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Our traditional view of the interactions between marine organisms is conceptu-

alized as food webs where species interact with one another mainly via direct

consumption. However, recent research suggests that understudied non-con-

sumptive interactions, such as behaviourally mediated indirect interactions

(BMIIs), can influence marine ecosystems as much as consumptive effects.

Here, we show, to our knowledge, the first experimental evidence and quanti-

fication of bottom-up BMIIs in plankton food webs. We used observational,

modelling and experimental approaches to investigate how behavioural

responses to resource availability influence predation mortality on grazers

with different foraging strategies (ambushing versus active foraging). A

three-level food chain was used: phytoplankton as resource, copepod nauplii

as grazers of phytoplankton and a large copepod as a predator. Ambushers

showed little change in foraging activity with resource availability, whereas

active foragers decreased their foraging activity with increasing resources,

which led to a decrease (24–50%) in predation mortality. Therefore, an increase

in resources (‘initiator’) causes behavioural changes in active grazers (‘transmit-

ter’), which ultimately negatively affects predator (‘receiver’) consumption

rates. Consequently, increase in resource abundance may result in decreasing

energy transfer to higher trophic levels. These results indicate that behavioural-

ly mediated interactions drive marine food web dynamics differently from that

predicted by only density-mediated or consumptive interactions.
1. Introduction
Ecological studies on species interactions have traditionally focused on inter-

actions where one species changes the abundance of another species directly by

consumption or indirectly by density-mediated trophic cascades [1,2]. However,

it has now been generally recognized that predators not only affect prey density

but also may induce changes in prey traits that can propagate to species elsewhere

in the ecosystem, i.e. trait-mediated indirect interactions [1–4]. A specific type of

such interaction is behaviourally mediated indirect interaction (BMII), which

occurs when changes in the property of one species (‘initiator’) alter the behaviour

of a second species (‘transmitter’), and these behavioural changes, in turn, influ-

ence a third species (‘receiver’) [2,5]. A clear example of top-down BMII is the

influence of fear or predation risk from large carnivores (‘fear factor’) on the fora-

ging behaviour of herbivores or mesocarnivores, which may benefit plants or

mesocarnivores’ prey [6,7]. These top-down BMIIs are independent of the

number of prey directly consumed by the top predator. Resource availability

can also affect foraging behaviour [8–11], and probably affects forager’s predation

risk. This suggests that bottom-up BMIIs can also substantially affect ecosystem

dynamics. Although there is some empirical evidence of bottom-up BMIIs

[12,13], these interactions have received less attention than top-down BMIIs [3,5].

The trade-off between food intake and predation risk is probably one of the

main mechanisms that drive BMII. In most animals, feeding is dangerous

owing to the increase in predation risk associated with foraging activity

[14–17]. Thus, many animals face the fundamental dilemma of obtaining

enough food without being eaten [8,18,19]. From an evolutionary perspective,
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Figure 1. Scheme of the behaviourally mediated indirect interaction (BMII) investigated in this study: resource availability (‘initiator’, A) causes behavioural changes
on grazers (‘transmitter’, B), which, in turn, affects predator (‘receiver’, C) consumption rates. Experimental organisms and their role in the interactions in the model
food chain are indicated in the scheme. Solid arrows indicate the direction of energy transfer owing to consumption. The grey dashed arrow indicates an effect of
species A on the behaviour of species B, and the open dashed arrow indicates the BMII ( from the initiator to the receiver). (Online version in colour.)
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adaptive behaviours should balance the conflicting demands

for food (effective foraging) and safety (predation avoidance)

to maximize the energy gain over mortality cost [20,21]. Behav-

ioural responses to variability in resource availability or

predation pressure may thus strongly affect an organism’s fit-

ness as well as species’ interactions and trophic transfer of

energy in natural communities [22,23], but empirical demon-

stration and quantification of these interactions in marine

plankton food webs are still limited.

Among marine food web components, zooplankton holds

a key position as both major grazers of phytoplankton (pri-

mary producers) and as main prey of higher level consumers

[24–26]. Zooplankton foraging behaviours can be classified

into two main strategies in terms of motility: ‘sit-and-wait’

(ambushing) versus ‘searching’ (active foraging). These con-

trasting foraging strategies have different cost-benefits in

terms of predation mortality-feeding efficiency: active foraging

is a more efficient strategy to obtain non-motile prey, but it is

also a more risky strategy in terms of predation than ambush-

ing [27–29]. We hypothesize that while in most zooplankton

the foraging strategy (active foraging or ambushing) is fixed,

the trade-off between food intake and predation mortality

may be further shaped by an adaptive behavioural response

depending on the foraging behaviour and resources avail-

ability. Models of optimal foraging predict that ambushers

have an invariant foraging behaviour in relation to resource

concentration [21,30], and hence we could expect an invariant

predation mortality with food availability. By contrast, fora-

ging activity, and hence mortality risk, in active foragers

is expected to vary with resource availability: (i) it is low at

low resource concentrations where feeding may not be

warranted altogether owing to a negative energy balance,

(ii) increases with resource availability, and (iii) decreases at

high (saturation) food concentrations in the presence of preda-

tors or predator cues [9,21,30–32]. Thus, we could expect a

bottom-up BMII where changes in foraging behaviour of

active foraging zooplankton (transmitters) in response to

resource availability (initiator) would cause effects at higher

trophic levels (receivers) in marine food webs. Given the pro-

nounced temporal variability in phytoplankton availability in

the pelagic environment [33,34], the proposed bottom-up
BMIIs would significantly shape trophic interactions and

energy transfer in marine plankton food webs, yet empirical

studies are non-existing [5].

In this study, we experimentally examine bottom-up BMIIs in

plankton food webs. Specifically, we investigate how behaviour-

al responses of zooplankton to resource availability influence

predation risk in zooplankton with different foraging strategies

(ambushing versus active foraging) (figure 1).We used a linear

three-species food chain, as a model, with phytoplankton as

resource (initiator), copepod nauplii as grazers of phytoplankton

(transmitters) and a large rheotactic copepod as a predator (recei-

ver) (figure 1). Our specific hypotheses are that: (i) foraging

behaviour is independent of resource availability for ambushers

but decreases at low and high resource concentrations for active

foragers, and (ii) changes in resource-dependent foraging behav-

iour significantly affect predation risk in active foragers;

(iii) consequently, predator’s consumption rates are indirectly

reduced when there is an increase in resources owing to BMII.

Our result will help to understand how BMIIs can affect trophic

transfer in plankton food webs depending on grazer’s foraging

strategy and resource availability.
2. Methods
(a) Experimental organisms
We used the autotrophic flagellate Rhodomonas salina as resource

(figure 1). We used, as grazers of R. salina, similarly sized

nauplii (table 1) of the copepods Temora longicornis and Centropages
hamatus as active feeders and nauplii of Acartia tonsa and Oithona
nana as ambush feeders (figure 1). We used the planktonic cope-

pod Centropages typicus (figure 1) as a predator of nauplii. The

organisms used in this study were obtained from continuous

stock cultures at DTU Aqua. Rhodomonas salina was kept in expo-

nential growth in B1 medium [35] at 188C. All copepod species

were kept in culture at 15–188C and fed with a mixture of cultured

plankton as described in Almeda et al. [36]. We obtained cohorts of

similarly sized naupliar stages by separating adults from the stock

culture with 100–200 mm mesh-sieves and placing them in a new

tank. After 24–48 h, eggs or early nauplii were isolated. Copepod

nauplii were fed with R. salina ad libitum and grown at 158C in the

dark until the desired size was reached.
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Figure 2. Experimental set-up during the video observations. Picture (a) shows the top/front view of the set-up. The schematic of the top view (b) shows a transect
of the set-up: the camera and aquarium (containing copepods (transmitter) and R. salina (initiator)) are fixed in the tube and placed on a rolling table. Infrared (IR)
illumination is collimated and is provided from the back. (c) The view on the back of the set-up shows the direction of rotation and the position of the aquarium,
fixed on a mount in the tube. (Online version in colour.)
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(b) Behavioural observations: effect of resource
availability on grazer behaviour

Through video-observations, we quantified the behavioural

response of copepod nauplii with different foraging strategies to

resource concentration. The behavioural response was filmed at

158C in the dark at 90 frames s21 and a resolution of 1920� 1080

pixels. We used a modified infrared (IR) sensitive GoPro Hero4

camera (installed with a Back-Bone Ribcage C-mount and

with the IR-cut filter taken out) equipped with a 55 mm lens.

A 67.5 ml Nunclon bottle filled to the rim and closed was used

as an aquarium. The field of view was 8.5 � 4.8 mm2 for T. longicor-
nis and C. hamatus and 11.7 � 6.6 and 16.6 � 9.4 mm2 for A. tonsa
and O. nana. Both the camera and the aquarium were mounted in a

tube and placed on a rolling table (figure 2). The rotation velocity

was kept low (0.4 rpm21) to minimize disturbances that may affect

copepod behaviour, but high enough to keep the copepods and

its resource (R. salina) in suspension. The aquarium was illumi-

nated from the back by 25 stationary IR-LEDs and the light was

collimated by a condenser lens.

Behaviour of the grazers was filmed at four different resource

concentrations, ranging from 0 to 30.000 cells ml21 (table 1). These

concentrations were chosen to include both the concentration

where feeding effort is expected to be at a maximum (intermediate

resource concentrations) and at satiating concentration based on

previous grazing experiments [36]. All animals were picked indivi-

dually to ensure a consistent body size between individuals.

Nauplii were added to the resource suspensions 30 min prior to

filming and acclimated under experimental conditions. Three

replicates per treatment were prepared and each replicate was

filmed during 15 min. After termination of filming, 35 individuals

per species were preserved in 1% Lugol’s solution to determine

their sizes (total body length and maximum width).

We distinguished between the following behaviours:

(i) ‘swimming’ behaviour of active foragers by (a) the generation

of a feeding current (feeding bouts) (T. longicornis) or by (b)

breast stroke swimming (C. hamatus), (ii) relocation ‘jumps’ (O.
nana and A. tonsa), (iii) ‘prey capture’ events (consisting of consecu-

tive breast-strokes) (C. hamatus and A. tonsa), and (iv) ‘sinking’

events. For each species, we analysed the frequency, duration, vel-

ocity and time budgets of each type of behaviour for a number of

swimming tracks (see below), each lasting between 2 and 116 s.

In total, ca 12 000 s of observations were used for the analysis,

corresponding to a total of one million frames.

For the ambush foragers O. nana and A. tonsa, the jump

frequency (n min21) was determined for 40–60 tracks per food

concentration by manual frame-by-frame analysis. Furthermore,

the average jump duration (s) and distance (mm) were determined

at each concentration from 40 events (from eight animals,

five events per animal). For C. hamatus, the breast-stroke frequency

(n min21), the duration (s) and distance (mm) of individual breast
strokes were recorded. For T. longicornis, we recorded the fre-

quency (n min21) and duration (s) of feeding bouts. For each

active forager, we analysed 20–30 tracks per food concentration.

For all species, all events of sporadic behaviour (‘jumping’ for

T. longicornis and C. hamatus, ‘prey capture’ for C. hamatus and

A. tonsa) were quantified.

Finally, we calculated the speed (mm s21) and time budget

(% of occurrence of total track duration) for swimming, jumping

or prey capture events for each track. For T. longicornis swimming

speed was taken from van Someren Gréve et al. [28]. By assum-

ing isotropic swimming directions, we estimated the mean

three-dimensional velocities for all behaviours by multiplying

the observed two-dimensional average velocities with a conver-

sion factor 4/p (see the electronic supplementary material,

calculation S1 for the mathematical consideration).
(c) Model estimations: effect of resource availability on
grazer’s predation risk

We used a behaviour-dependent predator encounter model

similar to that of van Someren Gréve et al. [28] to estimate

the predation risk associated with the observed behavioural

response of nauplii to resource availability. We used, as input

to the encounter model, the parameters quantified in this study

from behavioural observations of the studied grazers under

four different resource concentrations (table 1). Data on

behavioural parameters for the predator were taken from van

Someren Gréve et al. [28].

Briefly, the encounter model considers the velocity difference

between the copepod and its predator as derived from

behavioural observations, and encounter sizes based on hydro-

dynamic disturbances generated by the copepod and the

perceptive capabilities of the predator. Different from the directly

measured predation mortality, this model does not take into

account the capability of the predator to capture copepod nauplii

or the actual ingestion of nauplii.

Thus, the predation risk, expressed as the potential predator’s

clearance rate, b, is then

b ¼ bactive þ bsinking, ð2:1Þ

bactive ¼ pswimp (R1 þ R2)2(u2 þ v2
swim)0:5

þ pjumpp (R1 þ R2)2(u2 þ v2
jump)0:5

þ pprey capturep (R1 þ R2)2(u2 þ v2
prey capture)0:5 ð2:2Þ

and bsinking ¼ (1� pswimþjumpþprey capture)pðR1 þ R3Þ2u, ð2:3Þ

where b is the volumetric encounter rate between the copepod

and its predator (�predator clearance rate, ml predator21 d21),

pswim, pjump and pprey capture are the fractions of the time that the

copepod produces a hydrodynamic disturbance owing to



Oithona nana

Acartia tonsa

Temora longicornis

Centropages hamatus

no resource intermediate concentration saturation concentration

resource concentration

jump
feeding current
breast strokes (a.)
reduced breast strokes (b.)
prey capture (c.)
sinking

a.

b.

c.

Figure 3. Schematic summary of the observed behavioural response of copepod nauplii (transmitter) with different foraging strategies in response to variation in
resource (initiator) concentration. Red indicates activity related to swimming, feeding or relocation, blue indicates sinking. The x-axis represents the relative time,
length of each line represents the relative distance. Schematics are based on observed changes in behaviour (electronic supplementary material, tables S1 and S2) for
each species. (Online version in colour.)

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

286:20181664

5

swimming, jumping or capturing/attacking a prey item, respect-

ively. Furthermore, u is the predator swimming velocity

(cm d21), v is the copepod swimming, jumping or prey capture vel-

ocity (cm d21), R1 is the predator encounter-radius (cm), R2 is the

spatial extension of the hydrodynamic disturbance that the cope-

pod generates when it swims or jumps (‘hydrodynamic radius’)

(cm) and R3 is the radius of the copepod when it does not produce

a hydrodynamic disturbance (‘physical radius’) (cm). We further

assume a similar threshold fluid velocity as in van Someren

Gréve et al. [28] for prey detection by a predator, equal

to 0.5 mm s21, to estimate the hydrodynamic radius from

experimental observations [14].
(d) Predation experiments: effect of resource availability
on grazer’s predation mortality

We experimentally quantified predation mortality on grazers by

exposing copepod nauplii (transmitter) to the predatory copepod

C. typicus (receiver) at different resource (initiator) concentrations.

We used nauplii densities well below the food saturation density

for the predator C. typicus [29], and resource concentrations

between 0 and 30 000 R. salina cells ml21, as in the video filming

experiments (table 1). Prior to each experiment, C. typicus
adult females were starved for 24 h. Copepod nauplii were

picked individually, rinsed on a 40 mm mesh with filtered sea-

water and added to 1.1 l bottles containing the appropriate

range of resource concentrations (six bottles per concentration).

Two C. typicus were added to four of the bottles and two bottles

with R. salina and nauplii only served as controls. The bottles

were mounted on the rolling table (at 0.4 rpm21) and incubated

in the dark for 24 h at 158C. At termination of the experiment,

the contents of each bottle were filtered through a 40 mm

mesh, checked for mortality of nauplii and predators and pre-

served in 1% Lugol’s solution. Nauplii total length and

maximum width were determined for 35 individuals per species.

For C. typicus, prosome length and width were measured for all

experimental individuals.

Predation mortality, expressed as the rate at which

the nauplii are cleared from the water (clearance rate) by the
predator (b, ml predator21 d21), was calculated according to

Titelman [37]:

b ¼ ðlnðnstartÞ � lnðnendÞÞ � V
npred � Dt

, ð2:4Þ

where nstart and nend are the number of nauplii at start and end

of each incubation, respectively, npred is the number of predators

per bottle, Dt is the incubation period (d) and V is the bottle

volume (ml).

We conducted an analysis of variance (ANOVA and Tukey

post hoc test) to determine the significance level ( p , 0.05) of

differences in motility parameters, predicted predation risk and

measured predation mortality between treatments, depending

on food concentration.
3. Results
(a) Behavioural response of grazers to resource

availability
Copepod nauplii showed different behavioural responses to

resource (initiator) availability (figure 3). Among ambush fora-

gers, O. nana displayed significant differences in jump

frequency, jump duration and jump length between resource

concentrations (electronic supplementary material, table S2).

The highest jump frequency and the longest jumps were

observed at a low resource concentration, and a lower fre-

quency and shorter jumps both in the absence of resource

and at higher resource concentrations (figures 3 and 4a; elec-

tronic supplementary material, table S2). Nauplii of A. tonsa
typically moved in a helical pattern by frequent relocation

jumps (figures 3 and 4b). We found no consistent variation in

jump frequency, jump length or jump duration with variation

in resource density (figure 4b; electronic supplementary

material, table S2). The active foraging T. longicornis swam

slowly in meandering paths by creating a feeding current

(figure 3). However, it gradually reduced the swimming
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letters indicate statistically significant difference in behaviour between resource concentrations. (Online version in colour.)
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activity by decreasing the fraction of the time it produced a

feeding current from 88% in the absence of food to 33% at the

saturation concentration (figures 3 and 4c; electronic sup-

plementary material, table S1). This reduction was realized

both by decreasing the feeding bout duration and frequency

(electronic supplementary material, table S2). Centropages
hamatus typically swam in helical paths by repeated breast

strokes (figure 3). It reduced the fraction of time swimming

with increasing resource concentration from 31–33% in the

absence of resource and at the lowest concentration to 14% at

the saturation concentration (figures 3 and 4d; electronic sup-

plementary material, table S1); this decrease was

accomplished by decreasing the breast-stroke frequency and

duration (electronic supplementary material, table S2). Prey

capture events were most frequently observed at the highest

resource concentration (electronic supplementary material,

table S2). Despite the different behavioural responses among

species, two contrasting behavioural patterns of foraging

effort (‘activity’) to resource density emerged depending on

the foraging strategy: (i) small variations in foraging activity

in relation to resource density in ambush foragers, and (ii) a

clear decrease in foraging activity with increasing resource

density in active foragers (figure 4).
(b) The effect of resource density on grazers predicted
predation risk and measured predation mortality

Predicted predation risks (figure 5a–d) mimic the food concen-

tration dependency of the foraging activity of the copepods

(figure 4) and were largely confirmed by the experimentally

determined predation mortality (figure 5c–f ). Thus, in the

two actively foraging species (T. longicornis and C. hamatus),
both predicted predation risk and measured predation mor-

tality decreased significantly with food concentration by

about a factor of two for T. longicornis and somewhat less for

C. hamatus. Among ambush foragers, predation in O. nana
was highest at intermediate food concentrations, and lower at

both no food and higher food concentrations, both according

to the measurements and the predictions (figure 5a,e). For

A. tonsa, the behaviour-dependent model prediction failed to

reproduce the significant increase in predation risk with food

concentration determined experimentally (figure 5b,f ). Despite

the general consistency between food concentration-dependent

changes in the measured predation mortality on the one hand,

and changes in predation risk predicted from behavioural

observations on the other, the model generally underestimated

the magnitude of predation mortality (electronic supplemen-

tary material, figure S1). Overall, we found two different

patterns in terms of variation in both predicted predation risk

and observed predation mortality with variation in resource

density: (i) no effect or an increase in predation with increasing

resource density in ambush foragers, and (ii) a decrease in pre-

dation by up to 50% with increasing resource density in active

foragers (figure 5).
4. Discussion
There is increasing awareness that prey–predator interactions

cannot be simply captured by assuming that population den-

sities are the only dynamic factors that govern the intensity

of trophic interactions [2]. Complex interactions between

trophic levels may emerge from plasticity in individual traits,

in particular modifications of foraging behaviour [3]. Across

ecosystems it has been demonstrated that, in the presence of

predator cues, a consumer may modify its foraging behaviour

to one that is less risk-prone, but less efficient in terms of feed-

ing [8,23,38–40]. As a consequence, the mere presence of

predators can have an indirect top-down impact on food web

dynamics, or ‘top-down’ BMII complimentary to direct, den-

sity-dependent effects on trophic interactions [3,6,41–45].

Also for various zooplankton, both laboratory and in situ
studies have shown that the presence of predators can directly
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influence behaviour [46–50] and grazing intensity [42,51],

potentially leading to strong indirect top-down effects in the

marine food web. Besides altered small scale foraging behav-

iour of the consumer, predator-induced consumer habitat

shifts are often the cause of these top-down BMIIs (reviewed

by Trussell et al. [52]), which has been particularly well docu-

mented for zooplankton. Many zooplankton show diurnal

vertical migration (DVM): they sacrifice feeding and leave

the productive surface layer during the day to seek refuge

from visual predators at depth, and the intensity of vertical

migration may depend on the susceptibility to predation

[53,54] and availability of food [55,56]. Less well studied are

the indirect effects of resource availability on behaviourally

mediated interactions in food webs, or ‘bottom-up BMIIs’ [3].

These resource controlled multi-trophic cascades, mediated

by behavioural plasticity have not, to our knowledge, been pre-

viously observed in marine environments, and have been only

rarely demonstrated in other aquatic environments [12,13]. In

this study we demonstrated that, depending on zooplankton

foraging strategy, variation in resource availability can

induce a bottom-up BMII by influencing zooplankton behav-

ioural traits and ultimately predation rates of higher trophic

level predators (figure 6). Owing to BMII, active grazers are
positively affected by increasing resources (phytoplankton),

but predator’s consumption rates are reduced and this may

result in decreasing energy transfer to higher trophic levels

(from grazers to predators) (figure 6).

Zooplankton foraging behaviour may significantly impact

susceptibility to predators [28,29,37,57,58], but studies describ-

ing the behavioural response of copepods to resource density

are rare. Optimal foraging theory considering optimization of

net energy gain and applied to free living zooplankton predicts

that in active foragers, foraging activity is highest at intermedi-

ate resource concentrations, and lower at both higher and lower

resource availability, while in ambush foragers, foraging

activity is independent of resource availability [30]. We did

not observe—contrary to our hypothesis—reduced foraging

activity at the lowest resource concentrations in active foragers,

but rather a steady decline in foraging effort with increasing

resource concentration (figure 3). A similar absence of reduced

activity at low resource abundance has been found in other

active foraging copepod species (see below), and may simply

be because feeding and swimming are closely related processes

in actively foraging copepods. A kinetic response with high

motility at low food will allow the copepods to search for

areas with higher food availability. There is substantial
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evidence of a similar behavioural response to low food

environments in other organisms that, often induced by a

low energetic state of the animal, sacrifice vigilance and

increase risk prone foraging behaviour, thus reflecting a

trade-off between predation risk and starvation/growth

[12,59,60]. Although no behavioural response to food avail-

ability is predicted by optimal foraging theory for ambush

foragers, O. nana nauplii for unknown reasons showed elev-

ated jump activity at intermediate resource concentration,

while ambush feeding nauplii of A. tonsa, as expected,

showed resource-concentration independent activity.

Similar and different behavioural responses to resource

availability have been established previously for a limited

number of active foraging copepod species and they may

reflect different behavioural solutions to minimize the

risk of starvation and predation and maximizing growth.

Thus, adult Acartia spp. can reduce or completely stop the

generation of a feeding current below a certain food concen-

tration and switch to a passive, ambush foraging behaviour

[30,58,61–63]. Similarly, adult Centropages spp. may reduce

the time spent swimming at a low resource concentration

[30,64,65]. Furthermore, van Duren & Videler [66] observed

a small decrease in foraging activity with declining resource

abundance in late naupliar stages of T. longicornis but no

behavioural plasticity in early nauplii or copepodites in

contrast to our findings. Paffenhöfer & Lewis [67] reported

inconsistent behavioural changes in Eucalanus pileatus,

where adults decrease while the late copepodites increase

their foraging activity with decreasing resource concen-

tration. Finally, for adult stages of T. longicornis [66],

Eucalanus elongates [68] and A. tonsa [30], foraging activity

is highest at intermediate food concentration and lower at

both low and higher food concentrations, as predicted by

optimal foraging theory. Thus, multiple studies have demon-

strated that foraging and swimming activity in suspension

feeding copepods vary with the availability of their resource.

However, none of these studies have examined the impli-

cations of these changes in copepod foraging behaviour on

predation risk.
Prey–predator interactions in traditional food web models

are described considering population densities as the only

dynamic variable, i.e. the density-dependent direct effects on

the intensity of trophic interactions [2]. However, the observed

variation in predation risk/mortality implies that variation in

predation owing to bottom-up BMII is equally important or

may oppose density-dependent direct effects on predation

rates on copepods [29]. This nonlinear bottom-up trophic trans-

fer suggests that our current understanding and predictability

of food web interactions and bottom-up trophic transfer is

insufficient, as indirect effects owing to trait plasticity are

currently not considered in models of pelagic food webs.
5. Conclusion
Our results demonstrate that: (i) motile behaviour strongly

determines predation risk from rheotactic predators; (ii) behav-

ioural plasticity of active foragers in response to resource

availability significantly affects its predation mortality; and

(iii) high resource concentrations (‘initiator’) induce behaviour-

al changes on grazers (‘transmitter’), which ultimately reduces

predation rates of a higher trophic level planktonic predator

(‘receiver’) by up to 50%. Therefore, an increase in resources

does not necessarily result in increased energy transfer to

higher trophic levels in plankton food webs. These results

emphasize the importance of identifying and quantifying

behavioural traits and bottom-up-driven BMIIs in plank-

ton food webs to better understand and predict the

structure and dynamics of marine ecosystems under varying

environmental conditions.
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