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Abstract
In this work a set with r objets is considered and a stationary process X, (r) with spectral
distribution absolutely continuous is observed for each of them at same time interval. Each spectral
density function f,(w) may be considered it a realization of a stationary process R(®).The spectrum

population f (w) is defined by E[R(®)].We estimate f (@) by means of a bootstrap method and we

proof the asymptotic validity when the number of objects r tend to infinity.

Keywords  Spectrum Estimator, Bootstrap, Replicated Time Series, Population Spectrum,
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1. Introduction.

Although spectral analysis is a very highly developed methodology, almost all of this
development has been in the context of a single, long time series. This perhaps the fact reflects that
the origins of the subject were signal processing and the physical sciences. However, the usefulness
of time series methodology is becoming more widely accepted in biomedical sciences, where
replicated experiments are the rule rather than the exception. Diggle and Al-Wasel (1993) studied

replicated time series of measurements of the concentration of luteinizing hormone in blood
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samples. First, they considered each time serie as the realization of a stationary process with spectral
density function absolutely continuous flw). Nevertheless, the strong variability between subjects

lead to inconsistent data with this model and they proposed the alternative model /(@)= f (@) U,
i=1,...r; j=1,.., [NA2] , being I;(w,) the periodogram at the frequency @j for the ith individual,
fi(e,) the subject specific spectrum and Uj; mutually independent, unit mean exponential variates

with ‘common pdf ¢, «>0. Suppose now that r units are selected at random from a given

population. Then we regard the f,(w,) as independent realizations of a random function R(w), and

set flw)=E[R{w)], where the expectation is defined with respect to the population of subjects and
Aw) is called the population spectrum. They estimated f (@) supposing certain parametrizations for
the processes involved in the model and they obtained the average periodogram as a maximum
likehood estimator of the population spectrum. Obviously, this estimator is unbiased and consistent
for the number of objects.

We have considered a more generalised model than the one developped by Diggle and Al-
Wasel without making any parametrizations and we haved used a bootstrap method for the
estimation of the population spectrum. Moreover, we have compared the confidence intervals
obtained by means of the bootstrap method with those obtained using the normal approximation
when r is large and the central limit theorem is taken into account. Efron and Tibshirani (1986) used
bootstrap for estimation of a parametric time series model. Franke and Hirdle (1992) worked with
bootstrap too for estimating the spectral density function when there is only one realization of a
stationary process. They proved the theoretical asymptotic validity of the bootstrap principle
according to Bickel and Freedman (1981), Freedman (1981) and Romano (1988). We have also
proved the validity of the bootstrap principle for a fixed number of observations by object and an
increased number of objects. The simulations we present illustrate that our procedure works for

moderate sample sizes by object and a large number of objects.
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2. The model.

Let {X;;: r=1,....N} be r time series, each one with spectral density function fi(®;). According
to  Diggle and Al-Wasel we  consider  the above mentioned model
I(®))= f(w)U,,i=1,..,rj=1....[N/2], being I,(@,) the periodogram at the frequency j for the
ith subject, f,(w, ) the specific spectrum and Ujj mutually independent, unit mean variates; we omit
the hypothesis of Diggle and Al.-Wasel that the Uj, are exponential variates. We also assume that
file)=f(w)Z,(w) where {Zj(@)): i=],...,r are independent copies of a stochastic process [Z(mj)]
with E[Z(@wj)]=1, for all @j, where f (@) is called the population spectrum, So, Li(w;)=fla; W,

being Wy = Z,(w; U;;, random variables i.i.d. for each fixed j with distribution function F}, unit mean

and finite variance o’ <o’

We propose as an estimator of the population spectrum f (@) the average periodogram
- 1< -
f@)=-3 1) =1(@)
i=1

The following procedure gives a bootstrap aproximation for, f(an

Step I . The variables Wy; are estimated as:

W l(w,)

== i=1..,rnj=1L..,[N/2
[ I(OJ!) » i=1 rJ [ ]

-
)

Obviously, for each frequency @y , Z, W, /lr=1.

Step 2 . B bootstrap samples {1-’:"1!.....,1@",;} are drawn from {W”,.....W,; } For each frequency o,

we consider the bootstrap periodogram computed as follows:
Fw)=1)=f,)W

Step 3 . Finally, the bootstrap estimation of the spectrum population is computed as follows:
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e |
F()=13 1)
The W, obtained through a boostrap resampling from {W, i Wq } have unit mean with regard to

the empirical distribution.

Obviously the average periodogram is unbiased and a consistent estimator for f(w,) when r
x o 2e 1 . -
increase to infinity. Within the bootstrap context, we obtain E [f (mﬂl:-Z E[!, [mi )]:f(mf,};
Fi=

therefore, the bootstrap estimator is unbiased for f (m f ). According to Hirdle and Bowman (1988)

it is not necessary to correct the pivotal quantity,

3.- The bootstrap principle holds.

The basic idea of bootstrapping, as applied to the population spectrum estimation context, is
to infer properties of the distribution ot the estimator f(w) from the conditional distribution of its
bootstrap approximations f"(w), given the original data. To prove the theorical validity of this
bootstrap principle. we follow Bickel and Freedman (1981) and consider the Mallows distance
between the pivotal quantity ¥r(f(w,)-f(w,)) and its bootstrap approximation vr(*(e,)-f(e,)).
Here, the Mallows distance between distributions F and G is defined as

d,(F.G)= inf{E[|X— Y[’]'“}
where the infimum is taken over all pairs of random variables X and Y having marginal
distributions F and G, respectively. We adopt the convention that where random variables appear as
arguments of da, they represent the corresponding distributions. In particular, bootstrap quantities

represent their conditional distribution given the original data.
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Theorem.

Under the preceding conditions, the bootstrap principle holds in the following form:
d,(Vr(f(@,)- f(@, )}¥r(7" (@)~ f(w,)) ] —0 in probability (1)

Proof:

flo))

By definition ﬂ(f(mJ-j(mf)): 7

I

i[%ﬂ) having distribution  w(F,) and
i=1

JF{f'(wJ—f(mJ): f‘(\?“]i('&‘, = 1) having distribution lfl(ﬁ:r,). Therefore, replacing in (1), we
r

i=l

finally get
d3(w(F,).9(F, ))— 0 in probability (2)
Since d; is a metric, and we obtain
Bl 9B, ) <242 (w5 bl ) + 2020, 9L, )+ 265(0(F, )9, )

We will prove that each term of the second member in the inequality converges to zero in
probability.

Firstly, d; (w(F, ).y(F, )) - 0 in probability
Let F; denote the distribution function of Wj; and F;, denote the empirical distribution function of

{W,J.,..‘.W,, } Let W,;, be random variables with a distribution function Fj, .

oot - g - RS

An application of Bickel and Freedmans's (1981) lemma 8.6 lead to
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S, -1) e, )E(w s )Zdz(W#le -1) @

YLk di(W, - LW, - 1)=d}(W, -1W, - 1), using it in (3)

LS s, -1, 1) 7, o, -1 )

by lemma 8.3 of Bickel and Freedman’s (1981) d}(W, W', )—==—0

i

Secondly, we have to prove that dj(w[Fj,].l,?l(Fj,]) — 0 in probability for r — e
- o flo) & (e ) e
AV(E)I(E,) =) =2 X (W, - )= X (W, -)

g Zd;(!w, )W, = 1) F(@, )W, - 1))=d2( (e, W, 1) /e, W, -1)
By definition of the Mallows metric

430, )0, = 450, )W, = 1) =|r(0,)- 7o, 2w, - ] )

-

f((D j) is a consistent estimator for f(m J} and converges in mean square for r—eo

E[W‘; —I]2 <o}, applying this in (4), we obtain:
f(w,)- 7 ){ Hw, -1] —2>0

Finally, we have to prove that 43 (i/(F;, ), ¥(F,,))— 0 in probability for r — =.

AL e L0 i L D S| P

3. d3(W, - 1.%; 1)

= 72, )d2 (W), W) = (@, )2 (F,. F,)
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By definition of the Mallows metric d3(F,, £, ), we may consider the joint distribution of {W,} and

{Wu }, which assigns probability % ateach (w,,w,) for each j fixed to establish that

"

a3 (W,.57) 53 (W, ) =1E[

r =1

flo)) Flo,)

l(@)) f-(ﬂh)]z

Since we know f(w, ) is a consistent estimator and f(®,)—==— f(, ) converges in mean square.

(@,)

r

r 2 r
On the other hand, it can be proved that %Zlf(m,)='f Swi— o)} +1).
i=1 =l

Therefore, we can write:

(e e

Collecting together the three terms of the Mallows metric, we now have that this converges in

probability to 0.

4, Simulation
In this section, a simulation study illustrates the performance of our bootstrap approach. We
have considered r subjects and for each one. a moving average process (MA(2)) has been simulated
at same time intervals, where the coefficients (¢;,47 ) were chosen at random from a bivariate
normal distribution with mean vector (0.2, -4), Var(¢}.)=Var(¢7 )=0.01 and Cov(¢}.¢p )=-0.007,
We have represented simultaneously for each frequency the population spectrum and the
confidence band obtained by means of the bootstrap estimation proposed. For large values of r, we

have represented the confidence intervals obtained after approximating the pivot v7(f(w, ) - f(@,))
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by a normal- distribution N(O_f(a)_,)o?). having replaced a? by its

i

&ﬁzi[ﬁ; —I]:/(r—l).
=1

Lower band

Theorical density
spectral function

+ Upper band

00000 62812 1,25664 188496 251327 314159
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Fig. 1. N=20 r=100

estimator

In Fig. 1, due to the fact that the interpolations are made with a low number of frequencies

used to estimate the population spectrum, one can think of the existence of a possible bias of the

estimator in the maximum of the population spectrum.
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Fig. 2. N=60 r=100
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In Fig 2. the increase of frequencies produces as a consequence a rise in the amount of peaks
of the confidence bands that could lead to overvalue the contribution of certain frequencies to the

spectral power.

Lawer bootstrap band

Theorical density
spectral function
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Lower normal band
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Fig 3 N=60 r=1000
Fig 3 shows that for large values of r the bootstrap approximation coincides practically with

the normal approximation,

5. Discussion.

The graphics obtained suggest that for large values of N, it is more suitable to estimate the
population spectrum by means of average periodogram smoothing. So, a more adequate perception
is obtained since the peaks in the estimator suggest that some frequencies have negligible
contributions to the spectral power. In the same way, a smaller variance for the estimator of
population spectrum is obtained although a bias is introduced. Herndndez-Flores (1996) proposes
some estimators for population spectrum based in smoothing of the average periodogram by means

of kernel estimators, for a large N.
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However, in real life problems, specially in medical sciences, only a small number of
observations by individual is available, although a large number of individuals can be analysed.
Obviously, it is not adequate to make estimations through smoothings in this case.

In comparison to Diggle and Al-Wasel's model(1993), ours allows the Var(Z(e,}) to change
with the frequency @, . The parametrization of the model they introduced is not justified completely
and it produces an estimator f(w,) whose variance does not take into account the number N of

observations by individual as onc could expect from a parametric procedure. Despite the fact of
using too the mean periodogram as the spectral density estimator and not using a parametric model,
the results we have obtained show that the variance does not increase. As mentioned in the above
section, we have used a bootstrap procedure that not only satisfies the asymptotic validity conditions
following Mallows metnic, but it also achieves confidence regions similar to the ones obtained using

a normal approximation when we are dealing with a large number of individuals.
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