
 
 
 
 
 
 
 

Nest-climatic factors affect the abundance of biting flies and their 
effects on  nestling condition 

 

Josué  Martínez-de la Puente*, Santiago Merino, Elisa  Lobato 1, Juan  Rivero-de Aguilar, 
Sara  del  Cerro, Rafael  Ruiz-de-Castañeda, Juan  Moreno 

 
Departamento de  Ecología Evolutiva, Museo Nacional de  Ciencias Naturales (CSIC), J. Gutiérrez Abascal 2, E-28006 Madrid, Spain 

 
 
 

eywords: 
Biting midge Culicoides 
Black flies 
Ficedula hypoleuca 
Hosteparasite interactions 
Temperature 
Vectors 

a  b  s  t  r  a  c  t   
 
The  first step in  the establishment of a hostebiting fly relationship is host location. While a number of 
studies highlight the role of host emitted products as important cues affecting host location by biting flies, 
the role of  host temperature is far  from clear.  We  investigated the role of  different nest microclimatic 
variables affecting the interaction between pied flycatchers and two biting flies: black flies and biting 
midges. Biting midge abundances increased with temperature inside the nest, supporting the potential 
importance of nest temperature as a cue  used by insects to localize their hosts. The possibility that biting 
fly infestations were associated to ecological conditions in  the vicinity of  the nests is  also discussed. 
Furthermore, we   found a  negative association between  nestling weight (including tarsus length as 
a covariate in the analyses) and the interaction between the abundance of biting midges and the presence/ 
absence of  black flies in  nests. The  potential negative effect of  these ectoparasites on  nestling weight 
(condition index) and potential differences in the bird phenotypic/genetic quality associated with nest site 
choice and parasite infestations are considered. 

. 
 
 
 

1.  Introduction 
 

Location of the hosts by biting flies is a complex and active 
behavioural task that enhances the probability of contact of hae- 
matophagous insects with their hosts (Sutcliffe, 1986). This behav- 
iour could be  divided into three phases: (i)  appetitive searching, 
(ii)  activation and orientation and (iii)  attraction  (Lehane, 2005), 
although the definition of these phases could vary  between authors 
(Kettle, 1995). In addition to vision and smell, other stimuli including 
heat and humidity become available to the insect in close  proximity 
to their hosts and are  also  involved in the biting flies’ host-seeking 
behaviour (Gatehouse and Lewis, 1973). 

Biting  insects may respond to the heat emitted by the host or to 
the thermal gradient between insects and hosts (Lehane, 2005). 
There are  clear evidences for the role of thermoreceptors of blood- 
sucking arthropods in  responses to thermal stimuli related to the 
presence of  their hosts (Howlett,  1910; Nigam and Ward, 1991; 
Guerenstein and Lazzari,  2009). However,  the importance of host 
temperature or  humidity on  host location is far  from clear for  the 
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vast majority of blood-sucking insects, in contrasts to the well-know 
role of chemical cues (Guerenstein and Lazzari,  2009). In the case  of 
biting flies attacking wild birds the difficulties for sampling insects 
in  avian nests (but see  two recent descriptions of  easy  sampling 
methods by  Tomás  et al.,  2008a; Votýpka et  al.,  2009) do  the 
research on these factors even more complicated. 

Biting  midges (genus Culicoides,  Diptera: Ceratopogonidae) and 
black flies (Diptera: Simuliidae) are  two of the main haematopha- 
gous insects attacking birds under natural conditions (Kettle, 1995; 
Malmqvist et  al.,   2004;  Martínez-de  la   Puente  et  al.,   2009a, 
2009b; Votýpka et al.,  2009). Among these  insects only   females 
feed on animal blood, affecting hosts directly by draining resources 
and  causing  physical harassment  and  indirectly  as   vectors  of 
multiple pathogens (Bennett, 1961; Valkiū nas, 2005). In spite of the 
few studies on the effects of biting fly attacks on wild birds, there are 
clear  evidences  supporting  the  role  of   biting  flies  increasing 
mortality in immature birds (Hunter et al., 1997; Smith et al., 1998). 
These adverse effects on nestlings may be due to the direct impact of 
insect attacks but also  by their effects affecting parental decisions, 
including nest desertion or reduction of parental provisioning rate 
(Bukaciński and Bukacińska, 2000). 

Here, we  investigated the effects of two microclimatic factors, 
nest temperature and humidity,  potentially affecting the relation- 
ship between biting flies and avian hosts. To that end, we studied the 
interaction between pied flycatchers Ficedula   hypoleuca and two 
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different haematophagous insect groups, biting midges and black 
flies, after controlling for the potential effect of other variables such 
as  brood size  and hatching date (see  Martínez-de la Puente et al., 
2009b). Also, we  investigated the potential negative effect of biting 
flies on  nestling condition after controlling for  the confounding 
effect of rearing conditions (Dawson et al., 2005b; Pérez et al., 2008). 

 
2.  Methods 

 
2.1.  Host  population 

 
This  study was conducted during the spring of 2008 in  a pop- 

ulation of  pied flycatchers F. hypoleuca breeding  in  nest-boxes in 
a Pyrenean oak  Quercus pyrenaica forest located in  Valsaín (Central 
Spain, 40o 53074 N, 4o 010  W, 1200 m.a.s.l.). All nest-boxes were hung 
from branches at about 4 m above the ground, thus, avoiding potential 
height differences in avian exposure to insect attacks (Fallis and Smith, 
1964). Periodical visits in the course of the breeding season allowed us 
to record hatching date and brood size  of birds at each nest. 

 
2.2.  Nestling  measurements 

 
At the age of 12 days, nestlings were weighed with a Pesola spring 

balance to the  nearest  0.1   g  and  tarsus  length  was measured 
with a digital calliper to the nearest 0.01 mm. The average of nestling 
body mass and tarsus length per  brood was calculated. Mass  and 
tarsus length were not significant correlated (Simple regression: 
F1,44  ¼ 2.55; p ¼ 0.12).  Nestling mass was corrected by size  by using 
tarsus length as a covariate in further analyses (see Biard et al., 2005; 
Suárez et al., 2005; Shapiro et al., 2006 for a similar procedure). 

 
2.3.  Insect  collection 

 
In  order  to  capture  biting flies  visiting nest-boxes,  we   put 

inside and close  to the roof of  each nest-box a  plastic Petri dish 
(8.5  cm  diameter; 56.7  cm2) with a  thinly spread layer of  body 
geleoil (Johnson’s© baby chamomilla,  Johnson & Johnson,  Dussel- 
dorf,  Germany) when nestlings were 9 days old  (see  Tomás et al., 
2008a for a validation and a thorough description of the method of 
insect capture).  Petri dishes were collected 3 days later.  Although 
daily changes of Petri dishes could provide data on daily variation in 
biting fly activity,  this possibility was discarded to reduce avian 
disturbance during bird reproduction that could induce nest deser- 
tion.  According  to  a  previous study,  nest-boxes without broods 
attract almost no  biting flies (Tomás  et al., 2008a). A stereoscopic 
microscope (Motic K700; 46.5× magnification) was used to quantify 
the abundance of  black flies and biting midges collected at  the 
bottom of each Petri dish. 

 
2.4.  Rearing  conditions in the  nests  and  weather data collection 

 
A HOBO data logger (Onset Computer Corporation, Pocasset, 

Massachusetts, USA) with a flexible sensor was placed in each nest- 
box  to  record nest temperature (o C) and nest absolute humidity 
(gm/M3) with a  frequency of  2  min during the 3-day period of 
insect  capture.  Data   loggers were inserted between the  nest- 
material and the inner wall  of the nest-box, close  to the chicks but 
avoiding any  contact with them. The  average of nest temperature 
and nest humidity for the 3 days of sampling was calculated. 

The Spanish National Meteorological Institute provided daily 
maximum and minimum temperature data from the closest meteo- 
rological station located in  Segovia, approximately  9  km  from the 
study area. In previous studies, data from this meteorological station 
have been used to find clear effects of  weather on  several factors 
related to avian biology and birdehaematophagous insect interactions 

carried out in  the same area (Sanz  et al., 2003; Lobato et al., 2006; 
Martínez-de la  Puente et al.,  2009b).  Environmental  temperature 
was then estimated by calculating the averages of the maximum and 
minimum temperatures respectively for each insect sampling period. 
Furthermore,  the temperature gradient between the nest and the 
environment was estimated in two different ways. In the case of biting 
midges, the temperature gradient was measured as  the difference 
between temperature in the nest and the minimum environmental 
temperature because most of the biting midges are  considered 
crepuscular or nocturnal (Lehane, 2005) with a pronounced burst of 
activity at sunset during spring, summer and autumn (Kettle et al., 
1998). However, in the case  of black  flies, the temperature gradient 
between the nest and the maximum environmental temperature was 
calculated because, contrary to biting midges, most adult black  flies 
are essentially diurnal, usually showing a maximum activity in  the 
early morning and afternoon (Lehane, 2005; McCreadie et al., 1985; 
Grillet et al.,  2005). Although there are some reports of  nocturnal 
black fly activity, the level  of activity detected in these cases is low 
(McCreadie et al., 1985) and there are not evidences of  black flies 
attacking avian hosts after dark (Bennett, 1960). 
 
2.5.  Statistical analysis 
 

Statistical analyses were conducted using Statistica (version 6.0, 
StatSoft, Inc. 2001). In order to investigate the variables affecting the 
temperature in avian nests, the Akaike’s second-order  Information 
Criterion (AICc) was used for ranking the fit of models to the data 
(Burnham and Anderson, 1998) including hatching date, brood size 
and maximum and minimum external temperatures as continuous 
variables. The same procedure was employed to test for the effect of 
brood size,  hatching date, nest temperature, nest humidity and the 
temperature gradient (the difference between the nest temperature 
and the environmental minimum temperature) on  the abundance 
of biting midges. We also used AICc to identify the ranking of models 
to the presence/absence of  black flies  in  avian nests,  including 
brood size,  hatching date, nest temperature, nest humidity and the 
temperature gradient (the difference between the nest temperature 
and the environmental maximum temperature) on  the abundance 
of biting midges.  We  considered that models with a difference in 
AICc (ΔAICc) of less  than two units (DAIC < 2) were similarly sup- 
ported by the data. In order to quantify the relative importance of 
individual variables we  calculated variable weights by summing the 
Akaike  weights for each model containing the variable of interest 
(Johnson and Omland, 2004). All models obtained in  the analyses 
(including those with a difference in  AICc higher than two units) 
were considered to get variable weights. 

Finally,  to  investigate the variables affecting nestling mass, we 
included in  a General Regression Model (GRM, lineal models) the 
presence/absence of black flies as a factor and hatching date, brood 
size,  nest temperature, nest humidity, tarsus length, biting midge 
abundance and the interaction between the presence/absence of 
black flies and biting midge abundance as covariates. This analysis 
allows us to identify the role  of biting midges and black flies as well 
as their potential joint effect in affecting nestling body mass after 
control for body size  (including tarsus length as a covariate in our 
analyses). The abundance of biting midges was logarithmically 
(log10 (x þ 1)) transformed to normalize its distribution. Residuals 
of the model were tested for normality. 

In this study, we  include 21 control and 25 unmanipulated nests 
from several experiments carried out in the pied flycatcher population 
with known nest temperature and humidity. Nests treated as control 
were sprayed with water 3 times during the incubation period. 
Unmanipulated nests were visited in  the same way as  controls but 
they were not sprayed with any  product. As expected, this treatment 
conducted during the incubation period did  not modify significantly 
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Table  1 
Models (within ΔAICc < 2 units) explaining the abundance of biting midges in pied flycatcher nests using the Akaike’s second-order Information Criterion (AICc).  Variables 
included in each model were marked with “X”. A total of 46 nests were included in this study. 

 

Model Variables     AICc ΔAICc Akaike weight 
 Brood size Nest humidity Nest temperature Hatching date Temperature gradient    

1 X X X   61.55 0 0.24 
2 X  X   62.14 0.59 0.18 
3 X X X X  63.36 1.81 0.10 
4 X X X  X 63.53 1.98 0.09 

 
nest temperature or humidity during the nestling period (at the age of 
nestlings of 9 days) when insects were captured (all p > 0.15) so we do 
not include this variable in  further analyses. No experimental 
manipulations were conducted during the nestling period. 

 

 
3.  Results 

 
Overall 1761 biting midges (mean abundance T SD ¼ 38.3 T 52.4; 

prevalence ¼ 0.91; range ¼ 0e227) and 78  black flies (mean 
abundance T SD  ¼  1.7   T 2.5   black flies;  prevalence  ¼  0.54; 
range ¼ 0e10) were captured in  46  pied flycatcher nests. Among 
them, one nest was infested only by black flies, 18 nests were infested 
only by biting midges and in 24 nests we collected both biting midges 
and black flies. In three additional nests we did not collect biting flies. 

We   obtained 15  different models explaining the  temperature 
inside nests, with one model within a difference of less than two units 
(DAIC < 2) with respect to the best model. The model with the lowest 
AICc (AICc ¼ 160.07; w ¼ 0.40) included two variables, environmental 
minimum temperature and brood size.  The  other competing model 
(AICc ¼ 160.72; w ¼ 0.29)  included environmental minimum 
temperature, brood size  and environmental maximum temperature. 
Overall, environmental minimum temperature (w ¼ 0.99)  and brood 
size  (w  ¼ 0.92)  were the variables with higher weights explaining 
temperature  inside nests, followed by  environmental maximum 
temperature (w ¼ 0.42)  and hatching date (w ¼ 0.24). 

We  found four  (DAIC < 2) competing models out  of 31  models 
explaining the abundance of biting midges in pied flycatcher nests 
(Table  1). Nest  temperature (w ¼ 0.89)  and brood size  (w ¼ 0.85) 
had the higher weights explaining the abundance of biting flies in 
avian nests followed by nest humidity (w ¼ 0.58),  the temperature 
gradient (the difference between the nest temperature and the 
environmental minimum temperature) (w  ¼ 0.34)  and hatching 
date (w ¼ 0.33).  Higher abundances of biting midges were found in 

 

 
 

Fig. 1.  Relationship  between the abundance of Culicoides biting midges  (log10 trans- 
formed) and the temperature inside pied flycatcher nests. Regression  line  is  shown 
(r2 ¼ 0.44; p < 0.001; y ¼ —0.63 þ 0.10*x). 

warmer  nests  occupied by   larger  broods  (Fig.  1).  In  addition, 
the abundance of  biting midges was positively associated with 
nest humidity (Fig. 2).  Furthermore,  we  obtained four  competing 
models from the total of 31 models to explain the presence of black 
flies in pied flycatcher nests (Table  2). The variable with the highest 
weight  was brood size   (w  ¼ 0.99)   followed by  nest humidity 
(w ¼ 0.39),  hatching date (w ¼ 0.38),  nest temperature (w ¼ 0.31) 
and temperature gradient (w ¼ 0.26).  Black flies were more 
frequently found in nests with larger broods. 

Average  nestling mass was significantly associated with the 
interaction between the abundance of biting midges and the pres- 
ence/absence of black flies after control for  the effect of different 
variables (Table  3).  Nestling mass decreased as  the abundance of 
biting midges increased, with a more pronounced effect on nestlings 
suffering also  the attack of black flies (Fig. 3). In addition, nestling 
mass was significant and positively associated with hatching date 
and tarsus length and negatively with nest temperature (Table  3). 
We  did  not find any  significant association between nestling mass 
and the rest of the variables included in the model (Table  3). 
 

 
4.  Discussion 
 

Rearing conditions  in  the nest affect the interaction between 
avian hosts and nest-dwelling ectoparasites (Eeva  et al., 1994; Heeb 
et al.,  2000; Dawson et  al.,  2005a).  However,  conclusions  from 
these studies are difficult to apply to the case of biting flies due to the 
higher mobility and independence of these insects from their hosts 
as compared to nest-dwelling ectoparasites. According to our 
correlative results, it is possible that microclimatic conditions were 
used directly as cues or indirectly as factors contributing to the spread 
of other host attractants used by  biting flies to detect their hosts. 
Previously, Howlett (1910) reported that females of the mosquitoes 
Culex fatigans and Stegomyia scutellaris were attracted to heat even if 

 

 
 
Fig. 2.  Relationship  between the abundance of Culicoides biting midges (log10 trans- 
formed) and humidity inside pied flycatcher nests. Regression line  is shown (r2 ¼ 0.22; 
p ¼ 0.001; y ¼ 0.03 þ 0.12*x). 
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Variables F1,37 P 
Brood size 1.22 0.28 
Hatching date 4.75 0.04 
Nest temperature 11.42 0.002 
Nest humidity 1.03 0.32 
Tarsus length 11.88 0.001 
Biting midge abundance 0.22 0.64 
Presence/absence of black flies 3.12 0.09 
Biting midge abundance × presence/absence of black flies 5.04 0.03 

 
r2      0.41,  p < 0.001). 

 
Table  2 
Models (within ΔAICc < 2 units) explaining the presence/absence of black flies in pied flycatcher nests using the Akaike’s second-order Information Criterion (AICc). Variables 
included in each model were marked with “X”. A total of 46 nests were included in this study. 

 

Model Variables     AICc ΔAICc Akaike weight 
 Brood size Nest humidity Nest temperature Hatching date Temperature gradient    

1 X     57.00 0 0.18 
2 X X    57.17 0.17 0.16 
3 X   X  57.76 0.76 0.12 
4 X  X X  58.53 1.53 0.08 

 
this stimulus was not accompanied by other cues.  These conclusions 
were later supported by Marchand (1918) and more recently Kline 
and Lemire (1995) found also  support for the role of heat affecting 
the host-seeking behaviour of  different flies including the biting 
midge Culicoides  furens  Poey.  According to our results nest humidity 
may also  partially affect the abundance of  biting midges in  avian 
nests, although its effect is clearly much lower than the effect of nest 
temperature. Alternatively, it is possible that the association found 
between the abundance of biting midges and nests microclimatic 
conditions could be due to the ecological conditions in the vicinity of 
the nests and not directly to nest temperature or humidity. However, 
some important characteristics of nests location such as the distance 
to water sources do not affect the abundance of biting midges in blue 
tit nests (Tomás  et al., 2008a). It  is clear that host related factors, 
including brood size and hatching date, as well as weather conditions 
during the insect sampling period are  of major importance to influ- 
ence the abundance of  biting flies in  avian nests (Martínez-de la 
Puente et al., 2009a, 2009b). Furthermore, our  results suggest that 
nest temperature did not affect significantly the presence/absence of 
black flies in avian nests. Contrary to biting midges, black flies have 
diurnal activity (Lehane, 2005) implying that host-seeking behaviour 
is  activated when differences between environmental and nest 
temperatures are  lower. Diurnal activity imply other advantages for 
detecting hosts such as the availability of visual cues, given that there 
are  better light conditions to detect colours and higher host mobility 
during the day  than at  night  (Lehane, 2005). In  addition,  because 
during sunny hours there are  reduced background levels of atmo- 
spheric carbon dioxide (Lehane, 2005), it could be possible that 
chemicals also play  a more important role in host detection by black 
flies than thermal cues.  This conclusion is supported by the study of 
Fallis  and Smith  (1964),  showing that  the ornithophilic simuliid 
Simulium rugglesi was mainly attracted by an extract from birds plus 
CO2 or CO2 alone, but much less  by heat. 

We  also  found a significant negative association between body 
mass (including tarsus length as a covariate in the analyses in order 
to control for the effect of body size)  and the interaction between 
the abundance of biting midges and the presence/absence of black 
flies. This association could be obviously a reflection of the effects of 
biting flies on nestlings, directly by draining resources and causing 
physical harassment  but   also   indirectly  as  they are   vectors  of 

 
Table  3 
Results of a General Regression Model (lineal model) relating body mass of nestling 
pied flycatchers  Ficedula hypoleuca to brood size, hatching date, nest temperature, 
nest humidity, tarsus length, the abundance of biting midges, the presence/absence 
of black flies and the interaction between the abundance of biting midges and the 
presence/absence of black flies (model: adjusted r2 ¼ 0.41, p < 0.001). 

several  pathogens.  Overall, these  effects may  lead  to   anaemia 
and other physiological damages in nestlings, finally affecting their 
general body condition and survival probability (Hunter et al., 1997; 
Smith et al., 1998; Tomás et al., 2008b). The fact that, in presence of 
black flies and abundant biting midges the pathogenic effect on 
nestling weight was higher than in nests without black flies could 
be  due to  several reasons. For  example, double infestations may 
increase the adverse effects suffered by  birds because they were 
inoculated with, and need to respond against, a higher diversity of 
antigens contained in insect salivary solutions. In fact, insect saliva 
may affect the haemostatic, inflammatory and immune responses 
of  vertebrate hosts in  different ways, thus  potentially  affecting 
the expression of  the  major  histocompatibility  complex  (MHC) 
(Currie and Hunter, 2008). Moreover, black fly saliva produces an 
 
 

 
 
Fig.  3.  Relationship  between the average of  nestling mass and the  abundance of 
Culicoides (log10 transformed)  in  (a)   nests with  black flies (y  ¼ 7.41e0.45*x)  and 

flies (y ¼ 2.05e0.08*x). Regression lines are  shown. (Model: adjusted 
(b) without black 

¼ 



   
 

inhibition of lymphocyte mitogenesis (see  review by Andrade et al., 
2005 and references therein)  with potential effects on  nestling 
condition. Additionally,  double infestations by  biting midges and 
black flies could increase multiple blood parasite infections because 
while biting midges are  the main vectors of Haemoproteus, other 
parasites  such  as   Leucocytozoon and  Trypanosoma   are   mainly 
transmitted by black flies (Bennett, 1961; Valkiū nas, 2005). These 
blood parasites infect pied flycatcher nestlings in central Spain 
(Merino and Potti, 1995; Lobato et al., 2005) and multiple infections 
could be  more virulent than  single ones (Marzal et  al.,  2008; 
del  Cerro   et al.,  2010).  Obviously, the  effects  of  the interaction 
between vectors and parasites on  birds merit further studies. 
Alternatively,   the  association  between  fly  ectoparasites  and 
nestling mass could be due to other different factors. For example, it 
could be possible that low  quality pairs (i.e. infected birds) rearing 
nestlings with lower body mass occupied nest-boxes around areas 
with  higher  abundances of  biting  midges  and  prevalences  of 
black flies. In addition, it could be  possible that these low  quality 
birds suffering higher intensities  of  infection by  parasites were 
more attractive to insect attacks. However, our  previous results do 
not support this possibility, because the abundances of biting 
midges were negatively associated with the infection status of wild 
birds (Tomás et al., 2008b; Martínez-de la Puente et al., 2009b). 

In conclusion, although correlative, our results support an  asso- 
ciation between nest temperature and the abundance of parasitic 
flying insects in avian nests. Furthermore, we  found a negative 
association between nestling condition and biting midge abundance 
in nests also  affected by black flies. 
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Valkiūnas, G., 2005. Avian Malaria Parasites and Other Haemosporidia.  CRC Press, 
Boca  Raton. 

Votýpka, J., Synek, P., Svobodová, M.,  2009. Endophagy of  biting midges attacking 
cavity-nesting birds. Med. Vet.  Entomol. 23,  277e280. 


