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In this paper, the three-parameter skew lognormal distribution is proposed to model actuarial data concerning losses. 0is
distribution yields a satisfactory fit to empirical data in the whole range of the empirical distribution as compared to other
distributions used in the actuarial statistics literature. To the best of our knowledge, this distribution has not been used in
insurance context and it might be suitable for computing reinsurance premiums in situations where the right tail of the empirical
distribution plays an important role. Furthermore, a regression model can be simply derived to explain the response variable as a
function of a set of explanatory variables.

1. Introduction

0emodelling of large claims is a topic of relevant importance
in general insurance and reinsurance, particularly in the field of
mathematical risk theory, see, for instance, McNeil [1]; Beirlant
and Teugels [2]; Beirlant et al. [3]; and Embrechts et al. [4]. For
a comprehensive study about reinsurance, see the recent book
of Albrecher et al. [5]. It is our interest to find simple statistical
distributions appropriate for modelling both, smaller and
medium-size losses with a high frequency and large losses with
a low frequency. 0is is an issue of particular interest in the
context of reinsurance and premium calculation principles. In
this sense, the classical Pareto distribution [6–8] has been
traditionally considered as a suitable claims’ size distribution in
relation to rating problems. Concerning this, the single pa-
rameter Pareto distribution not only has nice statistical
properties but also provides a good description of the random
behaviour of large losses (e.g., the right tail of the distribution).
Particularly, when calculating deductibles and excess-of-loss
levels of reinsurance, the simple Pareto distribution has been
proved to be convenient (see, for example, [9, 10]). As an
alternative to the classical Pareto distribution, other models

have been recently introduced in the actuarial literature by
Sarabia et al. [11–13] and Ghitany et al. [14].

On the contrary, there exist many situations where the
empirical data show slight or marked asymmetry. 0is is
frequently the case, for example, with actuarial and financial
data that also have heavy tails reflecting the existence of ex-
treme values. 0ese two features imply that the data cannot be
adequately modelled by the Gaussian or normal distribution.

Let g and G, respectively, be the probability density
function (pdf) and the cumulative distribution function
(cdf) of a symmetric distribution. A random variable Z is
said to have a skew distribution if its pdf is given by

fZ(z) � 2g(z)G(cz), −∞< z<∞, c ∈ R. (1)

0is family of distributions has been widely studied as an
extension of the normal distribution via a shape parameter,
c, that accounts for the skewness of the model. When g(·)

and G(·) are replaced in (1) by ϕ(z) and Φ(z), i.e., the
standard normal density and distribution function, re-
spectively, the resulting model is called the skew normal
distribution.
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In this paper, special attention is paid to the generalized
skew normal density provided in Henze [15] and also
studied by Arnold and Beaver [16]. Its pdf is given by

fZ(z) �
ϕ(z)Φ c0 + c1z( 

Φ c0/
�����

1 + c2
1



  

, −∞< z<∞, c0, c1 ∈ R.

(2)

For multivariate extensions, see for instance Azzalini and
Valle [17], Azzalini and Capitanio [18], and Arnold and Beaver
[16]. For an exhaustive and comprehensive study of the skew-
normal distribution, see the recent book of Azzalini [19].

0is paper is organized as follows. In Section 2, the
proposed distribution is studied and some interesting
properties are given. Numerical applications are provided in
Section 3, and conclusions are drawn in Section 4.

2. Modelling the Size of Losses

0e basic skew lognormal distribution has been studied by
Lin and Stoyanov [20] (see also [19]; Chap. 2, [21–23]).
Nevertheless, in this paper, we will pay special attention to
the distribution arising from exponentiation of (2) in the
following sense: if X is a random variable with density (2),
X ∼ fZ, we consider a new random variable Y ∼ exp(X).
Also, if taking c0 � c1 � λ and using a linear transformation,
we allow for more flexible location and scale parameters in
our model. 0us, we get the pdf given by

fμ,σ,λ(x) �
ϕ rμ,σ(x) 

σx

Φ 1 + rμ,σ(x) λ 

Φ λ0( 
, x> 0, (3)

where

rμ,σ(x) �
logx − μ

σ
,

λ0 �
λ

�����
1 + λ2

 .

(4)

Here, λ ∈ R, μ ∈ R, and σ > 0. Observe that when λ � 0
expression (3) reduces to the classical lognormal distribu-
tion. It can be seen that the parameter λ regulates the shape
of the distribution. Furthermore, Lin and Stoyanov [20]
established that the distribution has heavy tails and therefore
it is a suitable distribution to be incorporated to the wide
catalogue of heavy tails (see [5]). Additionally Lin and
Stoyanov [20] provided a stochastic representation of this
distribution and determined that the distribution can be
obtained as the product of two independent random vari-
ables, one of which is lognormal and the other one a log-
arithmic half-normal. Simple calculations show that density
(3) can be also written as

fμ,σ,λ(x) �
exp 1/2 1 + 2rμ,σ(x)  

Φ λ0( 
fZ(z), (5)

where fZ(z) is expression (1) with z � (1 + rμ,σ(x)), c � λ,
g(z) � ϕ(z), and G(z) � Φ(z).

It is straightforward to show that the distribution is
unimodal with the mode satisfying the equation:

λϕ 1 + rμ,σ(z) 

Φ 1 + rμ,σ(z) 
� rμ,σ(z) + σ. (6)

0e mean value and the second order moment of the
random variable X with density (3), X ∼ LSN(μ, σ, λ), are
given by

E[X] �
Φ (1 + σ)λ0( 

Φ λ0( 
exp μ +

σ2

2
 ,

E X
2

  �
Φ (1 + 2σ)λ0( 

Φ λ0( 
exp 2 μ + σ2  .

(7)

Let Fμ,σ,λ(x) � Pr[X≤ x] denote the cdf of
X ∼ LSN(μ, σ, λ). By applying directly result B.21 in Azzalini
[19], it is not difficult to observe that this cdf is given by

Fμ,σ,λ(x) � Φ rμ,σ(x)  +
1
Φ λ0( 

T rμ,σ(x),
λ0

rμ,σ(x)
  + T λ0,

rμ,σ(x)

λ0
 

−T rμ,σ(x),
1 + rμ,σ(x) λ

rμ,σ(x)
⎛⎝ ⎞⎠ − T λ0,

λ2 + 1 + λ2 rμ,σ(x)

λ
⎛⎝ ⎞⎠⎤⎥⎥⎦,

(8)

which is satisfied whenever λ≠ 0 and x> 0. Here, T(x, a)

represents Owen’s function (see [24]) given by

T(x, a) �
1
2π


a

0

1
1 + t2

exp −
1
2
x
2 1 + t

2
  dt, a ∈ R+

.

(9)

If λ � 0, we deal with the standard normal distribution,
and T(x, 0) � 0. 0e latter function can be easily computed
by using the Mathematica software package.

0e Acceptance-Rejection method of simulation can be
used to generate random variates from (3). We begin by
simulating a value from a lognormal distribution with pa-
rameters μ and σ. 0en, having chosen an alternative random
variable that follows a lognormal probability distribution to
simulate from, we define a constant c in the following way:

c � max
x

fμ,σ,λ(x)

g(x)
, (10)
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where fμ,σ,λ(x) is given by (3) and g(x) is the standard
lognormal density. 0e algorithm for simulating a random
variate from the LSN distribution is as follows:

(1) Generate a random variate from the lognormal
distribution, x1.

(2) Generate a random number u1.
(3) If u1 ≤Φ((1 + rμ,σ(x1))λ), then set the simulated value

from (3) equal to x1. Otherwise, return to step 1.

By writing μ as

μ � −
σ2

2
+ log

θΦ λ0( 

Φ (1 + σ)λ0( 
 , (11)

pdf (3) has mean value equal to θ> 0 and variance provided
by

var(X) � ψ1(θ)ψ2(σ, λ), (12)

where

ψ1(θ) � θ2,

ψ2(σ, λ) �
Φ (1 + 2σ)λ0(  Φ λ0(  

2 exp −σ2 

Φ (1 + σ)λ0(  
2 − 1.

(13)

0erefore, a regression model can be derived from the
LSN distribution. In this model, θ is the mean of the re-
sponse variable and ψ2(σ, λ) can be interpreted as a pre-
cision parameter in a way such that, for fixed θ, the larger the
value of ψ2(σ, λ), the larger the variance of X.

Let us now consider that the random variable Xi is
related to a vector of k covariates yi � (y1i, . . . , yki)′ asso-
ciated with the ith observation, where i � 1, 2 . . . , n. 0is
vector assigns a weight of observable features is related to θi

through a log link function and β � (β1, . . . , βk)′ is a vector
of regressors with βj ∈ R for j � 1, . . . , k. 0e regression
model takes the form

Xi ∼ LSN θi, σ, λ( ,

log θi � yi
′β.

(14)

Observe that log link ensures that θi falls within the
interval (0,∞).

On the contrary, sometimes it is desirable to deal with a
lower value in the range of X by shifting this random
variable, say X − α with α> 0, and therefore a shifted version
of the previous distribution is obtained. In this case, it is
convenient to work with the pdf given by

fμ,σ,α(x) �
ϕ rμ,σ,α(x) 

σ(x − α)

Φ 1 + rμ,σ,α(x) λ 

Φ λ0( 
, x> α,

(15)

where

rμ,σ,α(x) �
log(x − α) − μ

σ
. (16)

Figure 1 shows pdf (15) as compared to the Pareto and
PAT (Pareto ArcTan distribution) (this generalization of the

Pareto distribution was proposed by Gómez-Déniz and
Caldeŕın-Ojeda [13]), all of them with the same mean, say
(22), and a threshold of α � 1. It is discernible that the tail of
the LSN density seems larger than those ones of the other
models.

By taking

μ � −
σ2

2
+ log

(θ − α)Φ λ0( 

Φ (1 + σ)λ0( 
 , (17)

it is guaranteed that (15) has mean equal to θ> α. In this case,
for the associated regression model, we will use the link
function:

θi � α + exp yi
′β , (18)

which guarantees that θi falls within the interval [α,∞).
It is already known (see Lemma 2 in [25]) that

lim
z⟶∞

−lnΦ(−z)

z2
�
1
2
. (19)

0en, it is straightforward to see that if λ< 0, we have

lim
x⟶∞

−lnΦ 1 + rμ,σ,α(x) 

λ 1 + rμ,σ,α(x)  
2 �

1
2
. (20)

0is can be used to easily obtain asymptotic values of the
pdf given in (15). In fact, if λ< 0, we have the following
approximation:

f(x) ≈
ϕ rμ,σ,α(x) 

σ(x − α)Φ λ0( 
exp −

1
2

1 + rμ,σ,α(x) λ 
2

 , x> α, x⟶∞.

(21)

3. Empirical Illustrations

In this section, the versatility of the proposed skew log-
normal model, as compared with the Pareto distribution and
the Pareto ArcTan Distribution [13], is tested using three
datasets. 0e first dataset is the danishuni that can be found
in the R package CASdatasets collected at Copenhagen Re-
insurance and comprises 2167 fire losses over the period
1980 to 1990, adjusted for inflation to reflect 1985 values and
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Figure 1: Graph of the Pareto (thin line), PAT (dashed line), and
LSN (thick line) with the same mean given by (22).
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are expressed in millions of Danish Krone. 0e second
dataset is norfire comprises 9181 fire losses over the period
1972 to 1992 from an unknown Norwegian company. A
priority of 500 thousands of Norwegian Krone (NKR) (if this
amount is exceeded, the reinsurer becomes liable to pay) was
applied to obtain this dataset. 0e third dataset considers
hospital costs in the state ofWisconsin. It can be found in the
personal web page of Professor E. Frees. It examines the
impact of several predictors on hospital charges obtained
from the Office of Health Care Information, Wisconsin’s
Department of Health and Human Services, in the year 1989.
0e response variable is the logarithm of total hospital
charges per number of discharges, and the explanatory var-
iables considered are the health service area, hospital dis-
charge costs, the type of payer, size of the area population,
number of hospital beds, and average income within the area.
For comparison reasons some alternative distributions have
been considered in this paper, their pdf’s are provided in
Appendix A and B. Some descriptive statistics of the three
variables of interest are shown in Table 1.

Parameter estimation for all the models considered in
this paper has been carried out by the method of maximum
likelihood using Mathematica v.12.0® and also confirmed by
using WinRATS v.7.0. Both moments and the maximum
likelihood methods are suitable to estimate the vector of
parameters of the distribution via sample observations, as
shown in Appendix A and B. Codes are available from the
authors upon request. For details about software, see Rus-
keepaa [26] and Brooks [27].

Since closed expressions are not available for themaximum
likelihood estimates and the computation of the global max-
imum of the logarithm function of the likelihood is not
guaranteed, thus it is advisable to use several seed points as the
starting value. It is also prudent to use different optimization
methods (Newton–Raphson, Broyden–Fletcher–Goldfarb–
Sanno, BGGS) (this is an iterative method for solving un-
constrained nonlinear optimization problems which can be
seen in Broyden [28, 29] and Shanno [30]) that ensure that the
same solution is obtained from any of these methods. 0e
standard errors of the estimates can be calculated by inverting
the Hessian matrix. In this sense, both Mathematica and
WinRats have at least two methods to reach it. 0e first is to
retrieve them from the Cholesky factors (this package is
available on the web upon request). 0e second, faster, is to
obtain them by finite differentiation. Furthermore, WinRats
package also offers the possibility to directly compute the
maximum of the log-likelihood providing the elements of the
Fisher information matrix. In fact, for the examples considered
in this section, these two packages were used to quickly
compute the maximum likelihood estimates. Commands for
fitting the skew normal and log-skew normal distributions are
also available in stata (see [31]).

Parameter estimates and their standard errors (in
brackets), negative of the maximum of the log likelihood
function, and AIC for the three datasets considered are
shown in Tables 2 and 3. Model assessment is derived
through the following information criteria. Negative log
likelihood (NLL) is calculated by taking the negative of the
value of the log-likelihood evaluated at the ML estimates;

Akaike information criterion (AIC) is computed as twice the
NLL and evaluated at the ML estimates, plus twice the
number of estimated parameters; Consistent Akaike In-
formation Criteria (CAIC), a corrected version of the AIC is
proposed by Bozdogan [32] to overcome the tendency of the
AIC overestimating the complexity of the underlying model
as it lacks the asymptotic property of consistency. In order to
calculate the CAIC, a correction factor based on the sample
size is used to compensate for the overestimating nature of
AIC. 0e CAIC is defined as twice the NLL plus
k(1 + ln(n)), where k is the number of free parameters and n

refers to the sample size. Note that a model with a lower
statistics value is preferred to one with a higher value. All
these results are shown in Table 2. Furthermore, we also
include the Kolmogorov–Smirnov test (KS) and the
Anderson–Darling test (AD) to express the fit of the model
to the data in terms of the distribution function. For these
statistics, smaller values indicate a better fit of the model to
the data. Note that they not only provide a way to measure
the fit in terms of distribution functions but also allow us to
perform hypothesis testing for model selection purposes.
0e p value of the test statistics, computed using the Monte
Carlo method by using 1000 simulations, is shown in
brackets. An extremely small p value may lead to a confident
rejection of the null hypothesis that the data comes from the
proposed model. It can be seen that LSN distribution is not
rejected at the usual significance levels for both tests.

Graphs of histogram of the data and superimposed
fitted densities are given in Figure 2. As can be seen, the
proposed distribution provides a good fit for the em-
pirical data.

In Table 4, the LSN distribution is fitted to theWisconsin
hospital costs’ dataset. From left to right the parameter
estimates, standard errors (SE), and the corresponding p

values calculated based on the t-Wald statistic are displayed.
Besides, AIC and BIC values for each model are provided in
the last two rows of the table. 0e estimates of the regressors
associated with the explanatory variables, number of beds
and income, are not significant at the usual nominal level.

Finally, in order to choose a model that provides an
acceptable description of the loss process for the Danish and
Norwegian datasets, we should verify that the population
limited expected values, computed numerically by

L(x) � E[min(X, x)] � 
x

0
y dF(y) + xF(x), (22)

are close to the empirical ones. As is well known, (22) is the
expected amount per claim retained by the insured on a
policy with a fixed amount deductible of x. In this case, the
empirical limited expected value function was calculated
based on En(x) � (1/n) 

n
i�1 min(xi, x). Obviously, when x

Table 1: Descriptive statistics of the dependent variable.

Data Mean Stand. dev. Minimum Maximum
Danish 56.339 534.161 1.00 14239
Norwegian 2217.21 7759.97 500.000 465365
Hospital cost
(in log scale) 7.94537 0.75167 6.10504 9.64179
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tends to infinity, L(x) and En(x) approach E(X) and the
sample mean, respectively.

Table 5 below exhibits the limited expected value for
different values of the policy limit x considered for the
hospital costs’ dataset. It is observed that the values obtained

from the LSN distribution adheres closely to the observed
empirical limited expected values obtained from the Pareto
and PAT distributions. Similarly, in Figure 3, empirical and
fitted limited expected value function for this dataset and
also for the Danish and Norwegian data are shown. As can

Table 2: Parameter estimates and their standard errors (in brackets), negative of the maximum of the log likelihood function, and AIC
without covariates.
λ θ σ α NLL AIC CAIC KS AD
Danish data
−1.324 3.121 2.075 0.993 3361.486 6730.970 6757.700 0.029 0.001
(0.308) (0.097) (0.222) (0.004) (0.319) (0.136)
Norwegian data
657.218 1894.500 1.239 318.836 20966.835 41941.700 41969.100 0.031 0.001
(18.987) (43.876) (0.027) (9.600) (0.148) (0.049)

Table 3: Parameter estimates and standard errors (in brackets) of the homogeneous model together with some measures of model selection
for different distributions considered for Wisconsin hospital costs’ dataset.

Model λ θ σ α NLL AIC CAIC KS AD

Pareto 3.620 6.000 937.019 1876.040 1881.300 0.345 0.224
(0.158) (0.000) (0.000)

PAT 15.900 647.273 5.307 600.407 1206.330 1222.120 0.846 1.355
(0.628) (10.897) (0.083) (0.000) (0.000)

LSN −3.132 7.941 0.277 2.601 590.134 1188.270 1209.330 0.051 0.004
(0.338) (0.031) (0.007) (0.123) (0.492) (0.260)
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Figure 2: Smooth histogram of the empirical Danish, Norwegian insurance data, and hospital cost (in log scale) as compared to fitted
models. Pareto (dashed line), PAT (thin line), and LSN (thick line). (a) Danish insurance loss data. (b) Norwegian insurance loss data. (c)
Hospital costs’ data.
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be observed, the LSN distribution stays closer to the em-
pirical limited expected values for the three datasets
considered.

3.1. Out-of-Sample Validation of LSN Distribution. We are
interested now in showing the power of the LSN distribution
to predict the number of claims out-of-sample via quantile-
quantile plots (QQ-plots) of randomized quantile residuals.

For this reason, the dataset danishuni is randomly parti-
tioned into two disjoint subsets of different sizes. 0e first
subset (dataset A) is used for fitting the models, whereas the
second subset (dataset B) is used for graphing the quantile-
quantile plots of the randomized quantile residuals to check
for normality. 0e residuals for the out-of-sample datasets
are exhibited in Figure 4 for different in-sample sizes, i.e.,
size of dataset A. For comparison purposes, we have we have
plotted the residuals for the whole dataset (top-left graph)

Table 4: Parameter estimates for Wisconsin hospital costs dataset including covariates.

Variable Estimate SE t-Stat. p value
Hospital discharge costs 0.015 0.002 6.37 0.000
Health service area 0.002 0.001 1.74 0.080
Payer 0.012 0.005 2.43 0.014
Size area population 0.015 0.005 3.10 0.001
Number of beds −0.010 0.008 −1.20 0.228
Income 0.001 0.005 0.31 0.756
Constant 1.607 0.008 200.32 0.000
α 0.563 0.269 2.09 0.036
λ −2.974 0.361 −8.21 0.000
σ 0.186 0.014 13.03 0.000
NLL � 564.619
AIC � 1149.240
CAIC � 1201.890

Table 5: :Limited expected value for the different distributions considered and different values of the fixed amount deductible x for hospital
costs dataset.

Limited expected value
Deductible Empirical Pareto PAT LSN
6.00 6.00000 6.00000 5.99853 5.99810
6.15 6.14978 6.14346 6.14740 6.14661
6.30 6.29677 6.27480 6.29568 6.29419
6.45 6.44047 6.39529 6.44308 6.44044
6.60 6.58092 6.50605 6.58927 6.58482
6.75 6.71905 6.60806 6.73373 6.72666
6.90 6.85458 6.70218 6.87580 6.86517
7.05 6.98883 6.78918 7.01456 6.99940
7.20 7.11933 6.86973 7.14881 7.12827
7.35 7.24475 6.94442 7.27702 7.25059
7.50 7.36489 7.01380 7.39730 7.36506
7.65 7.47366 7.07833 7.50753 7.47039
7.80 7.57179 7.13843 7.60564 7.56533
7.95 7.65844 7.19450 7.69007 7.64882
8.10 7.73372 7.24686 7.76028 7.72019
8.25 7.79120 7.29582 7.81694 7.77925
8.40 7.83213 7.34167 7.86162 7.82640
8.55 7.86265 7.38465 7.89634 7.86260
8.70 7.88567 7.42498 7.92311 7.88928
8.85 7.90437 7.46287 7.94369 7.90813
9.00 7.91949 7.49850 7.95951 7.92088
9.15 7.93157 7.53205 7.97170 7.92914
9.30 7.94065 7.56367 7.98111 7.93427
9.45 7.94438 7.59349 7.98839 7.93731
9.60 7.94527 7.62165 7.99406 7.93905
9.75 7.94537 7.64826 7.99848 7.94001
9.90 7.94537 7.67342 8.00194 7.94051
10.00 7.94537 7.68945 8.00383 7.94070
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Figure 3: Empirical (thick line) and fitted limited expected values: Pareto distribution (dashed line), PATdistribution (dotted line), and LSN
(thin line) for the (a) Danish data, (b) Norwegian data, and (c) hospital cost data.
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Figure 4: QQ-plots of randomized quantile residuals for the LSN distribution for the whole dataset danishuni and different in-sample
sizes. (a) Whole dataset size-2167. (b) In-sample size-1500. (c) In-sample size-1000. (d) In-sample size-750.
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with sample size 2167. A perfect alignment with the 45° line
implies the residuals are normally distributed. It is ob-
servable that the residuals for LSN distribution adheres
reasonably well to the line throughout the residual distri-
bution. However, for all different in-sample sizes considered,
the model tends to overestimate the lower quantiles and
underestimate the upper quantiles. In general, the predictive
power of the model is acceptable.

4. Conclusions and Extensions

In this paper, the use of the skew lognormal distribution has
been proposed as a suitable model for describing claims’ size
empirical data. To the best of our knowledge, this probabilistic
family has not been previously considered in the actuarial
literature. 0e advantages of this distribution are twofold. On
the one hand, it includes heavy tails which makes it an in-
teresting model to describe severity data and; on the other
hand, the distribution can be rewritten to allow for the in-
corporation of predictors to explain a response variable.

Finally, it is worthy to point out that the distribution
introduced in this paper could be extended to other areas of
risk theory. For example, the LSN distribution could be
employed as the secondary distribution (the distribution of
the claims size) in the compound collective risk model. In
particular, this distribution could be used as an approxi-
mation of the distribution of the total claims’ size instead of
the traditionally considered normal distribution. Further-
more, calculation of reinsurance premiums based on this
distribution is an issue that deserves to be studied.

Appendix

A. PDF of the Alternative Distributions

0e pdf of the classical Pareto and PATdistributions used in
this work are given by

f(x) �
σασ

xσ+1, x≥ α, σ > 0,

f(x) �
1

tan− 1 σ
σθxθ− 1αθ

σαθ + x2θ, x≥ α, θ> 0, σ > 0,

(A.1)

respectively.

B. Normal Equations

Let us firstly consider the case of the model without cova-
riates and let x � x1, x2, . . . , xn  be a sample obtained from
distribution (3). By denoting Θ � (μ, σ, λ) as the vector of
parameters to be estimated, the log-likelihood is propor-
tional to

ℓ(x;Θ) � 
n

i�1
logΦ 1 + rμ,σ xi(  λ  −

1
2
rμ,σ xi( 

2
 

− n log σ − logΦ λ0(  .

(B.1)

0e required normal equations to compute the maxi-
mum likelihood estimates are

zℓ(x;Θ)

zμ
� 

n

i�1
rμ,σ xi(  − λ

n

i�1

ϕ 1 + rμ,σ xi(  λ 

Φ 1 + rμ,σ xi(  λ 
� 0,

zℓ(x;Θ)

zσ
� −λ

n

i�1

rμ,σ xi( ϕ 1 + rμ,σ xi(  λ 

Φ 1 + rμ,σ xi(  λ 
+ 

n

i�1
rμ,σ xi( 

2
− n � 0,

zℓ(x;Θ)

zλ
�

nλ0ϕ λ0( 

Φ λ0( 
− λ 1 + λ2  

n

i�1

1 + rμ,σ xi(  ϕ 1 + rμ,σ xi(  λ 

Φ 1 + rμ,σ xi(  λ 
� 0.

(B.2)
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0e csv data used to support the findings of this study can be
found in the R repository CASdatasets and also at https://
instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression%
20Modeling/BookWebDec2010/data.html.
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