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Abstract: Video denoising techniques need to understand the motion present in the scenes. In the literature, many
strategies guide their temporal filters according to trajectories controlled by optical flow. However, the quality
of these flows is rarely investigated. In fact, there are very few studies that compare the behavior of denoising
proposals with different optical flow algorithms. In that direction, we analyze several methods and their
performance using a general pipeline that reduces the noise through an average of the pixel’s trajectories. This
ensures that the denoising strongly depends on the optical flow. We also analyze the behavior of the methods
at occlusions and illumination changes. The pipeline incorporates a process to get rid of these effects, so that
they do not affect the comparison metrics. We are led to propose a ranking of optical flows methods depending
on their efficiency for video denoising, that mainly depends on their complexity.

1 INTRODUCTION

Video denoising (Boulanger et al., 2007; Arias and
Morel, 2018) is a key problem in image processing. It
generally requires a temporal noise filtering guided by
motion trajectories. In this regard, optical flow esti-
mation (Horn and Schunck, 1981; Lucas and Kanade,
1981) is quite useful because it provides consistent
information of the apparent displacement of the pix-
els through an image sequence. Therefore, the com-
puted solutions can be used to describe a trajectory
that guides the filtering according to the vector fields
it provides.

Several works have been published to improve
the optical flow computation in noisy images (Spies
and Scharr, 2001; Scharr and Spies, 2005), which is
one of the main challenges nowadays. Besides, the
current literature about video denoising assumes that
the motion estimation between frames is an advan-
tage (Liu and Freeman, 2010; Buades et al., 2016),
without exploring its influence in depth.

Nevertheless, in spite of research works like (Lars-
son and Söderström, 2015), there are not many arti-
cles that study the influence of the motion trajecto-
ries in video denoising. This is important as pointed
out in (Ehret et al., 2018), where the authors observe
the limitations of their results due to the optical flow
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method. In this sense, this work compares different
algorithms and analyze their influence when used for
video denoising. The purpose is not to improve the
current denoising methods but to observe the behav-
ior of accurate motion trajectories in the final results.

We use a denoising frawework that averages the
pixel’s intensity through the trajectories obtained with
the corresponding optical flow method. The rea-
son behind this strategy is to ensure that the accu-
racy of the denoising depends basically on the vec-
tor fields. We use a centered average to reduce the
impact of possible changes in the context of a scene.
In our experiments, we compare the optical flow
methods proposed by Horn and Schunck (Horn and
Schunck, 1981), Brox et al. (Brox et al., 2004), Zach
et al. (Zach et al., 2007) and Monzón et al. (Monzón
et al., 2016). Arguably, an algorithm that uses tem-
poral information could be helpful to obtain consis-
tent trajectories. Thus, we also include in our exper-
iments the temporal method proposed in Sánchez et
al. (Sánchez et al., 2013) and a temporal extension of
the Brox et al. method.

2 DENOISING FRAMEWORK

Next, we briefly describe the main features of the
denoising framework used to compare the influence
of the optical flow methods in noise reduction.



In the first step, we introduce additive white Gaus-
sian noise (AWGN), with standard deviation σ, to the
input sequence. Then, we compute the optical flows
for the whole noisy sequence in both directions. For
each image i, the neighboring frames [i−n, i+n] are
warped to the central image according to the com-
puted flows, using bicubic interpolation. The value
of n must be small in practice due to changes in
pixel intensities, occlusions or brightness changes that
worsen the denoising.

We must notice that motion and optical flow es-
timation are not equivalent goals (Verri and Poggio,
1989; Sellent et al., 2012). The physical 3D motions
do not always match with the apparent displacement
described by the optical flow in the image plane. This
is evident in many situations like occlusions, illumi-
nation changes, shadows, etc. In these cases, the true
motion is not a good choice for video denoising.

Figure 1 shows an example using the eighth frame
of the Alley1 sequence from the Sintel dataset (Butler
et al., 2012). The first row shows the central image
while the second row depicts the denoised one. The
latter has been obtained according to the trajectories
described by the ground truths. The red and green
rectangles makes zoom in some regions from the re-
sults of the first column.

Comparing both images, we observe a “halo ef-
fect” in the denoised image. This typically occurs
in occluded regions, where it is not possible to find
the corresponding pixels in all the frames. The image
mask on the the third row represents the pixels where
the color difference is higher than a given threshold.
Here, it is easy to observe the occluded regions as well
as other regions affected by other effects.

Figure 1: Alley1 and its denoised image. The first column
shows the central frame, the denoised image without dis-
carding pixels and the image mask. The second and third
columns show several details of the images at the first col-
umn. The “halo effect” appears in the occluded regions,
which are detected on the mask.

In our experimental framework, the original se-
quences are randomly disturbed by adding white
Gaussian noise (AWGN) according to a known stan-
dard deviation, σ. We discard the pixels for which
the quadratic difference between the original and the
warped images are bigger than 2 ·σ2. In these cases,
the noisy pixels are used for the final result and the
image mask is activated in those positions as in the
last column of Fig. 1.

Figure 2 shows a diagram of the framework. The
denoised image is calculated as an average of the
color values in each pixel. Additionally, we esti-
mate an error function as the difference between the
denoised values and the pixels in the central image.
This allows us to detect pixels that suffer from oc-
clusions or brightness changes, or that are not cor-
rectly matched by the optical flow method. Finally,
we obtain the root mean square error (RMSE) and
peak signal-to-noise ratio (PSNR) between the de-
noised and the original clean image.

The video denoising framework also calculates
the RMSEm and PSNRm removing the pixels of the
mask, and the percentage of pixels (density) used in
the average. We also calculate the ratio between the
RMSEm and the density as RMSEd = RMSEm

density .

3 EXPERIMENTS

We compare the performance of several optical
flow methods for video denoising and also the results
given by the ground truth motions (GT). Our experi-
ments include the algorithms published in (Monzón
et al., 2016; Sánchez et al., 2013; Sánchez et al.,
2013; Meinhardt-Llopis et al., 2013) of the original
methods (Monzón et al., 2016; Brox et al., 2004;
Zach et al., 2007; Horn and Schunck, 1981), respec-
tively. We shall refer to them as RDPOF, ROF, TV-
L1 and HS, respectively. The method of Sánchez et
al. (Sánchez et al., 2013) and the temporal extension
of ROF are named as TCOF and ROFT . The standard
datasets only provide the forward optical flows, so we
calculate the backward motions using the method pro-
posed in (Sánchez et al., 2015).

First, we compare the results for a given frame us-
ing the sequences of Alley1 (Fig. 3) and Bandage1
(Fig. 4) from the Sintel dataset. Figure 5 shows the
results from a video of a person moving his right arm.
The number of images of the sequences is 50 and the
size is 1024×436, while the Arm video contains 255
frames and its size is 320× 240. The level of noise
introduced in these images is for σ = 10.

In each figure, the first row contains two consec-
utive noisy frames, the original image and the best
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Figure 2: Pipeline for video denoising: First, we add white Gaussian noise (AWGN) to the image sequence; second, the
optical flow is calculated in both directions between consecutive frames; then, each image is denoised with the information of
several neighbor images; and, finally, we compute the root mean square error (RMSE) with respect to the original image. In
this figure, we illustrate an example with 2 frames in each direction.

denoised result. The following rows show the re-
sults using the ground truth, RDPOF, ROF, TV-L1,
HS, ROFT and TCOF, respectively. The first col-
umn depicts the calculated flow from the central to
its successive frame. The second column shows the
error image between the original and the denoised im-
ages, taking into account the occlusion mask, which is
shown in the third column. The fourth one shows the
error image without using the mask. Below the im-
ages, we show the average angular error (AAE) and
the end-point error (EPE), that are standard metrics to
measure the optical flow quality (Baker et al., 2007),
the parameters used, and the corresponding PSNR,
RMSE and density, in each case. In these experiments
we used 9 frames (n = 4).

Analyzing the results, we observe that the PSNRm
and RMSEm using the masks are similar but the AAE
and EPE are very different. The RMSE difference be-
tween the ground truth and the other optical flow re-
sults is around 5%, except for the temporal methods.
This means that they are equally good for denoising
purposes.

We also notice that, interestingly, the images cal-
culated without the masks achieve good results in
spite of the fact that the vector fields are clearly differ-
ent in several methods. For instance, the flows found
for HS in Fig. 4 are evidently worse than those ob-
tained with the RDPOF and ROF methods. However,
the differences in the denoising results are not signif-
icant. The results for the ground truth are the worst
due to the halo effect produced at occlusions.

Table 1 shows the numerical results of the same
sequences but for the whole videos. The σ values are

10 and 50. It also includes the average of the runtime
required by the optical flow methods. We write in
boldface the best RMSE for each sequence.

In general, the temporal methods provide the
higher errors and require the biggest execution times,
specially TCOF. On the other hand, the results con-
firm that the best optical flows are not necessarily the
best for denoising. Furthermore, optical flow fields
that are clearly worse compared to the ground truth,
are not so different for video denoising.

In our opinion, the most desired method for de-
noising is TV-L1, although its results are not always
the best. The error differences with respect to the
other alternatives are not significant. Besides, if we
take into account the speed, this method is by far the
best choice.

4 CONCLUSION

In this work, we analyzed the influence of sev-
eral optical flow methods for noise reduction. Exper-
iments prove that optical flow is very useful but its
accuracy is not as relevant as expected. We observed
that the methods yielding the best AAE and EPE are
not necessarily associated with the best denoising re-
sults. This can be easily observed with the ground
truth motion, where the denoised sequences are usu-
ally the worst. Here it is important to distinguish be-
tween optical flow and motion estimation: The mo-
tion of real scenes generates trajectories that do not
necessarily preserve the intensity of the pixels along
the sequence, while the optical flow finds correspon-



dences based on the similarity of the intensities. For
this reason, the results of such different strategies, like
Horn and Schunck or TV-L1, are very similar.

At the lights of our results, we may conclude that
the best strategy for video denoising is the TV-L1
method. This is not for the accuracy of its flow fields
in general, but for its fast running times.

In future works, we will investigate more strate-
gies for motion estimation and their influence in noise
reduction with different denoising methods.
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Figure 3: Denoising results for the Alley1 sequence. In the first row, two images of the Alley1 sequence with Gaussian noise
of σ = 10, the original image, and the denoised result are shown. In the second row, we show the ground truth (GT) motion,
the error image between the original frame and the denoised result using the mask (third column), and the error image without
the mask. The rest of rows correspond to the results of the RDPOF, ROF, TV-L1, HS, ROFT and TCOF methods, respectively.
See the text for more explanations.
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Figure 4: Denoising results for the Bandage1 sequence. In the first row, two images of the Bandage1 sequence with Gaussian
noise of σ = 10, the original image, and the denoised result are shown. In the second row, we show the ground truth (GT)
motion, the error image between the original frame and the denoised result using the mask (third column), and the error image
without the mask. The rest of rows correspond to the results of the RDPOF, ROF, TV-L1, HS, ROFT and TCOF methods,
respectively. See the text for more explanations.
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Figure 5: Denoising results for the Arm sequence. In the first row, two images of the Arm sequence with Gaussian noise of
σ = 10, the original image, and the denoised result are shown. In the second row, we show the ground truth (GT) motion, the
error image between the original frame and the denoised result using the mask (third column), and the error image without the
mask. The rest of rows correspond to the results of the RDPOF, ROF, TV-L1, HS, ROFT and TCOF methods, respectively.
See the text for more explanations.



Table 1: Best AAE, EPE, average runtime to obtain the optical flows, RMSE, RMSEm and densities (%) found for the
complete videos of Alley1, Bandage1 and the Arm sequence. The noise values are σ = 10 and σ = 50.

Alley1
(σ = 10)

Alley1
(σ = 50)

Bandage1
(σ = 10)

Bandage1
(σ = 50)

Arm
(σ = 10)

Arm
(σ = 50)

G
T

RMSE 7.60 16.07 8.53 18.50 - -
RMSEm 2.89 14.16 3.24 15.21 - -
Densities 70.14% 81.69% 41.96% 68.10% - -

R
D

PO
F

AAE 7.82o 14.23o 15.80o 29.48o - -
EPE 0.61 1.11 1.23 1.89 - -
Time 3.6(s) 3.85(s) 3.57(s) 3.87(s) 0.6(s) 0.8(s)
RMSE 3.73 15.25 4.15 15.09 3.13 14.12
RMSEm 3.05 14.77 3.26 14.69 3.00 13.85
Densities 77.37% 83.89% 65.91% 84.08% 76.31% 83.51%

R
O

F

AAE 7.51o 10.76o 16.01o 26.68o - -
EPE 0.60 0.94 1.20 1.64 - -
Time 5.43(s) 6.39(s) 5.67(s) 6.39(s) 1.6(s) 2(s)
RMSE 3.77 14.80 4.34 14.96 3.11 13.93
RMSEm 3.02 14.30 3.21 14.53 2.91 13.81
Densities 76.65% 83.75% 64.52% 83.50% 77.15% 84.81%

T
V

-L
1

AAE 7.02o 14.48o 21.69o 28.64o - -
EPE 0.58 0.99 2.11 1.69 - -
Time 2(s) 2.6(s) 2(s) 2.2(s) 0.25(s) 0.21(s)
RMSE 3.87 14.78 4.44 14.94 3.09 13.77
RMSEm 2.96 14.37 3.11 14.48 2.88 13.72
Densities 75.67% 84.12% 69.27% 83.58% 78.16% 84.91%

H
S

AAE 9.91o 21.12o 22.15o 33.53o - -
EPE 0.75 1.31 1.43 2.04 - -
Time 4.8(s) 6.5(s) 6.51(s) 4.83(s) 5.35(s) 5.86(s)
RMSE 4.26 14.98 4.84 15.23 3.07 13.98
RMSEm 3.00 14.53 3.16 14.70 2.96 13.76
Densities 73.97% 84.10% 68.14% 83.38% 79.83% 84.62%

R
O

F T

AAE 6.81o 12.11o 15.87o 26.41o - -
EPE 0.64 0.94 1.41 1.77 - -
Time 6.9(s) 7.47(s) 7.32(s) 7.68(s) 1.23(s) 1.82(s)
RMSE 5.33 15.1 6.58 15.72 3.39 14.02
RMSEm 2.91 14.43 3.14 14.72 2.91 13.71
Densities 70.40% 83.31% 52.41% 81.27% 75.26% 83.28%

T
C

O
F

AAE 19.80o 24.33o 27.62o 30.45o - -
EPE 1.26 1.72 2.25 2.83 - -
Time 88.52(s) 75.52(s) 79.18(s) 52.12(s) 14.27(s) 10.18(s)
RMSE 5.75 15.95 8.55 16.60 3.55 14.28
RMSEm 3.18 15.01 3.05 15.24 2.88 13.90
Densities 65.06% 82.39% 45.75% 79.83% 74.19% 83.87%
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