e.g. motion model candidates and block

coordinates). The C-code of the HW task is translated into ANSI-C, as required by A|RT De-

signer, and an initialization state is introduced such that frame constants are communicated

only once. Furthermore several new data-types are introduced to allow communication of

run-time parameters on a stripe (eight pixel blocks) basis. Next, the C-code of the processing

functions (data-path) in the HW task is modified by integrating behavioral models of the

ASUs (Fig. 11(c)). The model resulting from this step is also wrapped into a SystemC PV

Springer

Design, synthesis and verification of a smart imaging core using SystemC 143

ME
C++

ANSI-C

HW

ASUs
Behavioral

HW HW

ASUs
bit-,cycle-trueHW

ME HW algorithm Data path (ASU’s)

A|RT Designer

Manual RTL design

00 00 00 00 00 0 0 00 000 00 00 00
00 00 00 00 00 1 1 11 111 11 00 11

00 00 00 00 01 0 1 11 111 10 01 10

00 00 00 00 01 1 1 11 111 01 10 10

00 00 00 00 10 0 1 11 111 00 11 01
00 00 00 00 10 1 1 11 111 00 00 01

00 00 00 00 11 0 1 11 110 11 01 00

00 00 00 00 11 1 1 11 110 10 10 00

00 00 00 00 10 1 1 11 111 00 00 01
00 00 00 00 11 0 1 11 110 11 01 00

00 00 00 00 11 1 1 11 110 10 10 00
00 00 00 01 00 0 1 11 110 01 10 11

00 00 00 10 10 0 1 11 100 00 01 01

00 00 00 10 10 1 1 11 011 11 10 00

VLIW microcode

RTL VHDL

ANSI-C
+ fixed -point types

(a) (b) (c) (d)

(e)

SW SW SW

code
μ

Fig. 11 Motion estimation design flow

model for integration in the virtual prototype as depicted in Fig. 5. Finally bit and cycle true

models of the ASUs are integrated replacing the behavioral code of the ASUs (Fig. 11(d)).

Each step is verified with the reference C++ code of the ME by comparing the intermedi-

ate results of the motion estimator such as the generated candidate motion models and the

resulting motion models calculated by the HW task of the ME.

The C-code of the HW task resulting from this last step can directly be used as an input of

A|RT Designer (Fig. 11(e)) and in fact is the ME CA model as depicted in the overall design

flow in Fig. 5. The result is a synthesisable RTL description of a custom VLIW processor,

consisting of a data-path and a controller. The controller contains an FSM that determines the

next instruction to be executed, and a micro-code ROM, that contains the scheduled VLIW

code of the HW task C algorithm.

4.2.3 Coprocessors synthesis results

The synthesis results for both the FPGA and standard cell implementation are listed in Table 1.

In total ten single-ported 256 × 32 bits RAM blocks are used as embedded memory inside

the ASUs of the ME. All intermediate and motion model results are mapped into a single

RAM with a size of 64 Kbits. Furthermore the controller of the ME integrates several ROM

blocks with a total size of 172 Kbit. The SI integrates in total 40 Kbits RAM. With a target

clock frequency of 150 MHz, the arithmetic unit of the SI has a peak performance of about

Table 1 FPGA and Standard cell synthesis results

Technology Altera FPGA CMOS 90 nm @150 MHZ (mm2)

Resources Logic Memory Logic RAM ROM Total

SI 1.2 Mgates 40 Kbits 0.72 0.13 – 0.85

ME 0.8 Mgates 246 Kbits 0.45 0.26 0.14 0.85

Springer

144 W. Kruijtzer, V. Reyes et al.

3 GOPS and the ME can process 150 frames per second for a frame size of 352*288, using

a single scan and 15 motion models per block.

4.3 SI coprocessor verification

For the verification of the SI coprocessor a test bench is developed. This test bench should

achieve a reasonable coverage. However, as the SI coprocessor supports a certain range

of programmability, i.e. different image segment sizes and instruction parameters, even a

reduction of the complete test set to a minimum, e.g. by only checking corner cases of the

parameter set, still leads to several hundred of tests that need to be executed. Because the

occurrence of potential design bugs may also depend on the values of the input data set, it is

important to vary the input patterns applied to the SI coprocessor under test as well. As the

resulting large number of tests cannot be executed in an interactive way, it is required to run

all the tests automatically, e.g. by execution of a script. Moreover, it is desirable to create

a self-checking test bench, which condenses the result of a certain test to a simple ‘ok’ or

‘not-ok’ statement.

The resulting SystemC test bench created for the SI coprocessor is depicted in Fig. 12

and comprises a functional CPU model, the SI coprocessor model and a memory model,

representing the shared system memory accessed by both the coprocessor and the system

CPU. The CPU model in fact is a C++ program with access to the system interfaces.

Therefore it can also be used to interpret a scripting language controlling the execution of

the checks to be performed. Moreover, the CPU model is also able to generate the reference

results. This is achieved by integration of the functional SystemC reference implementation

available from the coprocessor implementation phase, into the CPU model.

Furthermore the memory model is extended with functionality that allows an on-the-

fly comparison of the results generated by the CPU model and results produced by the

coprocessor implementation. Moreover, the memory model has the capability to read or

write images under control of the CPU model.

A macroinstruction is validated for a certain parameter set by first running the reference

code on the CPU model producing the reference data that is written into the memory model.

Afterwards the SI is programmed to perform exactly the same macroinstruction with the

same parameter set. While the SI is writing its result into the memory model it is compared

with the reference data by the checker module. Any deficiency is monitored and can be

reported in various ways, depending on the validation settings. The memory model can

generate a ‘DIFF’-file, which indicates every pixel that differs between the SI and reference

implementation including the results from both implementations.

Fig. 12 SI reference model

Springer

Design, synthesis and verification of a smart imaging core using SystemC 145

The described test environment can be used for verification of the PV, PVT, CA as well

as the SystemC-RTL model of the SI. Naturally, the simulation speed decreases with an

increased accuracy of the applied model. For example, a verification suite that executes

about 180 macroinstructions and processes 6 million pixels is executed within 2 minutes

when using the PV representation of the coprocessor. The same test executed on the RTL

model has a runtime of approximately 4 hours.

5 Hardware/software integration

HW/SW integration aims at joining together both HW coprocessors with the embedded ap-

plication SW running on the ARM. In order to validate this HW/SW integration an FPGA

based prototype is developed. However, instead of developing the FPGA prototype directly,

an intermediate SystemC virtual prototype is used as a model of the target architecture. The

aim of applying virtual prototyping is to speed up and ease the porting of the embedded ap-

plication SW. Furthermore for this embedded SW development a layered approach is applied

which allows for a seamless migration from the PC environment to the prototypes. Such

layered approach provides a separation between the application functionality and the under-

lying prototyping infrastructure and, therefore, allows easy SW porting and reuse between

the Virtual- and FPGA-prototype. Section 5.1 will explain the embedded SW development

followed by a detailed description of the VP in Section 5.2. Finally, Section 5.3 will discuss

the FPGA based prototype.

5.1 Embedded SW development

Originally, smart imaging algorithms were created using the C++ programming language

and verified in a PC-based environment. Adapting from the PC environment to the embedded

architecture typically means an arduous task that requires a lot of effort in rewriting and

revalidating the application SW. In order to reduce such effort a similar SW structure in both

the PC and the embedded prototype is kept, which enables unchanged reuse of most platform

independent code and also simplifies the error detection and debug of the SW once ported to

the embedded CPU.

As shown in Fig. 13, the smart imaging application developed in the PC environment is

structured in three levels as explained in Section 2.1. In the upper level, the HLA commu-

nicates with the MLAs by invoking methods on their classes. MLAs, including the motion

segmentation algorithm, compose the intermediate level of the software structure. MLAs exe-

cute LLAs via the C-IPL API, which in the PC environment is a compendium of SW routines.

HLA

MLA1 MLA2 MLAn MSEG

LLA

Prototype SW structure

HLA

MLA1

Start -Up

VIO/HAL SI/HAL ME/HAL

Basic IO

C-IPL API

PC SW structure

MLA2 MLAn MSEG

HLA

MLA1 MLA2 MLAn MSEG

LLA

Prototype SW structure

HLA

MLA1

Start -Up

VIO HAL SI HAL ME HAL

 TTL

C-IPL API

PC SW structure

MLA2 MLAn MSEG

Fig. 13 Software structure

Springer

146 W. Kruijtzer, V. Reyes et al.

During the embedded SW development a similar structure is kept where the three previous

layers are still present. Besides these three layers, start up code is added to the embedded

software in order to configure and initialize the coprocessors, as well as to set the SW

structures necessary for the HW/SW communication and synchronization. Furthermore, the

lower-layer of the prototype SW structure is adapted to execute parts of the smart imaging

functionality on the coprocessors instead of the SW algorithms used before.

For that purpose, as depicted in Fig. 13, three different hardware abstraction layers (HAL)

are created. These HALs hide the low-level details of the system architecture and provides a

well-structured API compliant with the C-IPL library for embedded SW development of the

MLAs. The ME HAL controls and communicates with the Motion Estimator coprocessor.

A set of functions as part of the C-IPL is provided to the Motion Segmentation algorithm

in order to ease its communication with the ME coprocessor. The VIO HAL controls and

communicates with a dedicated video input and output unit existing in the prototype archi-

tecture. This layer provides a group of functions to read video frames from the input interface

and write back results to the output interface. Finally, the SI HAL controls and communi-

cates with the Smart Imaging coprocessor. This HAL provides the same function calls and

parameters passing as in the C-IPL to execute the LLAs functionality on the SI coprocessor.

Instead of SW routines, the LLAs implemented in the SI HAL are based on sequences of

macroinstructions that are executed by the SI coprocessor.

As an example, Fig. 14 shows the C-IPL HAL implementation (right) and its comparison

with the original C-IPL used in the PC environment (left). As depicted, functions calls for

performing a thresholding operation in a source image are equivalent (i.e. same name and

input parameters) in both cases, but the original LLA functionality is implemented in the HAL

using macroinstructions that control the SI coprocessor. As explained in Section 4.1.1 several

macroinstruction classes are provided. These macroinstructions, which are 64-bits wide, are

created and sent to the coprocessor using a set of specific commands. These commands

are SetConfInstruction to set parameters in the coprocessor, SetIOInstruction to load/store

blocks of data from/to the shared memory to/from the local memory of the coprocessor,

and SetExeInstruction to execute specific operations (e.g. thresholding) on blocks of data

previously loaded in local memory.

Furthermore, all three HALs are built on top of the TTL interface, see Section 2.3. As an

example, Fig. 15 shows how the SetExeInstruction command is implemented using TTL. A

int
CamThreshold (Image *source, Image *dest, int threshold)
{

CAM_PIXEL *srcptr,*dstptr,*cpsrcptr,*cpdstptr;

c1=threshold;
c2=0;
c3=255;

// ROI handling
…
srcptr = source->imageData;
dstptr = dest->imageData;
…

for (y=0;y<height;y++)
{
cpsrcptr = srcptr; cpdstptr = dstptr;
for (x = 0; x < width; x++, srcptr++, dstptr++)
{

if (*srcptr < c1) *dstptr = c2; else *dstptr = c3;
}
srcptr = cpsrcptr + source->widthStep;
dstptr = cpdstptr + dest->widthStep;

}

return 1;
}

int
CamThreshold (Image *source,Image *dest, int threshold)
{

c1 = threshold;
c2 = 0;
c3 = 255;

// Parameters adjustments & ROI handling
…

SetConfInstruction (EXT_ARI,0,BASE,0, source->imageData);
…

for (posy = yOffset; posy < (yOffset + height); posy++)
{

// Load a line from memory to SI local memory
SetIOInstruction (IO_Read,IO_Bank1,LINE_TYPE,width-1,true,0);

// Execute threshold operation
SetExe2Instruction (MI_THRESH, 0,LINE_TYPE,width-1,0, 255);

// Write a line from SI local memory to memory
SetIOInstruction (IO_Write, IO_Bank1,LINE_TYPE,width-1,true,1);

}

return 1;
}

Fig. 14 C-IPL implementations: (left) PC environment vs. (right) SI HAL

Springer

Design, synthesis and verification of a smart imaging core using SystemC 147

SetExe2Instruction (/* parameters */)
{
MacroInstruction[0] = /* filled with post-processed parameters */ ;
MacroInstruction[1] = /* filled with post-processed parameters */ ;

if (number_MI_sent == sync_granularity)
{

// Ask for room to write a new group of macroinstructions
reAcquireRoom (macroPort, sync_granularity);
number_MI_sent = 0;

}

// Write the macroinstruction in the channel (shared memory)
store (macroPort, number_MI_sent, 1, MacroInstruction);
number_MI_sent++;

if (number_MI_sent == sync_granularity)
{

// Update channel info and synchronize with the other channel's side
releaseData (macroPort, sync_granularity);

}
}

Fig. 15 SetExe2Instruction implementation using TTL

TTL logic channel is used to communicate and synchronizes the SW running in the CPU

and the SI coprocessor. Physically this channel is mapped on the shared memory available

on the system. Channels contain tokens. In this case, a token is a 64-bit macroinstruction

(i.e. two 32-bit words). A TTL logic port (macroPort) connects the SW task with the logic

channel. TTL primitives are executed on this port. The reAcquireRoom primitive is used to

check if there is enough free space to write in the channel. This is a blocking primitive that

only returns when room for sync granularity tokens is acquired. The store primitive is used

to write the actual macroinstruction in the channel. Finally, the releaseData primitive is used

to update the status of the channel, enabling the coprocessor to consume the new produced

macroinstructions. Note that in order to reduce the overhead due to the synchronization the

reAcquireRoom and releaseData primitives are performed at a coarser granularity than the

store primitive (sync granularity � 1).

Summarizing, this layered approach allows that further modifications in the system ar-

chitecture would only require slight changes in the HAL and/or the TTL implementation,

keeping the rest of the software application unchanged. This eases significantly the porting

of the reference and future applications (i.e. software reuse) to different architectures.

5.2 System-level virtual prototyping

Applying virtual prototyping in the development of the Smart Imaging core aims to: (1)

shorten the design time by developing the embedded SW in parallel with the implementation

of the SI and ME coprocessors, (2) test and tune early the interactions between the SW

running on the embedded CPU and the coprocessors i.e. configuration, communication and

synchronization, and (3) use the VP as a system-level test-bench in order to intensively verify

the correctness of the applications after their partitioning and mapping on the target system

architecture. In general this approach helps us in early bug detection, reducing the risk of

having to redesign the system, and served as an intermediate step that smoothed the transition

from the original applications to the FPGA prototype.

Due to the nature and complexity of the smart imaging algorithms, validating the functional

correctness of the applications running on the prototype requires the execution of hundreds of

Springer

148 W. Kruijtzer, V. Reyes et al.

frames of a specific scenario. Moreover, multiple scenarios with specific conditions in terms

of lighting, number of objects in the scene, behavior of the objects, etcetera, have to be tested

to ensure that an application is working properly. This leads to the need of a high simulation

speed for our VP (in the order of MHz) to cope with such validation complexity. Since the

prototype architecture and the application mapping are already decided in an early stage of the

project, there is no need for an extensive architectural exploration and accurate performance

analysis at the system-level using the VP. Therefore, timing accuracy is not important at this

stage. The focus of the VP is more on assuring that the applications still produce the same

results when executed in the prototype architecture. Hence, the VP has to precisely reflect

the real memory map of the prototype architecture in order to create the start-up and HAL

software. According to these requirements (i.e. fast simulation speed and register-accurate

view of the architecture) the complete VP is developed at the PV level. The VP is built using

the CASSE modeling and simulation environment [7]. A generic introduction to the CASSE

framework is provided in Section 5.2.1. More details about how CASSE is applied to the

development of the smart imaging VP are introduced in Section 5.2.2.

5.2.1 CASSE modeling and simulation environment

CASSE is a SystemC-based simulation environment that enables modeling and analysis

of complex SoCs early in the design process. The tool combines application modeling,

architecture modeling, mapping and analysis within a unified environment, with the aim

to ease and speed up these modeling steps. Application modeling is based on the TTL

interface. Architectural modeling is based on a group of highly configurable predefined

elements provided by the tool libraries. CASSE is structured in three layers as depicted in

Fig. 16.

Fig. 16 CASSE internal structure

Springer

Design, synthesis and verification of a smart imaging core using SystemC 149

Front-end layer: the front-end layer serves as a user interface that controls the tool.

This layer is composed of the user libraries and the description files. There are two user

libraries: the tasks library contains TTL-compliant tasks composing the application and the

external components library that contains user specific SystemC models to be added on

the architecture model. There are three description files: the task-graph file that describe the

structure of the application, the architectural file that describes the structure and configuration

of the architecture, and the mapping file that describes how tasks and channels are allocated

on specific elements of the architectural model.

Back-end layer: the back-end layer implements the core functionality of the tool. Besides

a parser that reads and interprets the description files, this layer contains also two specific

libraries. The application library (APP) where the TTL protocol is implemented and the

architecture library (ARCH) where the group of predefined elements are implemented using

the IEEE 1666 SystemC and the OSCI TLM standards [18]. These predefined elements are:

processing elements (PE), storage elements (SE) and network elements (NE). All elements

can be connected together in a ‘plug and play’ fashion by means of a generic TLM interface,

called ICCP, provided also in the ARCH library.

CASSE is able to carry out two kinds of simulations: functional simulations and perfor-

mance simulations. During functional simulations the tool only requires the task-graph file.

Based on the information of that file the tool automatically instantiates and bind together tasks

and channels (from the user and tool libraries, respectively), creating an executable model

of the application. During performance simulations the tool read and parses the task-graph,

architectural and mapping files. Predefined elements (PE, NE, SE) and external components

(EC) are automatically instantiated (from the respective libraries) and connected together

following a modular approach according to the architectural file. Tasks and channels are

allocated on specific PE and SE elements according to the mapping file. All elements are

configured according to the task-graph structure and the parameters specified in the descrip-

tion files. The outcome of this process is an executable model of the system instance.

Kernel layer: these executable models are then run by means of the SystemC kernel,

which constitutes the third layer of the tool. During SystemC simulations execution traces

and statistics can be recorded and dumped to output files for later inspection and analysis.

This analysis might guide further iterations where both the application and the architecture

models are tuned, or a new mapping is selected.

More details about the PE, NE and SE predefined elements and the ICCP interface available

in the ARCH library are discussed next.

ICCP is a generic communication protocol, which defines a point-to-point TLM interface

and a group of communication primitives between two entities named Initiator and Target.
As shown in Fig. 17, the ICCP protocol provides two basic methods for communication

between the Initiator and Target entities: read and write. The execution of any of the two basic

methods is started in the Initiator module. During such execution all information related to

the transaction is passed from the Initiator to the Target within the RequestGrp structure using

the standardized bidirectional transport interface (tlm transport if). The transport function

is in fact executed in the Target module, where the transaction is split in three different

phases (Request, Read-/Write-Data and Response) that are executed in the slave module

connected to it. Once the transaction finishes the Target returns from the transport function

and sends back to the Initiator information related to the completion of the transaction within

the ResponseGrp structure. The timing of the operations carried out over the ICCP depends

on the combination of the latencies programmed in the Initiator and Target modules and may

vary from completely untimed (PV) to cycle-accurate at the transaction boundaries (PVT).

Springer

150 W. Kruijtzer, V. Reyes et al.

T
A

R
G

E
T

Master
thread

IN
IT

IA
T

O
R

Slave
Functionality

SC_PORT SC_EXPORT

tlm_transport_if

< RequestGrp, ResponseGrp >

Request(…)

WriteData(…)

ReadData(…)

Reponse(…)

response read (address, burstLength, burstSize, *data)

response write (address, burstLength, burstSize, *data)

T
A

R
G

E
T

Master
thread

IN
IT

IA
T

O
R

Slave
Functionality

SC_PORT SC_EXPORT

tlm_transport_if

< RequestGrp, ResponseGrp >

Request(…)

WriteData(…)

ReadData(…)

Reponse(…)

response read (address, burstLength, burstSize, *data)

response write (address, burstLength, burstSize, *data)

Fig. 17 ICCP interface implementation

PE’s are used to model generic computational units. By default, PE’s do not contain any

functionality, but they are simply placeholders where the task’s functionality and timing

is executed. As depicted in Fig. 18, a PE is composed of several modules. An arbitrary

number of tasks can be assigned (mapped) in a single PE via the multitask container module

(MTC) that implements a dynamic vector of SystemC threads. However, only one task can

be active at a certain time on a PE. This is assured by means of the Task Scheduler module

that implements several scheduling policies (e.g. priority-based, cooperative multitasking,

TDMA) and supports advanced features such as preemption and interrupts handling. PE’s

also contains a TTL shell that implements the TTL primitives and translates the logical

communication via ports to device level communication via the ICCP Initiator interfaces of

the PE.

SE’s model generic random access memory elements, such as register files or static RAM

memories. Storage elements can be configured with an arbitrary number of Target ICCP

interfaces. This allows emulating the behavior of single, dual or multi-port memories existing

on the system architecture.

NE’s model generic shared interconnections, such as on-chip shared busses. NE’s can be

configured with an arbitrary number of Target (input) and Initiator (output) interfaces. The

main functionality of a NE is to interconnect architecture elements. NE’s include config-

urable input buffers, an arbiter module, an address decoder module and a controller module.

Basically, the controller module routes transactions from the Target interfaces to the Initiator
interfaces.

5.2.2 Smart imaging virtual prototype

The created smart imaging VP, as shown in Fig. 19, is composed of an embedded CPU, three

dedicated coprocessors (i.e. ME, SI and VIO), several shared memories and a communication

network that in turn is composed of several busses and bridges. This setup reflects the

internal FPGA architecture, which is partially based on an ARM9 subsystem as explained

in Section 5.3. Shared memories are modeled using generic SE components configured with

the right size and number of interfaces. Busses, bridges and memory controllers are modeled

using generic NE components configured with the right number of interfaces, arbitration

policy, and addressing range for all their output interfaces. Such addressing ranges are selected

to reproduce the memory map used in the real prototype. Moreover, communication latencies

Springer

Design, synthesis and verification of a smart imaging core using SystemC 151

M
T

C

S
C

T

H
R

E
A

D

S
C

M
O

D
U

LE

S
C

T

H
R

E
A

D

S
C

M
O

D
U

LE

T
as

k
S

ch
ed

ul
er

T
T

L
sh

el
l

P
R

O
C

E
S

S
IN

G
 E

L
E

M
E

N
T

IF
0

IF
N

-1

IC
C

P

IN
T

T
T

L
ta

sk

S
C

_P
O

R
T

S
C

_E
X

P
O

R
T

In
iti

at
or

0
In

iti
at

or
N

-1

C
on

tr
ol

(S

C
_T

H
R

E
A

D
)

NETWORKELEMENT

IF
0

IF
N

-1

IC
C

P

S
C

_P
O

R
T

S
C

_E
X

P
O

R
T

In
iti

at
or

0
In

iti
at

or
N

-1

IF
0

IF
M

-1

IC
C

P

T
ar

ge
t 0

T
ar

ge
t M

-1

A
rb

ite
r

A
dd

re
ss

D
ec

od
er

S
T

O
R

A
G

E
 E

L
E

M
E

N
T

IF
0

IF
N

-1

IC
C

P

S
C

_E
X

P
O

R
TT

ar
ge

t 0
T

ar
ge

t N
-1

M
em

or
y

m
od

ul
e

B
uf

fe
r 0

B
uf

fe
r M

-1

M
T

C

S
C

T

H
R

E
A

D

S
C

M
O

D
U

LE

S
C

T

H
R

E
A

D

S
C

M
O

D
U

LE

T
as

k
S

ch
ed

ul
er

T
T

L
sh

el
l

P
R

O
C

E
S

S
IN

G
 E

L
E

M
E

N
T

IF
0

IF
N

-1

IC
C

P

IN
T

T
T

L
ta

sk

S
C

_P
O

R
T

S
C

_E
X

P
O

R
T

In
iti

at
or

0
In

iti
at

or
N

-1

C
on

tr
ol

(S

C
_T

H
R

E
A

D
)

NETWORKELEMENT

IF
0

IF
N

-1

IC
C

P

S
C

_P
O

R
T

S
C

_E
X

P
O

R
T

In
iti

at
or

0
In

iti
at

or
N

-1

IF
0

IF
M

-1

IC
C

P

T
ar

ge
t 0

T
ar

ge
t M

-1

A
rb

ite
r

A
rb

ite
r

A
dd

re
ss

D
ec

od
er

A
dd

re
ss

D
ec

od
er

S
T

O
R

A
G

E
 E

L
E

M
E

N
T

IF
0

IF
N

-1

IC
C

P

S
C

_E
X

P
O

R
TT

ar
ge

t 0
T

ar
ge

t N
-1

M
em

or
y

m
od

ul
e

B
uf

fe
r 0

B
uf

fe
r 0

B
uf

fe
r M

-1
B

uf
fe

r M
-1

F
ig

.1
8

P
E

,
N

E
an

d
S

E
st

ru
ct

u
re

Springer

152 W. Kruijtzer, V. Reyes et al.

0x02000000

0x02200000

0x02900000

0x02A00000

0x03FFFFFF

SDRAM

SDRAM CTRL

SRAM0 CTRL DPRAM0 CTRL

SRAM0

AHB1

DPRAM0

AHB

BRIDGE

STR2PLD

BRIDGE

PLD2STR

BRIDGEAltera Excalibur stripe model

AHB2DTL

BRIDGE

DTL2AHB

BRIDGE

VIO COPRO SI COPRO ME COPRO

PLD area model

SDRAM

ARM

SRAM

VIO COPRO SI COPRO ME COPRO

AHB2

SRAM CTRL DPRAM CTRL

DPRAM

Application area

TTL channels

Stack & Heap

Program code

AHB

SDRAM CTRL

STR2PLD PLD2STR

AHB2DTL DTL2AHB

VIO
HAL

APPLICATION

ME
HAL

SI
HAL

BRIDGE

BRIDGE BRIDGE

BRIDGE BRIDGE

TTL HW shell TTL HW shell TTL SW shell

PE

ECECPE

NE

SESE

NE

NE

NE

NE

NE

NE NE

ICCP

SE

TTL SW shell

NE NE

Fig. 19 Smart imaging virtual prototype

in all components are set to zero (i.e. untimed communication) in order to achieve the fastest

simulation speed possible. Using CASSE such complex architectural model is quickly created

and configured by means of an architectural description file that only takes 155 lines.

Instead of an instruction set simulator (ISS) to execute the embedded SW, an abstract CPU

model is used. Although much more accurate, an ISS would slow down the simulation speed

considerably to the range of hundreds of KHz, making the HAL development and functional

validation tasks unfeasible within a reasonable amount of time. For that reason, the source

code for the embedded SW is encapsulated into a task and mapped on a PE component

conforming the abstract CPU model. These Host Code Emulation (HCE) techniques are

applied in order to allow the encapsulated SW running on the PE to access all relevant data

structures using exactly the same memory map of the real prototype. Such relevant data

structures (e.g. image data and TTL channels) are mapped on the emulated memory models

(i.e. SE), and the abstract CPU model accesses them through the NE elements and ICCP

interfaces provided by the CASSE libraries. These HCE techniques also allow that the same

Springer

Design, synthesis and verification of a smart imaging core using SystemC 153

source code executed on the abstract CPU can be reused later on for the embedded ARM

without any change. The only difference between both prototypes is the underlying TTL

implementation, which in case of the VP is included in the PE and in case of the FPGA has

to be customized for the ARM.

The PV models for the SI and ME coprocessors, described in Section 4, are now integrated

into the VP by means of external components (EC). These models are functional equivalent

and simulate hundred of times faster when compared with their SystemC CA counterpart

models. The complete VP is able to process a frame in the range of 30–180 seconds depending

on the complexity of the scenario. Such processing might take several hours in a more

conventional HW/SW co-verification environment at the RTL level. The use of the VP

significantly reduced the total SW development effort. It took around three months to finish

the development of the three HALs and to port the embedded SW for four reference smart

imaging applications targeted in the project. This software could later on be integrated directly

in the FPGA prototype.

5.3 FPGA prototype

The FPGA prototype is built using a PCI based prototyping board with two Altera FPGA

devices: an Excalibur XA10 device with 1 million logic gates and an APEX-1500 with 1,5

million logic gates. The Excalibur also embeds an ARM9 subsystem that is used to run the

embedded software parts of the applications. The FPGAs are used to implement the hardware

coprocessors and the top-level communication infrastructure. This FPGA prototype is very

close to an actual chip implementation. Since the size of the SI logic after synthesis and

place&route exceeded 1 million gates, the most likely partitioning of the smart imaging

architecture on the prototyping board is to map the SI co-processor and its local memory on

the APEX1500 FPGA device. The ME and the communication infrastructure are mapped to

the Excalibur device. The infrastructure comprises the multiple DTL, AHB and PCI bridges.

Instead of integrating the SI and ME coprocessors, as well as the embeddedSW, on the

FPGA prototype in one go, a different approach is followed. Our approach is based on the

communication capabilities between the host PC and the FPGA via the PCI interface. In

the FPGA side, the PCI interface is connected to the top-level communication infrastruc-

ture through a special logic that served as a bridge from PCI to the DTL communication

SRA
M0

AHB1

DPRA
M0

AH
BBRID

GE

STR2P
LD

PLD2S
TR

AHB2D
TL

DTL2A
HB

VIO
COPRO

SI
COPRO

SDRAM

ARM

SRAM

VIO COPRO ME COPRO

AHB2

SRAM CTRL DPRAM CTRL

DPRAM

AHB

SDRAM CTRL

STR2PLD PLD2STR

AHB2DTL DTL2AHB

BRIDGE

BRIDGE BRIDGE

BRIDGE BRIDGE

TTL HW shell TTL HW shell

FPGA prototype

Altera Excalibur Altera APEX

Stripe

SI
COPROPCI

IF

Host PC / SystemC VP

PCI
driver

PLX

DTL

SRA
M0

AHB1

DPRA
M0

AH
BBRID

GE

STR2P
LD

PLD2S
TR

AHB2D
TL

DTL2A
HB

VIO
COPRO

SI
COPRO

SDRAM

ARM

SRAM

VIO COPRO ME COPRO

AHB2

SRAM CTRL DPRAM CTRL

DPRAM

AHB

SDRAM CTRL

STR2PLD PLD2STR

AHB2DTL DTL2AHB

BRIDGE

BRIDGE BRIDGE

BRIDGE BRIDGE

TTL HW shell TTL HW shell

FPGA prototype

Altera Excalibur Altera APEX

Stripe

SI
COPROPCI

IF

Host PC / SystemC VP

PCI
driver

PLX

DTL

Fig. 20 Host PC/FPGA co-simulation

Springer

154 W. Kruijtzer, V. Reyes et al.

protocol used in the prototype. Likewise, in the PC host side, the PCI driver shipped with the

prototyping board is encapsulated in a SystemC component and added to the VP. This new

component serves as a bridge from the ICCP protocol used in the VP to PCI communication.

Thanks to this, it is possible to migrate individual components from the VP, such as the SI

coprocessor, into the FPGA board while keeping the rest of the architecture on the PC as a

SystemC VP, see Fig. 20. The part running on the PC serves as system test bench for the

component integrated in the FPGA. This helps significantly to manage the integration and

verification complexity by gradually moving components from the VP into the FPGA.

6 Conclusions

In this paper the development of a complex smart imaging architecture following a SystemC-

based design flow is presented. The smart imaging core integrates an ARM processor and

two specific hardware blocks for image processing: a smart imaging coprocessor and a

motion estimation coprocessor. A SystemC-based design flow is applied, comprising the

design, synthesis and verification of the two coprocessors, as well as the development and

integration of the embedded SW on the smart imaging core.

The two coprocessors are successfully modeled and refined from C/C++-based algorith-

mic descriptions down to architecture reference models using SystemC and TLM concepts.

For the RTL implementation of the hardware coprocessors high-level synthesis tools are used.

The applied SystemC based design flow enabled the iterative refinement of the architecture

towards an optimal RTL implementation.

Furthermore, the use of SystemC TLM supported the integration of fast functional models

of the coprocessors on a virtual prototype platform of the target architecture. This virtual

prototype is beneficially used during the embedded SW development phase, which comprised

the creation of several HW abstraction layers to communicate and synchronize the SW

with the coprocessors. The usage of the SystemC virtual prototype, allowed shortening the

design time of the entire system since the SW development is carried out in parallel with the

implementation of the coprocessors.

The major advantage of a SystemC-based design flow, compared to traditional approaches,

is the smooth transition from the algorithm representation (written in C/C++) to the actual

implementation both for HW and SW design within a unified environment. The key element

that has enabled such design possibilities is the emergence of the TLM modeling style together

with the increasing acceptance of SystemC as a standard for system level modeling, design

and synthesis. Hence, such methodology is becoming an attractive approach to be applied in

actual design projects within the Semiconductors industry.

Acknowledgments We like to thank Bruno Steux from École des Mines de Paris, Thomas Hinz from Philips
Semiconductors Hamburg, Jörn Jachalsky from University of Hannover, Pablo Santos from University of Las
Palmas GC and Ghiath Alkadi from Philips Research Eindhoven for their contributions to the development of
the smart imaging core. This work was partly sponsored by the European Commission in the IST-2001-34410
CAMELLIA project.

References

1. Camellia Image Processing Library http://camellia.sourceforge.net
2. Steux, B., and Y. Abramson. Robust Real-Time on-Board Vehicle Tracking System Using Particles Filter.

In IFAC IAV’04, July 2004.

Springer

Design, synthesis and verification of a smart imaging core using SystemC 155

3. Abramson, Y., and B. Steux. Hardware-Friendly Pedestrian Detection and Impact Prediction. In IEEE
IVS’04, June 2004.

4. Kyo, S., et al. A 51.2GOPS Scalable Video Recognition Processor for Intelligent Cruise Control Based
on a Linear Array of 128 4-Way VLIW Processing Elements. In IEEE ISSCC’03, February 2003.

5. Raab, W., N. Bruels, U. Hachmann, J. Harnisch, U. Ramacher, and C. Sauer. A 100-GOPS Programmable
Processor for Vehicle Vision Systems. In IEEE Design & Test of Computers, 2003.

6. Imagawa, K., K. Iwasa, T. Kataoka, T. Nishi, and H. Matsuo. Real-Time Face Detection with MPEG4
Codec LSI for a Mobile Multimedia Terminal. In ICCE’03, June 2003.

7. Reyes, V., T. Bautista, G. Marrero, P.P. Carballo, and W. Kruijtzer. CASSE: A System-Level Modeling
and Design-Space Exploration Tool for Multiprocessor Systems-on-Chip. In DSD’04, August 2004.

8. van der Wolf, Pieter, Erwin de Kock, Tomas Henriksson, Wido Kruijtzer, and Gerben Essink. Design
and Programming of Embedded Multiprocessors: An Interface-Centric Approach, CODES + ISSS ’04,
Stockholm, Sept. 2004.

9. Gehrke, Winfried, Joern Jachalsky, Martin Wahle, Wido Kruijtzer, Carlos Alba, and Ramanathan Sethu-
raman. Flexible Co-Processor Architectures for Ambient Intelligent Applications in the Mobile Commu-
nication and Automotive domain. In Proc. SPIE Vol. 5117, VLSI Circuits and Systems, April 2003, pp.
310–320.

10. Jachalsky Jörn, Martin Wahle, Peter Pirsch, Winfried Gehrke, and Thomas Hinz. A Coprocessor for Intel-
ligent Image and Video Processing in the Automotive and Mobile Communication Domain. In ISCE2004,
Sept. 2004.

11. Peleg, A., and U. Weiser. The MMX Technology Extension to the Intel Architecture. In IEEE Micro,
vol. 16, no. 4, Aug. 1996.

12. Lanneer, D., et al. CHESS: Retargetable Code Generation for Embedded DSP Processors. In Code Gen-
eration for Embedded Processors, P. Marwedel (ed.), Kluwer Academic Publishers, 1995.

13. Hoffmann, A., et al. A Novel Methodology for the Design of Application-Specific Instruction-Set Pro-
cessors (ASIP) Using a Machine Description Language. In IEEE TCAD, Nov. 2001.

14. A|RT Designer and A|RT Builder tools, formerly from Adelante Technologies, Now Marketed by
ARM Ltd. as OptimoDE, http://www.arm.com/products/CPUs/families/OptimoDE.html.

15. Peters, H., et al. Application Specific Instruction-Set Processor Template for Motion Estimation in Video
Applications. In IEEE TCSVT, vol. 15, no. 4, April 2005.

16. Cai, Lukai and Daniel Gajski. Transaction Level Modeling: An Overview. In CODES + ISSS’03, Cali-
fornia, USA, October 2003.

17. Synopsys CoCentric System Studio, Home page, http://www.synopsys.com/products/cocentric studio/
cocentric studio.html.

18. Transaction Level Modelling Standard 1.0, June 2005, http://www.systemc.org.
19. Grötker, T., S. Liao, G. Martin, and S. Swan. System Design with SystemC, Kluwer, 2002.
20. Henkel, J. Closing the SoC Design Gap. IEEE Embedded Computing, 2003.
21. Paulin, P., and Magarshack, P. System-on-Chip Beyond the Nanometer Wall. In Proceedings of the 40th

IEEE/ACM Design Automation Conference, ACM Press, 2003, pp. 419–424.
22. Martin, G., and F. Bacchini. System Level Design: Six Success Stories in Search of an Industry. In

Proceedings of the Design Automation Conference, ACM press, San Diego, California, USA, June 2004.
23. Rose, A., S. Swan, J. Pierce, and J. Fernandez. Transaction Level Modeling in SystemC, SystemC TLM

whitepaper, 2005.
24. Forte Cynthesizer, Home page, www.forteds.com.
25. Pandita, R., M. Leclercq, and J. Speros. Enabling Performance Evaluation of SoCs with SystemC Model

for the TI OMAPTM Platform. In Proceedings of the GSPx’04 Conference, Santa Clara, California, USA,
Sept. 2004.

26. Bruschi, F., and F. Ferrandi. Synthesis of Complex Control Structures from Behavioral SystemC Models.
In Proceedings of the Design Automation and Test in Europe, Munich, 2003.

27. Portero, A., O. Navas, and J. Carrabina. Hw-Sw Design Methodologies Used for a MPEG Video Copro-
cessor Synthesis. In Proceedings of the 16th International Conference on Microelectronics, vol. 3, pp.
1688–1693, 2004.

28. Catapult, C., Home page, www.mentor.com/products/c-based design/.
29. Toshiba R-CUBE project, 2005, www.semicon.toshiba.co.jp/eng/r cube/.
30. ARM AMBA AXI protocol specification, June 2003.

Springer

