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Abstract: This paper presents the application of advanced computational techniques 
developed by the authors for evaluating the vulnerability characteristics of network 
systems exposed to harmful events. The physical system is modeled as a network (graph) 
of nodes interconnected by links. Uncertainties on the propagation and effects of an attack 
are modeled by probability distributions on the times of propagation through the network 
links and the numbers of people affected at the network nodes reached by the hazard. The 
impact of an attack is quantified by simulating the propagation of the hazard through the 
network nodes and links, by means of a combination of cellular automata and Monte 
Carlo simulation. The vulnerability assessment is embedded within a systematic multiple-
objective optimization analysis aimed at identifying the optimal protective scheme which 
minimizes the average impact in terms of entities affected and hazard propagation time. 
The vulnerabilities and relative protection schemes of two networks of realistic size are 
systematically analyzed by the proposed approach for testing the procedure and 
identifying its strengths and weaknesses. 
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1. Introduction 

The reliance of current society on critical infrastructures makes them particularly sensitive 
to partial or complete incapacitation of such infrastructures, due to internal or external 
sources of failures or attacks. While reliability engineering and risk analysis provide tools 
and procedures for estimating, preventing and handling undesired failure events that occur 
at random in complex systems, risks from intentional attacks constitute a new challenge 
due to the involvement of “a malevolent intelligence directed towards maximum social 
disruption” (Apostolakis and Lemon 2005, p. 361). 
    Many efforts have been devoted in recent years towards the development of a new 
paradigm for analyzing the safety and security of critical infrastructures so as to be able to 
set up the adequate protections against natural disasters and/or intentional attacks (Bier et 

al 2005, Hausken 2007, Korczak et al 2005, Levitin 2007, Levitin and H. Ben-Haim 2007, 
Levitin and K. Hausken 2007, Haimes and Longstaff, 2002).  
    Since most critical infrastructures present a distributed network configuration (see 
Birchmeier 2007 and references therein for examples), much research has focused on the 
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protection of complex networks against terrorist or intentional attacks to, e.g., water 
supply networks (Skolicki et al 2006, Wadda et al 2004) or electricity networks (Holgrem 
et al 2007, Holgrem 2006, Johnson 2007). 
    With regards to intentional attacks, network infrastructures are susceptible to at least 
two modes of attack. On the one hand, an attack may be directed to damaging the 
infrastructure itself by impacting its components. On the other hand, an antagonist could 
take advantage of the infrastructure as a vector of propagation of a hazard to the people 
and the environment (e.g., a contaminant or a virus injected into a water supply network). 
    In this latter case, hazard propagation modeling becomes a quite relevant task for 
providing the necessary information to devise effective countermeasures to the attacks. 
With respect to the example of an attack to a water distribution system by contaminating 
the water supply, real-time decisions must be undertaken by the responsible security 
officials to take actions for minimizing the impacts of such attack, e.g., by shutting off 
selected distribution lines at specific times (Wadda et al. 2004).  
    For hazard propagation modeling, the use of simulation techniques allows the 
identification of the critical vulnerabilities of the network system, i.e., those nodes where 
an “attack” can cause the worst damage. This in turn provides information for the optimal 
allocation of protective countermeasures. Given the uncertainty on the effectiveness of 
such countermeasures and on the antagonist's actions, hazard propagation models must 
handle uncertainty. 
    To protect from attacks effectively, several “immunization” schemata with different 
characteristics could be proposed, aimed at minimizing the impact of an attack (see for 
example Levitin and Ben-Haim, 2007); however, realistically one should consider several 
objectives in the search for the optimal protection scheme, e.g., including cost, 
vulnerability, reliability.  
    In this paper, the multiple objective (MO) formulation of the problem of system 
security protection from hazard propagation is embraced (Rocco et al 2007, Zio et al 
2007). Its solution is sought through an optimization approach which leads to finding a set 
of alternative protection schemes which are optimal in the sense of Pareto optimality with 
respect to the set of predefined objectives driving the solution search. Based on the results 
obtained, the Decision Maker (DM) can rationally decide on a robust protective scheme to 
defend those nodes identified as most critical, i.e., whose protection most reduces the 
damage. 
    The physical system of interest is abstractly modeled as a network (graph) of nodes 
interconnected by links. Uncertainties on the propagation and effects of an attack are 
modeled by probability distributions on the times of propagation through the network links 
and the numbers of people affected at the network nodes reached by the hazard.  
    The MO problem of protecting the system from the hazard propagation is solved by a 
Multiple Objective Evolutionary Algorithm (MOEA) (Zio et al 2007) which conjugates 
the concepts of Pareto dominance with the typical heuristic search mechanisms of 
evolutionary algorithms. To this aim, the vulnerability assessment is embedded within a 
systematic multiple-objective optimization analysis aimed at identifying the optimal 
protective scheme which minimizes the average impact in terms of entities affected and 
hazard propagation time. For each alternative solution of network system protection 
proposed by the search algorithm, the impact of the attack and timing of the hazard 
propagation are quantified by simulating the propagation of the hazard through the 
network nodes and links, by means of a combination of cellular automata (CA) and Monte 
Carlo simulation which properly account for the uncertainties involved.  
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    The remainder of the paper is organized as follows. In Section 2, the decision-making 
problem regarding the network system security protection from hazard propagation is 
introduced and the computational model of hazard propagation, based on cellular 
automata and Monte Carlo simulation, is illustrated in details. Section 3 sets the problem 
in its multiple-objective formulation and provides a short description of the MOEA 
heuristic optimization tool employed for its solution. Section 4 goes through the systematic 
application of the procedure to two networks of realistic size. This allows drawing some 
insights on the capabilities offered by the proposed scheme of analysis and the relative 
limitations, which are discussed in the closing Section 5. 

2 The Hazard Propagation Problem 

2.1    The Modelling Framework  

A generic network G(N;E) is composed of a set N = {ni} of n nodes linked by a set of 
edges E = {eij}, each of which connects two generic nodes ni with nj in a directed or 
undirected manner (Shier 1991). This abstraction can be applied to model the topology of 
numerous types of interconnected systems. In particular the model proposed in (Zio and 
Rocco 2008) associates nodes to sets of entities (beings or assets) that can be 
simultaneously damaged by an attack and can propagate it, and edges to propagation 
channels.  
    From the viewpoint of the modeling of the process of hazard propagation following 
an attack, several features may be considered, like the edges' transmission capacity, the 
intensity of the hazard propagated or the existence of different modes of attack, among 
others. Other realistic aspects to be considered would be, for example, constraints on the 
capacity of links and nodes (which arise for example in electric (Bier et al. 2006) or water 
distribution systems (Wadda et al. 2004)) or considering that when a disturbance occurs, 
the network starts to shed loads.  
    In the present work, the modeling is limited to capturing those aspects of the hazard 
propagation process which need to be accounted for, at a minimum, when analyzing 
network protection schemes. These relate to the number of network nodes which can be 
attacked by the antagonist, the number of entities at each node which can be potentially 
damaged by the hazard propagation and the time of propagation of the attack’s hazardous 
effects through the network links. The modeling of only these generic aspects of the 
hazard propagation dynamics through the network topology allows concentrating the work 
on the optimization of the network protective measures for security. 
    According to the modeling viewpoint adopted, as soon as an attack takes place its 
harmful effects begin to propagate through the network, from node to node with the 
consequent impact on the entities associated to such node. When the generic node ni is hit 
by the hazard, it propagates the attack to an adjacent node nj through link eij, with a time 
delay TDij. As we shall see, in this work time delays are assumed, for simplicity but 
without loss of generality, to be integer random variables of known distributions; the time 
evolution of hazard propagation can then be evaluated by a combination of cellular 
automata and Monte Carlo simulation (Zio and Rocco, 2008). 
    From a defender point of view, the possible strategies against such hazard 
propagation are to prevent the antagonist from performing the attack or to implement a set 
of countermeasures to neutralize or mitigate the impact of the attack once it is performed. 
The decision-making problem considered in this work corresponds to this latter situation: 
given an attack, the defender aims at minimizing the impact on the network, subject to his 
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or her amount of available resources RD; on the other hand, the antagonist is assumed to be 
rational so that his or her selection of targets is aimed at maximizing the impact subject to 
the amount of available resources RA. Hence, the defender problem can be formulated as 
the identification of protections to be allocated on the network for minimizing the impact 
of an attack, subject to the amount of available resources RD. 
    Naturally, the pattern of attack remains uncertain, even when some information about 
the preferences of the attacker and their resources RA can be estimated through intelligence 
gathering. 
    The key issue for the optimization of the security protective measures is the definition 
of the impact of an attack to the network. For instance, in (Korkzak et al 2005, Levitin 
2007, Levitin and Ben-Haim 2007, Levitin and Hausken 2007) the impact is defined in 
terms of a utility function that models the expected damage and the objective of the 
optimization of the protective measures is to minimize such quantity. Various quantities 
can be defined to describe the effects of the hazard propagation. When embedded in the 
evaluation of the protective measures, the underlying idea shared by the different 
definitions of impact is that the antagonist would want to maximize the impact, whereas 
the defender aims at minimizing it. 
    In this work, two quantities are used to define the impact of an attack to the network 
system depending on the hazard intensity and speed of propagation as well as on the 
distribution of persons and/or entities on the network nodes (Zio and Rocco 2008): 

Time To Reach All network Destination nodes (TTRAD): it is the time that 
it takes for the hazard to propagate to all nodes of the network. From the point 
of view of a security protection scheme, short times of propagation are to be 
avoided. This measure bears some similarities with the 'all-terminal network 
reliability', often used in network reliability analysis.  
Average Number of Affected Persons (ANAP) or Average Number of 

Affected Entities (ANAE): it is the average number of people or entities which 
are affected by the propagation of the hazard through the network. From the 
point of view of the network protection, the goal of the decision maker 
responsible for the safety investment is to minimize the number of affected 
persons and/or entities. In the face of the uncertainty in the actual consequences 
of an attack, due to uncertainties in the hazard propagation timing and 
mechanisms, the average impact, in terms of numbers of persons and/or entities 
affected by the attack, is taken as the representative value. If most of the 
persons and/or entities which are potential targets of the attack are gathered 
near the node where the attack begins, the number of persons and/or entities 
affected is likely to be large, in which case the ANAP and/or ANAE values 
would be large. Conversely, if most persons and/or entities are distributed far 
from the point of attack, the ANAP or ANAE would take small values. 

The ANAP (ANAE) measure fully captures the negative consequences from the impact of 
an attack, albeit on average because of the uncertainties associated to the hazard 
propagation and effects. Yet, when analyzing alternative network protection strategies, the 
available time for emergency action may become relevant. Hence, the need to consider 
also a measure of the propagation timing, e.g., the TTRAD. For example, from the point 
of view of the protection or mitigation strategy effectiveness, a scenario of attack that 
affects on average 1000 persons (as captured by the ANAP measure) is considered worse 
if the time that it takes for them to be affected by the hazard is short (as captured by the 
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TTRAD measure) since the time to curtail the attack or mitigate its effects would be short 
as well. 
 
2.2     Hazard Propagation Modeling by CA 

 
To model the hazard propagation through the network, under the limiting assumptions 
defined in the previous Section, a Cellular Automata approach has been undertaken. CA 
are mathematical models of dynamic systems. The dynamics of CA unfolds at discrete 
time steps on a discrete lattice of cells L, typically assumed homogeneous (all cells bear 
the same properties) (Wolfram, 1985). For example, in a three-dimensional cellular state 
space the state at the discrete time t of the generic cell ijl, of co-ordinates xi, yj, zl with i,j,l 

∈ Z, is described by the state variable sijl(t). Each cell of L is a finite automaton which can 
assume one of a finite number of discrete values in a local value space S≡{0,1,2,…,k-1}.  
    The generic cell ijl interacts only with a fixed number n of cells that belong to its 
predefined local neighborhood Nijl. At the next discrete time t+1, the cell ijl updates its 
state )1( +tsijl according to a transition rule SS n →:φ , which is a function of the state 

variables at time t of the n cells in Nijl, viz., ( ) ( ) ],[1 ijlrspijl Nrsptsts ∈=+ φ . Notice that the 

homogeneity assumption implies that the functional form of the rule is assumed to be the 
same everywhere in the cellular state space, i.e., there is no space index attached to φ. 
Differences between what is happening at different locations are due only to differences in 
the values of the state variables of the local neighborhood, not to the update rule. The rule 
is also homogeneous in time. One “iteration step” of the dynamical evolution of the CA is 
achieved after the simultaneous application of the rule φ to each cell in the lattice L. The 
temporal evolution of this CA is obtained by: a) specifying the finite size of the lattice L; 
b) specifying the boundary conditions; c) specifying the initial condition 

( ) ( ) ( ) ( )[ ]0,...,0,00 21 Mssss =
�

 and d) simultaneously applying the rule φ to each of the L 

lattice cells, in an iterative manner.  
    For example, consider a network of m binary nodes whose function is to deliver a 
given throughput from a source S to a destination node D (Rocco and Zio 2005).  
    Within a CA computational scheme, each node i is mapped into a spatial cell whose 
neighborhood Ni is the set of network elements which provide their input to it. The state 
variable si of cell i is binary, assuming the value of 1 when node i is operating (active) and 
of 0 when not operating (passive). Initially all the cells state values are passive. 
    The hazard propagation problem analyzed in this paper must take into account that 
the activation of a node is delayed by the time required to propagate the attack from node 
to node. Hence, the CA becomes dynamic. Indeed, a cell is activated if it is connected to 
and receives input from at least one active cell or node in its neighborhood. When 
accounting for the hazard propagation process, the cell activation concerning the hazard 
also depends on the time required to propagate the attack: the arrival time of the 
propagated attack is determined as the sum of the current time plus the time delay. If 
several nodes can propagate the attack to a given node, the arrival time of the attack at 
such node is determined by the minimum of the times of propagation from all connected 
nodes in its neighborhood.  
    Assume now that the generic connecting element ( arc ) ji from node j to i can be in 
two states, active ( 1)( =tw ji

) or passive ( 0)( =tw ji
). The ji arc state variable )(tw ji
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defines the “operational” state of the arc. Initially all 0)( =tw ji
. As soon as node j is 

reached by the attack, the state of )(tw ji changes from 0 to 1, for t = t + TDji.  

    The transition rule governing the evolution of the generic cell i consist of the 
application of the following rule: 

         )](...)()([)( twtwtwts riqipii ∨∨∨=  , p,q,..r ∈ Ni              (1) 

    To account for the time to reach every node in the network, an additional node is 
introduced that is activated only when all nodes are activated. Finally, to account for the 
uncertainties in the time delays of hazard propagation, these are assumed to be distributed 
according to predefined probability distributions which are repeatedly sampled by Monte 
Carlo simulation (Marseguerra and Zio, 2002) and for each set of sampled values the CA 
propagation model is run (Zio and Rocco, 2008). 
 

3.      Multiple Objective Optimization 

3.1     Formulation  

In all generality, a Multiple-objective Optimization problem (MO) considers a vector F(x) 
of objective functions fi(x), i=1,2,…,k, possibly under specified equality (h(x)) and 
inequality (g(x)) constraints:  

 
Opt [F(x) =(f1(x), f2(x), …, fn(x))t] 

s.t.: gj(x) ≤ 0, j=1,2,..,q; hj(x) = 0, j=1,2,..,r  (q + r = m) 
where  

x=(x1, x2, …, xn)
t ∈ X is the vector of decision variables, and X is the feasible domain. 

 
    The solution to a MO can follow two different approaches. The first treats the MO 
problem as it is, looking for solutions which are simultaneously optimal with respect to all 
specified criteria (e.g., minimize ANAP and maximize TTRAD), in terms of dominance 
and Pareto-optimality; the second approach transforms the original MO into a set of 
single-objective optimization problems to be solved sequentially and then jointly 
represented (Martorell et al. 2004, Ramírez-Rosado and Bernal-Agustín 2001). The 
former approach is here undertaken within a heuristic scheme of optimality search based 
on an evolutionary algorithm. 
 
 
3.2     Multiple Objective Evolutionary Algorithms 

 
Multiple-Objective Evolutionary Algorithms (MOEA) are evolutionary algorithms 
especially tailored to deal with multiple-criteria problems. They merge the potentiality of 
metaheuristics with the principles of multi-criteria decision-making, thus yielding 
algorithms of outstanding capabilities. MOEA are able to deal with non-continuous, non-
convex and/or non-linear spaces, as well as problems whose objective functions are not 
explicitly known (e.g., the output of Monte Carlo simulation runs). State-of-the-art MOEA 
comprises very efficient optimizers like SPEA2 (Zitzler et al. 2001), PAES (Knowles and 
Corne 2000), PESA-II (Corne et al 2000) and NSGA-II (Deb et al 2001), among others. 
    Basically, modern MOEA make multiple iterations of search for the optima following 
the evolutionary principles of genetic algorithms, simultaneously handling sets of optimal 
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(non-dominated) solutions instead of single optima. During the process, non-dominated 
solutions are probabilistically favored over dominated ones through different 
implementation strategies characteristic of the optimizer. Furthermore, these algorithms 
allow for the incorporation in the search of elitism by means of a secondary or external 
population of non-dominated solutions: when performing the recombination of solutions 
currently available at a given iteration step (e.g., by ‘genetic’, ‘evolutionary’ operations 
such as selection, crossover, mutation), to generate the new candidate solutions for the 
successive step in the search, a fraction of the solutions to be recombined are taken from 
the elitist population so that the generated new solutions drive more effectively the search 
towards the Pareto frontier, i.e., the set of overall non-dominated solutions. 
 

4.      MO Optimization of the Protection of a Network System from Hazard 

Propagation: Two case Studies 

As previously stated, the issue of security risk assessment regards “a malevolent 
intelligence directed towards maximum social disruption” (Apostolakis and Lemon 2005). 
In this view, it must be expected that an attacker would choose attack those targets that 
maximize the amount of harm delivered. Adopting a multiple-objective optimization 
perspective, the attacker would want to arrive at the identification of a set of optimal 
points of attack in the network which are non-dominated with respect to the multiple-
objectives defining the impact of the attack. The defender viewpoint to contrast such 
situation entails first the assessment of the vulnerabilities of the network system by 
‘imagining’ ‘How can someone make something go wrong?’, so as to identify all the 
possible scenarios (Garrick 2002, Kaplan 1997, Kaplan and Garrick 1981) and then 
‘questioning’ ‘How can he or she maximize the havoc?’, so as to identify the protective 
actions to take in order to minimize the maximal possible damage. 
    In practice, the nature of the protections which can be implemented on a network 
system is strongly dependent on the type of system under consideration. For example, in 
water distribution networks the attacks may be avoided or rejected by single surveillance 
of some critical nodes of the network and the propagation may be curtailed by interrupting 
selected lines of propagation (Skolicki et al. 2006). 
    Nevertheless, the number and nature of the protective actions that can be effectively 
implemented in practice is constrained by many factors, namely economic, technical or 
political among others. Assuming for simplicity that these constraints are such to allow 
protecting only one single attack point, the question is which one should be protected. If 
we are confident that a ‘rational’ attacker would target the non-dominated points 
maximizing the damage, any rational protection scheme should aim at the minimization of 
the maximal impact, within a so-called min-max policy. For the specific measures of 
impact here adopted, ANAP and TTRAD, the min-max decision-making problem amounts 
to finding the node np to be protected (see Salazar 2008): 









∧= TTRADANPAn
apap nnnn

p minmaxmaxminarg  

where indexes p and a indicate the nodes to protect and to attack, respectively.  
    Notice that the min-max criterion is not the only criterion applicable to decide where 
to place the protection, although it seems to fit best to the management of high-
consequence events and is considered “particularly appropriate in the design of robust 
military system” networks (Shier 1991). Moreover, the min-max is the typical criterion 
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adopted for optimizing the robustness of discrete domain systems (Salazar 2008, Salazar 
et al. 2006). 
    In the MO problem at stake, the min-max criterion for guiding the decision on where 
to place optimally the protection does not lead to a single node selection as one might 
think, but to a non-dominated set of nodes forming the Pareto frontier. Then, upon the 
protection of a given node it is possible to analyze the reduction in the impact of an attack 
to the network by looking at the displacement of the Pareto frontier towards the defender's 
ideal point (∞, 0) in the (TTRAD, ANAP) plane of attack impact, i.e., the point with 
maximum TTRAD (infinite time) and minimum number of entities affected (no entity 
affected). The amount of displacement between the non-dominated Pareto frontiers of the 
unprotected system and the protected one gives an insight of the actual reduction in the 
impact of network attacks that can be achieved with the protection of each individual 
node.  
    To gain insights on the feasibility of the approach delineated in this paper to tackle 
the problem of network protection within a MO formulation, two case studies are 
considered. The first is related to a 52-node network (Manzi et al. 2001) and the second to 
a 332-node network (The topology corresponds to the US airports network (332 nodes and 
2126 bi-directional links [http://vlado.fmf.uni-lj.si/pub/networks/pajek/data/gphs.htm]). 
Through their realistic size, these networks computationally challenge the systematic 
vulnerability analysis procedure proposed. On the other hand, all other realistic aspects of 
network operation are neglected in the modeling of the hazard propagation, as underlined 
at the beginning of Section 2.1. 
    As mentioned above, the protection strategy considered assumes that budget 
constraints are such to allow the protection of only one single node in the network and the 
protection results in its immunisation, i.e., the protected node does not propagate further 
the hazard. 

NETWORK 1 

Let us assume that all the network nodes are equally vulnerable, i.e., the cost and the 
difficulty in delivering the attack is the same for all of them, so that the probability of a 
node being attacked only depends on the impact resulting from such attack on the whole 
network.  
    As for the uncertainties characterizing the propagation of the hazard and its 
consequences, delays in the time of propagation through the network links are assumed, 
without loss of generality, to be discrete integer random variables which follow a uniform 
distribution U(0,10). Furthermore, the numbers of persons affected at the different nodes 
are also assumed to be uniformly distributed. 
For the sake of simplicity only scenarios made by attacks on individual nodes in the 
network are considered. A total of 500 Monte Carlo evaluations of the CA-based hazard 
propagation model are performed to assess the consequences of an attack, while 
accounting for the uncertainties in the hazard propagation and consequences. 

Single Objective Analysis 

Let us first consider the protection of the network from the consequences of the 
impact of an attack as measured by the ANAP, with no consideration given to the time 
available for stopping the hazard propagation, i.e., the TTRAD. Fig. 1a (light shaded 
trend) shows the ANAP values resulting from the attacks of each of the constituent nodes 
of Network 1 ‘unprotected’. The maximum value is attained by attacking node 24. The 
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profile of the maximum impact is also shown in Fig. 1a (white trend), in terms of ANAP, 
on Network 1 in which one single node (indicated on the x-axis) at a time is protected, i.e., 
hazard propagation stops at that node. The numerical results of the maximal ANAP given 
the protected node have been obtained generating profiles similar to that of the 
unprotected network, but with one network node at a time protected. The actual reduction 
in the maximal ANAP attainable when introducing a protection is dotted area in Fig. 1a.  
    The information gained allows rationally devising the protection of a single node so 
as to minimize the maximal impact. In the case under consideration, this would lead to 
allocating the protection to node 18. 
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Figure 1: Network 1: a) ANAP profile for the unprotected; b) Attacker’s efficient frontier 
(Rocco et al. 2007) 

Multiple Objective Analysis 

Let us turn now to considering the effectiveness of the protective action against hazard 
propagation also with respect to the time available for action implementation, as measured 
by TTRAD. With respect to the previous single-objective analysis focused only on the 
ANAP measure, the MO analysis extended to the TTRAD measure enriches the 
information given to the DM in that the inclusion of the TTRAD measure provides him or 
her with additional elements which may be useful for the identification of the best 
protective actions. Indeed, the TTRAD provides an indication of the available reaction 
time against the attack.  
    Figure 2a represents the two-objective consequence of each hazard propagation 
scenario following an attack to the various nodes of the network as points on the two-
dimensional plane of the objective functions TTRAD and ANAP. Each point depicted 
represents the TTRAD and ANAP values resulting from an attack to one of the nodes in 
the unprotected network. The antagonist’s aim of finding the set of target nodes of 
maximum impact amounts to finding among the points in Figure 2a those on the Pareto 
frontier which are non-dominated with respect to maximizing the ANAP and minimizing 
the TTRAD. In the case under consideration, nodes 22 and 24 represent optimal targets as 
their attack would lead to the largest damage in terms of TTRAD and ANAP.   
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Figure 2: Network 1:a) Selected antagonist's Pareto frontiers for different individual node 
protections; b) Antagonist's efficient frontiers when node 24 is protected (labels represent nodes) 

 
Figure 2b shows some selected Pareto frontiers for protected network configurations found 
by the min-max approach illustrated previously. The results can be analyzed either by 
visual inspection or introducing appropriate metrics. The first way is not applicable in 
many practical situations. In the case here of interest, the application of the ε-indicator 
(Laummans et al 2002a, b) leads to conclude that the protection of nodes 18, 22 and 24 
would minimize the maximal impact, although it does not allow to differentiate which one 
among these nodes is best to protect. Hence, the rational contribution of the DM is crucial 
for choosing the final alternative. For instance, if node 24 is selected as the one to deserve 
protection, an attack on nodes 21, 18, 26 or 22 would produce the maximal impact on the 
protected network (Figure 2b). These nodes are topological neighbors in Network 1. This 
additional insight points at a whole section in the topology of the network that might 
deserve surveillance in order to reduce the risk of incurring in maximal damage from an 
attack in this area. If the resources were available to protect all the 5 nodes in such area, 
the maximal impact produced (by attacking nodes 25, 27 or 35) would be distinctly lower 
than that resulting from the sole protection of node 24. 
 

NETWORK 2 

In this case study, the proposed MO approach to network vulnerability analysis and 
protection optimization is challenged by a network of large size (Fig. 3a). However, 
except for the topology, no other physical aspect of the work relates to the behavior of the 
real network.  
    Again, time delays in the hazard propagation through the network are assumed, 
without loss of generality, to be distributed according to a discrete uniform distribution 
U(0,10). The numbers of persons or entities affected at the different nodes are distributed 
as a discrete uniform distribution U(10,40). The number of MC samples to give due 
account to such uncertainties is 500. 
    As in the previous case study, the analysis is restricted to considering scenarios of 
one attack on a single node at a time and the number of nodes which can be protected is 
one. A complete enumeration of 3322=110224 scenarios was considered by combining the 
attack and protected nodes. For each protected node, the hazard propagation on the 
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protected network due to the attack of each node is analyzed by CA-MC simulation and 
the non-dominated nodes, with respect to maximizing ANAP and minimizing TTRAD, are 
determined. The Pareto frontier obtained constitutes the worst-case, given the protection 
of that particular node. Finally, among the 332 Pareto frontiers generated in 
correspondence of the protection of the 332 nodes, one at a time, the one that is farthest 
from the reference Pareto frontier of the unprotected network provides the most robust 
protection choice.   
    Fig. 3b shows some selected Pareto frontiers, including that of the unprotected 
network. The protection of node 8 leads to the most robust choice in the sense that the 
reduction in the consequences is maximal, under the assumption of attacking only one 
single node.  

 
Figure 3: Network 2: a) Graph; b) Pareto frontiers for single attacks at different nodes (labels 
beside the points indicate the nodes of attack). 
 
An additional insight that comes out of this analysis is the identification of special nodes 
(cut-nodes) whose removal disconnects the network, generating islands. As a 
consequence, if one of these nodes is protected, no matter what node the antagonist 
attacks, the network can never be affected in its entirety. Conversely, an attack on an 
unprotected cut-node will cause the immediate disconnection of the network, with the 
concomitant effects; something that could be appealing under certain circumstances. 
Sound interpretations from both the defensive and the antagonistic viewpoint of this issue 
and its incorporation into the presented methodology is a subject open to further research. 

5.      Conclusions and Further Research 

The work in this paper has concerned the application of a multiple-objective approach to 
the vulnerability analysis of a network system exposed to terrorist attacks of uncertain 
consequences, for the optimization of its protection.  
    The approach is founded on the power of cellular automata for modeling the 
dynamics of hazard propagation, Monte Carlo sampling for handling the associated 
uncertainties and Multiple-Objective Evolutionary Algorithms for searching optimal 
solutions of network protection. 
    The viewpoint adopted for addressing the problem of system protection is consistent 
with the general probabilistic safety assessment and management framework which passes 
through the identification of accident scenarios that may keep a system from 
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accomplishing its mission and the quantification of the likelihood and consequences of 
such scenarios (Garrick et al. 2004, Kaplan 1997, Kaplan and Garrick 1981).  
    The potentials of the systematic procedure of analysis of the protection schemes are 
demonstrated on two networks of realistic size. Several insights can be drawn. On one 
side, the methodological approach is of general application, provided that the proper 
propagation model is introduced and the adequate objectives defining the attack’s impact 
against which to protect are defined. On the other side, the computational efforts required 
by the approach may limit its applicability. In the case studies analyzed, for simplicity the 
scenarios considered have been restricted to attacks only on one node at a time and the 
hazard propagation model has been highly simplified with respect to the physical 
characteristics of real networks. Extensions to multiple attacks and protection actions on 
networks of realistic size, like the ones here considered, could lead to a combinatorial 
explosion in the number of alternative protection strategies to be evaluated as potential 
optimal solutions and if the evaluation of the hazard propagation model is time-consuming 
even the ‘intelligent’ MOEA here adopted for the search of solutions could run into 
problems.  
    Hence, as future line of methodological research aimed at reducing the computational 
effort involved in determining the optimal, robust protective scheme, it could be 
interesting to obtain a priori information on the most vulnerable nodes of the network 
through the use of fast ‘screening analysis’, e.g. those which rely on the so called centrality 
measures to quantify the topological relevance of the network nodes. Similarly, the role of 
cut-nodes in the determination of the robust protective scheme must be investigated 
further. 
    Finally, the procedure of vulnerability analysis proposed should always be 
corroborated by the attentive interpretation by the decision maker of the insights thereby 
gained, as this could lead to identifying neighborhoods of nodes to be optimally protected 
for minimum attack impact. 
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