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Using methods from the theory of fuzzy cellular automata as formulated
over the past decade we present an analytic comprehensive derivation of
a classiftcation of fuzzy cellular automata (FCA) into four classes (1-4).
Since fuzzy cellular automata include the elementary cellular automata in
the limit, this classification can be applied to the original boolean ECA as
considered by Wolfram and others |26]. When restricted in this way we
can detive, in part, the Wolfram classiñcation scheme.
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1 INTRODUCTION

The problem of classifying a collectioti of mathematical objects is old atid
of current interest in a wide variety of fields. The starting point is to clearly
outline or define what is meant by a classification of the set. The well known
classification of ECA by Wolfram in [22-26], is based on visual attributes
of space time diagrams taken over large sets of random initial conditions.
One of the basic problems in classifying ECA is that the classification of
the 256 boolean Wolfram ECA is not well defined in a mathematical sense.
Much work went into defining the four well-known Wolfram classes (1-4)
and this encouraged further classifications in papers that have enriched our
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understanding of CA theory, e.g., [1-3, 7], [10-111. We recall briefly the
structure of Wolfram's classification theory. Starting from a randomly chosen
initial configuration a (boolean) ECA has an

1. evolution that leads to a homogeneous stable configuration (Class 1)

2. evolution that leads to periodically repeating patterns (Class 2)

3. evolution that leads to chaotic patterns (Class 3)

4. evolution that leads to complex patterns, generated by mobile interacting
structures which are relatively long lived (Class 4).

There has been some success in understanding ECA as a result and much
controversy has arisen as well. This is compounded by the fact that to the
best of our knowledge the details of this classification by Wolfram was never
published as such, yet subtle hints were given by Wolfram and collaborators
as to which class specific rules may lie [26].

In the theory of fuzzy cellular automata one fuzzifies the disjunctive normal
form (DNF) of the ECA by redefining the operations of disjunction, conjunc-
tion and tiegation so as to now build a map from the interval [0,11^ into the
unit interval. The resulting theory gives a dch theory for the iterations of
continuous maps from [0,1]"* into [0,1] (see [5, 13-14, 20]). We summarize
this construction of FCA herein for completeness.

The main question in this paper deals with the classification problem for
FCA and its role in the classification problem of ECA alluded to above. Our
approach to the problem of the classification of boolean ECA is via FCA; it
avoids the visual attributes of the dynamics of corresponding transition (space-
time) diagrams and is based solely on easily vedfiable initial conditions and
observations based upon the corresponding FCA. But first, we must redefine
the notion of rule-equivalence, as we feel that equivalent rules (called here F-
equivalent) should belong to the same class, regardless of the notion of Class
under consideration. Then we observe that F-equivalent rules are necessarily
equivalent (in the Wolfram sense). Once this is achieved we define the various
classes axiomatically with the cudous fact that exactly/oMr classes, no more,
no less, result from the definitions almost all of which contain rules that
Wolfram placed in similarly numbered classes. One cannot expect a perfect
class correspondence though and one of the known exceptions is ECA 110
which in our theory is Class 3, while it is Class 4 in Wolfram's classification.
This in itself should deserve further study.

In this sense then, we can derive an algorithm to determine the Class of an
ECA (via its related FCA) and this has been done in the case of all 256 rule
names in this paper (see the Appendices). The result is that most of the rules
known to have been classified as being in, say. Class X by Wolfram are also
in Class X in our classification.

After reviewing the basic properties of elementary and fuzzy cellular
automata we tum to the classification problem, state the theorems and their
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consequences, give a few consequences, and prove the theorems at the very
end. Finally we exhibit the tables that derive from these theorems for reference
purposes.

2 ELEMENTARY CELLULAR AUTOMATA

For the simplest introduction to this subject we refer to Wolfram's latest book
[26]. Since this is a subject of enormous current interest we need only sketch
the main definitions as it is our intention to move quickly to the case of
continuous cellular automata, the ones considered here being called fuzzy
cellular automata (or FCA). In general, a cellular automaton (CA) can be
thought of a regular uniform lattice, finite or infinite, of cells where each cell
contains a discrete variable or value. The state of the automaton at time t for
the lattice-site /, denoted by x\, is completely determined by its values in a
neighborhood of this cell. More precisely, the evolution of a CA is defined in
terms of an expression of the form

.,...,x],...,x]^^), (1)

where g is sometimes called the local rule (or rule-table or local function)
defining the CA. A {k,r)-CA is one where the lattice variables take one of
k possible values and whose evolution is of the form (1). In this paper we
are considering only (2, 1 )-CA's, usually called elementary cellular automata
(ECA for short), and their fuzzy counterparts. Since the neighborhood of
each cell consists of two other such cells and each one of these three cells
can contain at most two values (say, 0 and 1 by convention) it follows that
there can be at most 2^' such CA, that is 256 ECA's (these are also referred
to as boolean CA's). Since g maps the set of values in (0,1 )̂  to the two-point
set (0, 11, we describe the map g by looking at its values on the basic points:
(000,001,010,011,100,101,110,111)1-^ (ro,/-:,..., o ) where each r, = 0
or I. As is done traditionally, we name each rule according to the numerical
value of the binary string (r?,r(,,...,ro). That is, we name the rule via the
value of the sum:

7

Rule Name = YJ r,2'.

Since we are dealing with two values, we may express each such local rule in
a disjunctive normal form (DNF) using the binary operators and-¿nd or, [14].
That is, we can write the local rule as an expansion of ORs and of ANDs of the
3-tuples which generate a 1 under the given local rule, i.e., we can always write

-- V;|,, = , A^, :c\ (2)
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where d¡j is the j-th digit from left to right of the binary representation of i
and where jc" represents ->x (the negation of J:).

Example 1. By way of an example consider rule 218. Since 218 = 1
1 • 2** -f 1 • 2'* -h 1 • 2^ -h 1 • 2' its representation as a binary mapping:

-I-

(000,001,010,011,100,101,110.1II)

gives the following DNF,

(0,1,0, 1,1,0,1,1)

i^Xi A ^X2

V(JC| A X2 A

V (-.^i A .̂ 2 AX3) V {x\ A

V (X\ A JC2 A JC3).

A

(3)

An application of this rule to any triple (0,1,0), (0,0, I), etc. starting from a
single " 1 " seed value (or even finitely many random initial states) against a
background of zeros shows that its evolution continues indefinitely left and
right and may be computed for any finite number of time states. By setting the
cells to small colored blocks, black for 1 and white for 0, we can visualize its
dynamics as it is normally done. For example, the grid below shows the bi-
color distribution ofcellsforFCA90 with, e.g., initial seed 0.75. Note that it is
identical to ECA 9O's evolution for a single seed. This result is a consequence
of the fact that the "look-up" tables for the two rules are identical, see [5],
[14], [17].

3 INTRODUCTION TO FUZZY CELLULAR AUTOMATA (FCA)

The properties of binary cellular automata have their origins in works by Von
Neumann [21] and Wolfram [26], [25]. We tum our attention to using ele-
mentary binary cellular automata in order to define a new class of continuous
cellular automata and we do this by a process we caWfuzzification. That is, we
first "fuzzify" the automaton by removing the binary restriction and allowing
the cell values to be any real number in the interval [0,1]. This is done by
altering the operations in the DNF (2) above of each of the rules for binary
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cellular automata as follows: (x v 3;) becomes (x -|- y), (x A y) becomes (x • y)

'-'and (--x) becomes (1 - x). Since each Xj'-' e [0, 1] in the DNF we know that

the product flj^i Xj'^ is also a positive number in [0,1 ]. The rule sum

í=0 7=1

is thus maximized when r, — 1 and minimized when r, = 0 for all
/ = 0, 1,... ,7. These values correspond to fuzzy rules gü(.< ,̂>',z) = 0 and
g255(x,y,z) = 1 respectively. Since each FCA is essentially a partial sum of
FCA 255 (=1) it follows that every corresponding local function is bounded
below by 0 and above by 1. For other basic properties of these rules we refer
the reader to [5] and [12]-[18]. For a more elaborate introduction to these
FCA we refer the interested reader to [14], [17].

For example, let us again consider Rule 218. From above, we recall that
the DNF of this rule is given by (3) above. We can fuzzify this using the
identificationsxvy = x -\-y etc. defined above to find:

= (1 -x)(l -y)z + (] -x)yz

+x(\ -y)(l -z)+xy(\ -z)-\-xyz

= X + z — 2xz + xyz

We may then choose a seed value a e [0,1] and examine the evolution of
the automaton over several discrete time steps. Let us choose, for example,
a = 0.5. This gives an evolution similar to rule 218 above with the number 0.5
scattered about. The space-time diagram is very similar to the one found in the
discrete (or boolean) case which does not lead to anything of much interest.
In fact, we can show that for any fuzzy rule the space-time diagram produced
by an arbitrary seed a e (0, I) approaches the boolean space-time diagram
asa ->• I". However, we may also consider the dynamics of a fuzzy cellular
automaton with .several seeds on a background of zeros. For example, we now

time

0 0 0 0 0 0.25

stale

0.5 0.75 0 0 0 0

1 0 0 0 0.25 0.5 0.718 0.5 0.75

2 0 0 0.25 0.5 0.699 0.679 0.660 0.5
3 0 0.25 0.5 0.687 0.737 0.749 0.724 0.667

4 0.25 0.5 0.679 0.753 0.786 0.794 0.778 0.741

0 0 0

0.75 0 0

0.5 0.75 0

0.666 0.5 0.75

TABLE 1
Fuzzy rule 218 running on the 3 seeds (0.25,0.5,0.75)
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choose three consecutive seeds of 0.25,0.5,0.75. This generates a much more
interesting evolution as seen in Table 1 below. The dynamics of its space-time
diagram are discussed as a part of a more general scheme in [14].

It is important to note that the above method of fuzzification is not unique.
We may choose to transform the binary expressions into functions on the
interval using altemative fuzzy logics (cf., [17],[20]).

4 A FUZZY BASED CLASSIFICATION SCHEME

Prior to the formulation of another classification we must seek to better
understand the notion of equivalence of ECA. This is done by defining an
equivalent notion for the corresponding FCA, dubbed F-equivalence. What-
ever the notion of "equivalence" being used, in our view, it is natural to assume
at least that whenever "two FCA are equivalent" they should

1) belong to the same class,

2) have the same fixed points and

3) these fixed points should be of the same type (i.e., either attracting or
repelling).

Terminology: In the sequel an FCA (or fuzzy rule), as understood here, will
be called even (resp. odd) if its rule name is even (resp. odd). In addition, the
symbol gn{x,y,z) will normally denote the local rule corresponding to FCA
n. Whenever the rule name of an FCA is not explicitly mentioned we refer to
its local function simply as gix,y,z).

Définition 1. Consider two FCA with local rules fix, y, z), g{x, y, z). We say
that these FCA are F-equivalent if

fix,y,z) = giz,y,x), (4)

forallx,y,z e [0,1].

The reason for this definition is the next crucial result.

Lemma 1. F-equivalent FCA's have the same fixed points and these fixed
points are of the same type.

It turns out that this alternate notion of equivalence carries over into the
boolean case and gives a sharpening of Wolfram's notion of equivalence.
Recall that in Wolfram's theory of equivalent rules (also adopted by many
others), the allowable transformations include changing white squares into
dark squares, and reflecting the (single-seed-generated) space-time diagram
about the central line formed by the cells JCQ, for / = 0,1,2, — Our Defini-
tion 1 essentially says that the former transformation is not allowed, i.e., rules
obtained by changing the color of squares are not necessarily F-equivalent.
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Indeed, whenever two rules are F-equivalent they are also Wolfram equivalent
(or W-equivalent for short), but the reverse implication generally fails as we
see next.

Example 2. The ECA 136, 192, 238, 252 are W-equivalent [[26],p.883].
However, they are not F-equivalent since the fixed points of the respective
FCA are not of the same type. Specifically, 1 is repelling and 0 is attracting
for FCA 136 and 192 while, for FCA 238 and 252, 1 is an attracting and 0
is a repelling fixed point. Of course, one could put all the.se rules in the same
Wolfram Class by definition thereby satisfying 1) but one cannot avoid the
negation of 3).

Example 3. An FCA may be equivalent to itself only, since it may be that (4)
holds only for g = / . Examples of such are FCA 18, 90, 104. On the other
hand, FCA 172 and 228 are F-equivalent, as are FCA 110 and 124.

Remark 1. An algodthm for determining the (unique) F-equivalent FCA of a
given FCA follows: We wdte the rule name in base 2 and then wdte every
exponent appeadng there in base 2 as well. Since every such exponent is nec-
essarily a number between 0 and 7, the base 2 representation of such a number
consists of at most three (ordered) boolean numbers. Next, we interchange
the first and the third such number and then substitute these numbers back
into the odginal representation as the new exponents. The resulting number
is the rule name of the F-equivalent FCA. An example should cladfy this
construction.

Example 4. Given FCA 192, we wdte 192 = 2'' -I- 2^ Now 6 — (110)2
while 7 = (111)2. Interchanging the first and third numbers in (110)2 gives us
(011 )2, while the other remains unchanged. Thus, the ijew exponents are given
by wdting (011)2 = 3 and (111)2 = 7 as base 10 numbers and substituting
these in lieu of the odginal exponents. This gives 2^ + 2^ = 136, which is the
F-equivalent FCA.

The method outlined in Remark 1 also applies to "self F-equivalent" FCA.

Example 5. For FCA 19, we have 19 = 2^ + 2' 4- 2". Since 4 = (100)2,
I = (001)2 and 0 = (000)2 we see that interchanging the first and the third
boolean entdes does not change the resulting .set of boolean tiumbers. Thus
the new exponents remain unchanged as well. Hence the F-equivalent FCA
is FCA 19, i.e., FCA 19 is self F-equivalent.

We now turn to the main question in this paper i.e., we produce a
classification of ECA starting from their fuzzy counterparts.

Definition 2. Let g{x,y, z) he the local rule of an FCA. Its G-function is the
function whose domain is [0, 1 ] and whose values are given by

G{x) = g(0,0, X) + g{0, X, 0) -f g{x, 0,0).
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The classification referred to is based on the following result regarding the
G-function. The proof of Theorem 1 can be produced on a case-by-case basis
if so desired (using the Tables in the Appendix).

Theorem L For a given FCA with local function g, its G-function

G : [0,1] ^ [ 0 , 3 ] .

In addition,

1) If the rule is even then, for every x € [0, 1], either G(x) = 0,
G(x) = X, G(x) = 2x, or G(x) = 3x, and exactly one of these must
occur.

2) If the rule is odd then, for every X € [0,1], eitherG{x) = 3,G(x) = 3-x,
G(x) = 3 — 2x, or G(x) = 3 — 3x, and exactly one of these must occur.

This theorem indicates that for any FCA with an even rule name, the
function G(x)/x is a constant on (0,1]. A similar result applies in the case
of FCA with odd rule names: In this case for every such rule name there is
an ¿(1 < / < 4) such that for every x e (0,1], G(x) + (/ - l)x = 3. These
quantities are now used to define the four classes of FCA (ECA):

Definition 3. Let 0 < n < 255. We say that FCA n is of Class i, where i is an
integer 1 < (' < 4, if for every x e [0, 1 ],

( I 4- (• — 1 V'+ ' \
^ ^ '—• j - | - ( - l ) " ( i - l ) x . (5)

Remark 2. By Theorem 1 it follows that i can only be equal to 1,2,3,4 and
so all the even rules may be grouped together into exactly four classes. The
same is true for all the odd rules, however we do not place these in the same
corresponding classes as the even rules at this time (see the Tables in the
Appendix).

Example 3. Referring to Example 2 above, we can easily see that FCA 136
and 192 are both Class 1 (in our classification); they both have the fixed points
0, 1, and 0 is attracting while 1 is repelling in both cases. So, not only are
these FCA F-equivalent, but they belong to the same class! This is a particular
case of the following general result.

Theorem 2. An FCA has only one F-equivalent FCA.

Indeed, more is true.

Theorem 3. F-equivalent FCA's must belong to the same Class.

Remark 3. In Theorem 2 we do not exclude the possibility that the F-equivalent
FCA is the FCA itself. Since fuzzy rules (or FCA) include boolean rules (or
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ECA) in the limit as the seed values approach 1 (i.e., FCA include ECA) it
is natural to use this definition so as to redefine the various clas.<;es of ECA.
Theorem 2 shows that an FCA in a given class can have only one F-equivalent
counterpart in the same Class! This is probably the best that one can hope for
in terms of a suitable classification of FCA. It basically says that equivalent
FCA's should be in the same Class and have the same fixed points and the
same type of fixed points. In addition, elements in the same Class can be
distinguished from each other using the notion of F-equivalence, their fixed
points and their respective types of fixed points. Of course. Theorem 3 is the
result we sought, in the end.

5 DISCUSSION

The FCA 0, 32, 72, 104, 128, 160, 200 and 232 are all Class 1 FCA (see
the Appendix). Next, FCA 4, 36, 76, 108, 132, 164, 204, 236 are examples
of Class 2 FCA. Furthermore, FCA 18, 50, 90, 122, 146, 178, 218, 250
are examples of Class 3 FCA, while finally FCA 22, 54, 94, 126, 150, 182,
222, 254 are examples of Class 4 FCA (cf., [26], p. 232). We note that all
of the rules listed above are in the same ECA classes as defined by Wolfram
[[26], p. 232]. In contrast. Wolfram [[26], p.252] places ECA 110 in Class
4 (which is our Class 3, since G{x) = 2x here). The Wolfram classification
actually tnoves rules around the various classes depending upon the type of
initial conditions, although one would think that an FCA's "Class" should be
independent of initial strings.

A glance at Table 6 reveals interesting features of exceptional FCA, i.e.,
those FCA whose fixed points fill all of the interval [0,1] (given by FCA 170,
172, 184, 202, 204, 216, 226, 228, 240). We see that these FCA are all Class
2. We note, in passing, that the dynamics of these exceptional FCA are studied
in[131,[18].

Next, we observe that regardless whether the rule name is even or odd
there are three times as many FCA in Class 2 and 3 than there are in Class
1 and 4 (see Tables 3 and 4). In fact, the 8 additive FCA (i.e., those whose
corresponding ECA are additive in the usual sense, [[26], p. 962]) are spread
in the same ratio: There is one additive FCA in each of Class 1 and 4 and
three additive FCA in each of Class 2 and 3. Note that FCA n has zero for a
fixed point if and only if n is even, yet if n is odd 1 is a fixed point of these
only if n > 128.

In addition, from Tables 4, 5 and 6 we see that, except for the exceptional
FCA where every number is a fixed point, only 10 specific numbers can be
fixed points of the 128 even FCA, namely

u, 1 , z , * . , ^ y*, V ^ / , T V - ' V - V ï ^ * T '
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where (/> = (\/5 — l)/2 is the golden number. Of these 10 numbers only
(3 — V3)/3 is a fixed point of one and only one FCA: FCA 22. Furthermore,
another fact is that, of these 10 numbers, half of them are rational and the
other half are irrational. For the case of the 128 remaining odd FCA, only 18
numbers can be fixed points 3 of which are rational, namely 1,1/2,1/3 (cf..
Tables 8, 9, 10).

We observe that the only rules having the golden number as a (attracting)
fixed point are FCA 110, 122 and 124 (all Class 3). Thus, although ECA 124
is W-equivalent to ECA 110, ECA 122 does not enter the picture at all. The
fuzzy scenario given here however seems to indicate that FCA 122 is quite
similar to FCA 110 (and its F-equivalent cousin, FCA 124). It can only be
hoped that the properties of FCA 122 (or ECA 122) are similar to those of
FCA 110 (or ECA 110) but this requires further investigation.

6 PROOFS

Proof. (Lemma 1 ) Let/, g be the local rules of the given FCA's. Since they are
F-equivalent, (4) and the definition of the fixed points together imply that the
fixed points x are given by x =f(x,x,x) = g(x,x,x). The result follows. D

Proof (Theorem 2) Consider an FCA with rule function/. We know already
(either by the Tables in the Appendix or by more general means) that there
is at least one FCA with rule function g such that (4) holds. Assume there is
another distinct FCA with rule function h, say, with this property. Since the
relation of these FCA is an actual equivalence relation we have that/(x,>', z) =
g{z,y,x) = h(z,y,x) from which g(z,y,x) = h(z,y,x) for all x,y,z e [0,1].
Thus, the rule functions g and h are identical and this is a contradiction. Hence
there can be at most one FCA that is F-equivalent to a given one. It follows
by Theorem 3 that these FCA must be in the same Class. That there exists at
least one such FCA is clear. D

Proof. (Theorem 3) We show that F-equivalent FCA's must be in the same
Class as defined in Definition 3. For let/ , g be the local rules of the given
FCA and G/, Gg their associated G-functions (see Definition 2). Since there
holds (4) we see that, for every x e [0, l],/(x,O,O) = g(O,O,x),f(O,x,O) =
g(O,x,O) and/(O,O,x) = g(x,O,O). It follows that Gf(x) = Gf.(x) for every
X e [0,1]. But since these G-functions satisfy the conclusion of Theorem 1-
(1) we see that, since they are equal, the FCA they represent must therefore
be in the same Class. D

7 CONCLUSION

We present a new axiomatic definition of equivalence of FCA that leads to a
new definition of the same notion for ECA, As a result we are led naturally
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to a new analytically derived classification of FCA (and so ECA) into four
classes within each of which we find many of the original Wolfram BCA. The
impact of this FCA classification on the asymptotics of space-time diagrams
will be considered in a sequel to this paper.

ACKNOWLEDGMENTS

I acknowledge with thanks the kind assistance of Richard Phillips of Wolfram
Corp. for his Mathematica output of the expressions for the fuzzy rules found
in the Appendix. Also, my thanks to Nicola Santoro and Paola Flocchini for
delightful conversations about FCA.

REFERENCES

Ml Braga G.. Cattaneo G., Flocchini P., Quaranta Vogliotti C. (1995): Pattern growth in
elementary cellular automata, Theor. Comp. Sci. 145, 1-26

|2| Culik II, K., Hurd L.P., Yu S. (1990): Computation theoretic aspects of cellular automata
Physica D 45. 357-378

131 Culik II. K., Yu S. (1988): Undecidability of CA classification schemes. Complex Systems
2, 177

|4| Dhar A., Lakdawala P. Mandai G., Wadia S.R. (1994): Universal cellular automata and
Class 4, ArXiv preprint 9409080- 19 Sept. 1994. 9 pp.+ 5 figures.

|5 | Flocchini P.. Geurts F., Mingarelli A.B.. and Santoro N. (2000): Convergence and
Aperiodicity in Fuzzy Cellular Automata - Revisiting Rule 90. Physica D 42, 20-28

|6 | Ganguly N., Sikdar B., Deutsch A., Canright, G., and Chaudhuri P (2003): A Survey on
Cellular Automata. Preprint: Center for High Performance Computing. Dresden University
of Technology.

|7| Gutowitz H.A. (1990|: A hierarchical classification of cellular automata. Physica D 45
136-156

|81 Langton CG. (1986): Studying artificial life with cellular automata. Physica D 22. 120-149

|9] Langton CG. (1990): Computation at the edge of chaos: Pha.se transitions and emergent
computation. Physica D 42. 12-37

I IO| Li W.. Packard N.H.. Langton CG. (1990): Transition phenomena in cellular automata rule
space. Physica D 45, 77-94

I1 11 Li W., Packard N. (1990): The structure of elementary cellular automata space. Complex
Systems 4, 281-297

112] Mingarelli A.B., Beres E.: The dynamics of general fuzzy cellular automata: Rule 30.
(2004): WSEAS Trans. Circuits and Systems 10 3, 2211-2216

1131 Mingarelli A.B.. El-Yacoubi, S. (2006): On the decidability of the evolution of the fuzzy
cellular automaton. FCA 184. in V.N.Alexandrov et al. (Eds), ICCS 2006. Part III. t^cture
Notes in Computer Science 3993, Springer-Verlag. Berlin, Heidelberg, 2006: 360-366

1141 Mingarelli A.B. (2006): The global evolution of general fuzzy cellular automata. J. Cellular
Automata, 1 (2), 141-164

1151 Mingarelli A.B. (2(X)5): The dynamics of general fuzzycellularautomata. In Proceedings
of the International Conference on Computational Science. Emory University. Atlanta,
May 22-25, 2005. Springer-Verlag, New York. Lecture Notes in Computer Science 3515,
351-359



456 A. B. MiNGARELLI

[16] Mingarelli A.B. (2003): Fuzzy rule 110 dynamics and the golden number. WSEAS Trans.
Computers 2 (4). 1102-1107

[17] Mingarelli A.B. (2006): A study of fuzzy and many-valued logics in cellular automata. J.
Cellular Automata. 1 (3). 233-252

[18] Mingarelli A.B. and Dunne D. (2006): On the dynamics of some exceptional fuzzy cellular
automata, in El Yacoubi et al (Eds). ACRI 2006. Lecture Notes in Computer Science 4173.
Springer-Verlag. Berlin. Heidelberg. 2006. 71-87

[19| Phillips R. (2004): Steve Wolfram Science Group. Wolfram Corp., personal communica-
tions.

[20] Reiter C.A. (2002): Fuzzy automata and life. Complexity 7 (3). 19-29

[211 Von Neumann. J. (1966): Theory of Self-Reproducing Automata. University of Illinois
Press. Urbana, USA.

[22] Wolfram S. (1983): Statistical mechanics of cellular automata. Rev. Mod. Physics 55 (3).
601-644

[23] Wolfram S. (1984): Twenty problems in the theory of cellular automata. In Proc. of Nobel
Symposium 59: The physics of chaos and related problems, Graftvalen, Sweden (June
11-16, 1984)

[24] Wolfram S. (1984): Universality and complexity in cellular automata. Physica D 10. 1-35

[25] Wolfram S. (1994): Cellular Automata and Complexity: Collected Papers. Addison-Wesley
Publishing.

[26] Wolfram S. (2002): A New Kind of Science. Wolfram Media Inc.



A CLASSIFICATION SCHEME FOR FCA WITH APPLICATIONS TO ECA 457

H = 0

2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100

0
z — xz— yz -h xyz
y - xy — yz -{- xyz

y -xy-\-z-xz-2yz-^ 2xyz
yz - xyz
z — xz
y - xy

y- xy-^z- xz-yz+ xyz
X — xy - jcz -)- xyz

X- xy-\-z-lxz-yz-\- Ixyz
.r -F y — 2rv — xz — yz + Ixyz

.r -I- y - Ixy + z - Ixz — 2yz -(- 3.tyz

x-xy - xz+yz
X — xy -\-z- 2xz -1- xyz
.r -1- y — 2xy -xz-i-xyz

x-\-y-2xy + z-2xz- yz -\- Ixyz
xz — xyz

z - yz
y — xy -\- xz — yz

y - xy -\- z - 2yz -¥ xyz
xz + yz - 2xyz

z - xyz
y — xy -i-xz — xyz
y - xy-\-z— yz

X — xy

X - xy + z — xz - yz + xyz
X -\- y - 2xy - yz -i- xyz

X + y — 2xy -{- z — xz ~ 2yz -\- 2xyz
X - xy-i-yz - xyz

X - xy + z — xz
x + y - 2jcy

X -i-y — 2xy -\- z — xz - yz + xyz
xy — xyz

xy -i- z—xz- yz
y - yz

y + z - x z - 2yz -i- xyz
xy -i- yz - Ixyz

xy -i- z — xz- xyz
y — xyz

y-\-z-xz- yz
X - x z

X -i-z- 2xz — yz + xyz
X -\- y — xy — xz — yz -i- xyz

x-i-y-xy-i-z — Ixz — 2yz -(- Ixyz
X - xz-Vyz- xyz

x-\-z-2xz
X -'t-y — xy — xz

x-^y - xy -Vz-lxz — yz-^ xyz
xy + xz — 2xyz

xy -Vz- yz - .xyz
y + xz — yz — xyz

TABLE 2
Continued

1
3
5
7
9
II
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91
93
95
97
99
101

I - x-y-Vxy-z-V xz-Vyz- xyz
I -x-y-Vxy
1 - x-z-Vxz

1 - x-yz-Vxyz
1 - x-y-Vxy -z-Vxz + lyz- Txyz

1 —x-y-Vxy-Vyz- xyz
I -x-z-Vxz-Vyz-xyz

1 - X
I - y - z H- yz

I -y - xz-Vxyz
\ - xy-z-Vxyz

I — Jry - jTz — yz -I- Ixyz

1 - y - z -F 2yz — xyz

1 - y - jcz -I- yz

1 - xy -z-Vyz
I - xy — xz-V xyz

I -X -y + xy -z-V2xz-Vyz- 2xyz
I -x — y-Vxy-Vxz— xyz

I — .r — z -I- 2JÍZ - jcyz

1 - x-V xz — yz
1 - x-y ^xy -z-Vlxz-V lyz - Ixyz

I -x-y-Vxy-Vxz-Vyz- Ixyz
\ -x-z-Vlxz+yz- Ixyz

1 - x-Vxz- xyz
1 - y - z -I- .tz -I- vz - x\z

1 - y •
1 — xy - z-Vxz

1 -xy-yz-V xyz
1 - y-z-Vxz + 2yz- 2xyz

1 — y -f yz - xyz
1 — xy — z-V xz-Vyz — xvz

\-xy '
1 - A: - y -I- 2xy - z-V xz-Vyz- 2xyz

1 - X - y -V 2xy - xyz
1 — X -V xy — z-V xz— xyz

I -x-Vxy-yz
1 - X - y -V 2xy - z-V xz-V 2yz — 3j:yz

1 - A- - y -I- 2ry -I- yz - 2xyz

1 --c-1-.rv — z-fJTz-I-yz — 2jryz
I — X -Vxy — xyz

1 — y H- jry - z -I- yz - xyz

1 - V -t- xy - xz

1 - z

\ — xz— yz + xyz
1 - y -t- xy -z-V 2yz - 2.icyz
1 - y + jry - « -I- yz - xyz

1 - Z -I- vz — JTVZ
\-xz

1 - X -y-v2xy - z-V2xz-Vyz- 'ixyz
I — X —y-V 2xy +xz — 2xyz
1 - x-Vxy-z-V2xz- 2xyz
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102 y + z-2yz 103
104 xy + xz + yz - 3xyz 105
106 xy-i-z- 2xyz 107
108 y-\-xz-2xyz 109
110 y + z-yz-xyz 111
112 x-xyz 113
114 x + z-xz-yz 115
116 x + y-xy-yz 117
118 x+y-xy-hz-xz-2yz + xyz 119
120 x-i-yz-lxyz 121
122 x + z-xz-xyz 123
124 A:-t-y - .ry - -cys 125
126 X -\- y — xy -i- z — xz — vz 127
128 ' xyz 129
130 z - A:Z - yz-I-2xyz 131
132 y — xy — yz + 2xyz 133
134 y - XV 4-z - ATZ - 2vz-I-3jrvz 135
136 yz 137
138 z-xz + xyz 139
140 y-xy + xyz 141
142 y-xy-\-z-xz-yz-{-2xyz 143
144 x — xy — xz + 2xyz 145
146 x-xy-\-z-2xz-yz + 3xyz 147
148 X -F y - 2jry - xz - yz -F 3xyz 149
150 X-I-y - 2xy-(-z - 2xz - 2yz-I-4xyz 151
152 X-xy-xz + yz + xyz 153
154 X - xy-I-z - 2xz-I-2jcyz 155
156 X-\-y - 2xy - xz + Ixyz 157
158 X-I-y - 2xy-I-z - 2xz - yz-I-3xyz 159
160 xz 161
162 z-yz-l-xyz 163
164 y — xy-t-xz - yz-I-xyz 165
166 y — xy-(-z — 2yz-(-2xyz 167
168 xz-l-vz-xyz 169
170 z 171
172 y-xy-l-xz 173
174 y — xy- t -z -yz+xyz 175
176 x-xy-t-xyz 177
178 x-xy-Fz-xz-yz-F2jcyz 179
180 x-l-y-2x>>-yz-l-2xyz 181
182 X-I-y - 2xy-I-z - xz - 2yz-I-3xyz 183
184 x-xy-^-yz 185
186 X - xy-(-z - xz-I-xyz 187
188 X 4-y - 2xy-f xyz 189
190 X-I-V - 2xy-f-z - xz - vz-t-2xyz 191
192 xy ' " 193
194 xy-I-z - xz - yz-I-xyz 195
196 y-yz + xyz 197
198 y-I-z - xz - 2yz-I-2xyz 199
200 xv-l-yz-xyz 201
202 xy -I- z - xz 203

1 -x + xy+xz-yz- xyz
1 - X — y -I- 2xy — z -F 2jrz -I- 2yz — 4xyz

1 — X — y -I- 2xy -I- xz -t- yz - 3xyz
I - X -I- xy - z -I- 2u:z -I- yz - 3xyz

1 — X -f xy -f xz — 2xyz
1 - y -I- xy — z -I- xz -I- yz — 2xyz

I - y + xy — xyz
1 - z -I- xz — xyz

1 - yz
1 -y + xy-z + xz-i- 2yz - 3xyz

1 — y -I- xy -I- yz — 2xyz
1 - z -I- xz -t- yz - 2xyz

I —xyz
1 - X - y -(- xy - z -I- xz -f yz

1 - X — y -I- xy -f xyz

1 - X - yz -I- 2xyz
1 — X - y -t- xy - z -I- xz -t- 2yz — xyz

1 - X - y -H xy -I- yz
1 -X- z + xz + yz

1 - X -I- xyz
1 - y - z -I- yz -I- xyz
1 — y — xz -t- 2xyz
1 - xy — z -I- 2xyz

1 — xy — xz — yz -\- 3xyz
1 -y - z + 2yz

1 — y - xz -f yz -f- xyz
1 - xy - z H- yz -t- xyz
1 - xy - xz -I- 2xyz

I - X - y -I- xy - z -I- 2xz -f yz - xyz
1 -X - y + xy -{-xz
1 - X - z -I- 2xz

I — X -I- xz - yz -I- xyz
I - X — y -I- xy - z -f 2xz -I- 2yz — 2xyz

I — X — y -I- xy -F xz -I- yz — xyz
1 — X — z -I- 2xz -f yz — xyz

1 — X -(- xz
1 - y - z H- xz -I- yz

1 - y -I- xyz
I — .ïv — z -I- xz -I- xyz
I - xy - yz -f- 2xyz

1 — y - z -I- xz -I- 2yz - xyz
1 -y-l-yz

1 - xy - z -I- xz -I- yz
1 -xy-l-xyz

1 — X - y -f 2xy - z -f- xz -I- yz — xyz
1 — X — y -I- 2xy

1 - X + xy — z + xz
I — X -h .fv — yz -H xyz

I - X - y -I- 2xy - z -t- xz -1- 2yz - 2xyz
1 — .Ï — V -I- 2xv -(- vz — xvz

TABLE 2

Continued
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204
206
208
210
212
214
216
218
220
222
224
226
228
230
232
234
236
238
240
242
244
246
248
250
252
254

V

y + z-xz-yz + xyz
X -xz + xyz

X + z-2xz-yz + 2xyz
X +y - .xy -xz- yz + 2xyz

x + y—xy + z — 2xz — 2yz + ixyz
X — XZ+ yz

X + z — Ixz + xyz
x + y-xy-xz + xyz

x + y — xy + z — 2xz -yz + Ixyz
xy + xz — xyz
xy + z- yz
y + xz- yz

y + z-2yz + xyz
xy + XZ + yz — Ixyz

xy + z- xyz
y + xz- xyz
y + z- yz

X

x + z— xz-yz + xyz
X + y — xy — yz + xyz

x + y - xy + z- xz- lyz + Ixyz
x+yz- xyz
x + z — xz
x + y - xy

x+y - xy + z — xz — yz + xyz

205
207
209
211
213
215
217
219
221
223
225
227
229
231
233
235
237
239
241
243
245
247
249
251
253
255

1 - x+ xy — z + XZ + yz — xyz
1 - x + xy

\-y + xy-z + yz
\-y + xy- xz+xyz

\-z + xyz
1 -xz-yz + Ixyz

1 ~y + xy- z + lyz- xyz
1 -y + xy-xz + yz

\ — z + vz
\ - XZ + J:yz

1 - J: - y + 2.i:v - z 4- i tz -1- >•; - 2.rvz
1 - X - y + Ixy + XZ — xyz
1 - x + xy- z +Ixz- xyz

1 - x + xy + xz-yz
1 — X - y + Ixy — z + 2xz + lyz - ixyz

1 - A' - >' -f- 2.ry + XZ+ yz — Ixyz
1 — X + xy — z + Ixz +yz — Ixyz

1 -x + xy + xz-xyz
1 -y + xy- z + xz + yz-xyz

1 -y + xy
1 -z+xz

1 - yz + xyz
I -y + xy-z+xz + lyz- 2xyz

1 —y + xy + yz— xyz
1 - z+ xz + vz — .x\z

1

TABLE 2

Rule Names n, and their Local Fuzzy Rules g„(x,y,z).

Class I Class 2 Class 3 Class 4

0
8

32
40
64
72
96
104
128
136
160
168
192
200
224
232

2,4,10
12,16,24
34,36.42
44,48,56
66,68,74
76,80,88

98, 100, 106

108, 112,120
130,132,138
140,144,152
162. 164, 170
172, 176,184
194,196,202
204,208,216
226,228,234
236,240. 248

6,14,18
20,26,28
38,46,50
52,58,60
70,78,82
84,90,92

102, no, 114

116,122,124
134,142,146
148,154,156
166, 174, 178
180,186, 188
198,206,210
212,218,220
2.30,238,242
244,250.252

22
30
54
62
86
94
118
126
ISO
158
182
190
214
222
246
254

TABLE 3

Classification of even numbered rules according to the values of the G-function



460

Class 1

23

31

55

63

87

95

119

127

151

159

183

191

215

223

247

255

A.

Class 2

7,15,19

21,27,29

39,47,51

53,59,61

71,79,83

85,91,93

103,111,115

117,123,125
135,143,147

149,155,157

167,175,179

181,187,189

199,207,211

213,219,221
231,239,243
245,251,253

B. MINGARELLI

Class 3

3,5,11

13,17,25

35,37,43

45,49,57

67,69,75

77,81,89
99,101,107

109,113,121

131,133,139

141,145,153

163,165,171

173,177,185

195,197,203
205,209,217
227,229,235
237,241,249

Class 4

1

9

33

41

65

73
97

105

129

137

161

169

193

201

225

233

TABLE 4
Classification of odd numbered rules according to the values of the G-function
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Rule Name

0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100

F-Equiv. Rule

0
16
4
20
64
80
68
84
2
18
6
22
66
82
70
86
32
48
36
52
96
112
100
116
34
50
38
54
98
114
102
118
8
24
12
28
72
88
76
92
10
26
14
30
74
90
78
94
40
56
44

Real Fix. Point(s)

Oil
Or
Or

Or. 1 - V2/2 a
Oa
Or
Or

Or. 1 - 0 a
Or

Or. 1 - ̂ 2/2 a
Or. 1 - v^/2 a
Or. 1 - V3/3 a

Or
Or. 1 - 0 a
Or,\ -<p a
Or, 1/2 a

Oa
Or
Or

Or, 1 - 0 a
Oa
Oa
Oa

Or, 1/2 a
Or

Or. 1 - 0 a
Or, 1 - 0 a
Or. 1/2 0

Oa
Or, 1/2 a
Or, 1/2 a

Or,2-v^û
Oa
Or
Or

Or. 1 - 0 a
Oa
Oa
Oa

Or, \ 12 a
Or

Or, 1 - 0 a
Or. 1 - 0 a
Or, 1/2 a
Oa

Or. 1/2 a
Or, 1/2 a

0r,2-V2a
Oa
Oa
Oa

Class

1
2
2
3
I
2
2
3
2
3
3
4
2
3
3
4
1
2
2
3
1
2
2
3
2
3
3
4
2
3
3
4
1
2
2
3
1
2
2
3
2
3
3
4
2
3
3
4
I
2
2

TABLE 5
Classification of even numbered rules, their F-equivalent rule, their fixed points, and
their type. Here 0 = (^5 - 1 )/2 is the golden number. The notation xr, y a in Col. 3
means that x is a repelling fixed point and v is an attracting fixed point.
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Rule Name

102
104
106
108
110
112
114
116
118
120
122
124
126
128
130
132
134
136
138
140
142
144
146
148
150
152
154
156
158
160
162
164
166
168
170
172
174
176
178
180
182
184
186
188
190
192
194
1%
198
200

A.B.

F-Equiv. Rule

60
104
120
108
124
42
58
46
62
106
122
110
126
128
144
132
148
192
208
196
212
130
146
134
150
194
210
198
214
160
176
164
180
224
240
228
244
162
178
166
182
226
242
230
246
136
152
140
156
200

MlNGARELLI

Real Fix. Point(s)

Or. 1/2 a
Oa
Or
Or

Or. 0 a
Oa

Or, 1/2 a
Or, 1/2 a

Or,2- v/2a
Or

Or,</> a
Or,4> a
Or. 2/3 r
Ofl. lr
Or, Ir
Or, Ir

Or, 1/3 a
Oa, Ir
Or, Ir
Or, Ir

Or, 1/2 a
Or, Ir

Or, 1/3 a
Or. 1/3 a
Or, 1/2 a
Or, Ir

Or, 1/2 a
Or, 1/2 a
Or, 2/3 a
Oa. Ir
Or, Ir
Or, Ir

Or, 1/2 a
Oa, Ir
Or,all jc
Or. all X
Or, Ir
Or, Ir

Or, 1/2 a
Or, 1/2 a
Or, 2/3 a
Or,alU
Or. Ir
Or, Ir
Or, Ir
Oa, Ir
Or, Ir
Or. Ir

Or, 1/2 a
Oa. \r

Class

3
1
2
2
3
2
3
3
4
2
3
3
4
1
2
2
3
1
2
2
3
2
3
3
4
2
3
3
4
1
2
2
3
1
2
2
3
2
3
3
4
2
3
3
4
1
2
2
3
1

TABLE 6
Classification of even numbered rules, their F-equivalent rule, their fixed points, and
their type. Here (p = (Vs — I )/2 is the golden number. The notation xr. y a in Col. 3
means that x is a repelling fixed point and y is an attracting fixed point.
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Rule Name

202

204

206

208

210

212

214

216

218

220

222

224

226

228

230

232

234

236

238

240

242

244

246

248

250

252

254

F-Equiv. Rule

216

204

220

138

154

142

158

202

218

206
222

168

184

172

188

232

248

236

252

170

186

174

190

234

250

238

254

Real Fix. Point(s)

Or, all X

Or, all A:

Or, lr

Or, lr

Or, 1/2 a

Or, 1/2 a

Or, 2/3 a

Or, all A:

Or, lr

Or, lr

Or, lr

Oa, lr

Or, all x

Oíi, all X

Or, lr

Ofl,1/2 r

Or, la

Or, la

Or, la

Or, all X

Or, lr

Or, lr

Or, lr

Or, la

Or, la

Or, la

Or, la

Class

2
2
3

2
3
3

4
2
3
3
4
1

2

2

3

1

2

2

3

2

3

3

4

2

3

3
4

TABLE 7
Classification of even numbered rules, their F-equivalent rule, their fixed points, and
their type. Here 0 = ( v/5 - 1 )/2 is the golden number. The notation xr. y a in Col. 3
means that J: is a repelling fixed point and y is an attracting fixed point.
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Rule Name

1
3
5
7
9
11
13
15
t7
t9
2t
23
25
27
29
3t
33
35
37
39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91
93
95
97
99
101

A.

F-Equiv. Rule

1
17
5
21
65
81
69
85
3
19
7
23
67
83
71
87
33
49
37
53
97
113
101
117
35
51
39
55
99
115
103
119
9
25
13
29
73
89
77
93
11
27
15
31
75
91
79
95
41
."57

45

B. MINGARELLI

Real Fix. Point(s)

0.317672196' r
0.3819660122 r
0.3819660122 r
0.445041868' r
0.352201128'' a
0.430159708' a
0.430159708'a

1/2 r
0.381966012 2 r
0.445041868 •' r
0.445041868 •' r

1/2 r
0.430159708'a

1/2 r
1/2 r

0.554958133'' r
0.352201128''«
0.430159708' a
0.430159708' a

1/2 r
0.405585523' a

1/2 a
1/2 a

0.569840292 ' a
0.430159708' a

1/2 r
1/2 r

0.554958133" r
1/2 a

0.569840292 * a
0.569840292 * a

0V
0.352201128" a
0.430159708' a
0.430159708' a

1/2 r
0.405585523 ' a

1/2 a
1/2 a

0.569840292 * a
0.430159708'«

1/2 r
1/2 r

0.554958133'' r
1/2 a

0.569840292 * a
0.569840292 * a

0'r
0.405585523' a

1/2 a
1/2 a

Class

4
3
3
2
4
3
3
2
3
2
2
1
3
2
2
t
4
3
3
2
4
3
3
2
3
2
2
I
3
2
2
1
4
3
3
2
4
3
3
2
3
2
2
1
3
2
2
t
4
3
3

TABLE 8
Classification of odd numbered rules, their F equivalent rule, their fixed points, and
their type. The notation xr, y a'm Col. 3 means that jc is a repelling fixed point and v
is an attracting fixed point. Here <̂  = ( ̂ 5 — I )/2 is the golden number. Actual values
are at the very end of the article.
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Rule Name

103
105
107
109
111
113
115
117
119
121
123
125
127
129
131
133
135
137
139
141
143
145
147
149
151
153
155
157
159
161
163
165
167
169
171
173
175
177
179
181
183
185
187
189
191
193
195
197
199
201

F-Equiv. Rule

61
105
121
109
125
43
59
47
63
107
123
III
127
129
145
133
149
193
209
197
213
131
147
135
151
195
211
199
215
161
177
165
181
225
241
229
245
163
179
167
183
227
243
231
247
137
153
141
157
201

Real Fix. Point(s)

0.569840292 * a
1/2«

0.594414477 '" a
0.594414477'° a
0.647798872 ' ' a

1/2 a
0.569840292 " a
0.569840292' a

<p'r
0.594414477'° a
0.647798872" «
0.647798872 " a
0.682327802 '- r

lr, l/3r
lr, (y/2- 1), a
lr. (72- 1) a

lr, 1/2 r
lr, 0.381966012" a

lr, 1/2 a
\r,\/2a
\r, <t> a

lr, (v/2- l)ü
lr, 1/2 r
lr, 1/2 r

lr, ^3/3 a
lr, 1/2 a
\r, ̂  a
]r, <p a

lr, v/2/2a
lr, (1 - 0 ) a

lr, 1/2 a
lr, 1/2 a
\r, <p a
lr, 1/2 a

lr
lr
lr

lr. 1/2 a
\r, <j> a
\r, (¡> a

lr, V2/2a
\r
\r
\r
\r

lr, 0.381966012- a
lr. 1/2 a
lr, l/2a
\r, (j> a
\r,l/2a

Class

2
4
3
3
2
3
2
2
1
3
2
2
I
4
3
3
2
4
3
3
2
3
2
2
1
3
2
2
1
4
3
3
2
4
3
3
2
3
2
2
1
3
2
2
1
4
3
3
2
4

TABLE 9
Classification of odd numbered rules, their F-equivalent rule, their fixed points, and
their type. Here (p = (v/5 - I )/2 is the golden number. The notation xr, y a in Col. 3
means that J: is a repelling fixed point and y is an attracting fixed point.
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Rule Name

203

205

207

209

211

213

215

217

219

221

223

225

227

229

231

233

235

237

239
241

243

245

247

249

251

253

255

A.B.

F-Equiv. Rule

217

205

221

139

155

143

159

203

219

207

223

169

185

173

189

233

249

237

253

171

187

175

191

235

251

239

255

MINGARELLI

Real Fix. Point(s)

lr

lr

lr
lr, l/2a

\r, (p a
\r, (p a

lr, y/2/2a

\r

lr
lr

lr

lr, 1/2 a

lr

lr
lr
\a

\a

\a

\a

\r

\r

lr

lr

\a

\a

\a

\a

Class

3

3

2

3

2

2

1

3
2

2

1

4

3

3

2

4

3

3

2

3

2

2

1

3

2

2

1

TABLE 10
Classification of odd numbered rules, their F-equivalent rule, their fixed points, and
their type. Here (p = (N/5 - I )/2 is the golden number. The notation xr, y a in Col. 3
means that x is a repelling fixed point and y is an attracting fixed point.



A CLASSIFICATION SCHEME FOR FCA WITH APPLICATIONS TO ECA

Notation: (cf.. Tables 8, 9, 10)

• 6 + 1

467

1

+ 6 V33

^-28 + 84/73

+ i

^: -1/12 ;V3 - 7/3 - + 2/3

-l/2(v/3Í 1/6^28 + 84/73- 14/3 -̂p=

-1/18 V 188

1/6V44+ 12V69
V44+ 12

+5/9

1/3

'^: 1/6 V 108+ I?

V 26 + 6 v/33

V108+
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