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Abstract. A straightforward algorithm that computes distance maps
from unthresholded magnitude values is presented, suitable for still im-
ages and video sequences. While results on binary images are similar to
classic Euclidean Distance Transforms, the proposed approach does not
require a binarization step. Thus, no thresholds are needed and no infor-
mation is lost in intermediate classification stages. Experiments include
the evaluation of segmented images using the watershed algorithm and
the measurement of pixel value stability in video sequences.

Keywords: Distance Transform, Thresholding, pseudodistances.

1 Introduction

The Distance Transform (DT), originally proposed by Rosenfeld and Pfaltz [10],
has been widely used in computer vision, image processing, pattern recognition
and robotics. Applied to an image, a DT assigns a value to each image point that
represents the minimum distance to some locus of points, usually belonging to
one of the two groups created by a binary partition. Classic DT (i.e. Euclidean
Distance Transform) has been applied to object recognition [3] [6], path planning
[12], active contour modeling [15] and segmentation [2] [9].

DT usually operates on binary feature maps obtained by thresholding op-
erations like thresholding or edge detection. However, any binarization process
based on thresholds sistematically creates groups of points in which binary mem-
bership may fluctuate through time due to small light changes or image noise.
As video processing applications require features to be detected consistently in
the spatiotemporal domain, processes based on thresholds should be avoided. In
this context, computing distance maps directly from unthresholded magnitude
values should increase the stability of further processing stages relying on them.

Different solutions that do not require a binarization step have been proposed
to compute pseudo-distances from a given image point to some locus of points.
In [7], pseudo-distance maps are computed applying PDEs to an edge-strength
function of a grayscale image, obtaining a robust and less noisy skeletonization;
in [11], pseudo-distances are weighted by edge magnitude and length; in [1], an
intuitive solution named Continuous Distance Transform (CDT) is proposed,
where pseudo-distances to brightness and darkness saturation regions are com-
puted directly from grayscale images.
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Fig. 1. DMUM pseudo-distance values 1(b) directly computed from the unthresholded
Sobel gradients of image 1(a)

In this paper, a novel method for computing distance maps directly from
unthresholded magnitude values is proposed. No critical information is lost in an
intermediate classification step and different magnitude values can be employed
(i.e. depth or gradient, see Fig.1). Output values represent the size of the smaller
area around each pixel enclosing a relevant amount of accumulated magnitude
values that depends solely on the image being studied. A single pass on the
magnitude values image is needed, and the integral image [14] is used to speed up
area sums. A formal definition and a concise algorithm to compute this Distance
Map from Unthresholded Magnitude values (DMUM) are proposed.

Section 2 describes DMUM, proposing a straightforward algorithm. Section
3 analyzes DMUM values in watershed segmentations and its stability in video
sequences and finally Section 4 summarizes the approach and proposes future
research lines and applications.

2 Distance Maps from Untresholded Gradients

In classic DT each point receives a value that represents a distance to the closest
object point. However, a suitable definition of object is necessary. It is usually
achieved through plain thresholding or edge detection, which leads to a clas-
sification step where points are considered object or non-object. This is not a
trivial problem: an unsuitable classification mechanism may produce an inaccu-
rate binarization, both removing information and adding noise. In DMUM, the
distance to the closest object point concept is replaced by the distance to the
closest most relevant considered magnitude value region in a mapping function
that relies directly on unthresholded magnitude values. For the sake of simplic-
ity, the rest of this work will work with gradient magnitudes, but many other
features can be used instead, like depth maps.

Let us define the set of points bounded by a closed ball of radius r centered
at point p:

Br[p] � {x ∈ S
2|d(x, p) ≤ r} (1)
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(a) (b) (c)

Fig. 2. 2(a) Original binary image, 2(b) classic chessboard DT values and 2(c) DMUM
values

where d(x, p) is a distance function. If S2 ≡ R
2 then Br[p] is defined in a con-

tinuous metric space, while S2 ≡ Z
2 defines Br[p] in a discrete metric space. For

optimization purposes the Chebyshev distance (L∞ norm) is adopted, defining
a square around p.

Given an image i ∈ Z
2 and its normalized gradient image gn, being its maxi-

mum value 1.0, consider the sum of gradients for a given Br[p] in i as:

φr(p) = γ ·
∑

∀x∈Br[p]

gn(x) (2)

being the γ parameter a scaling factor that will be explained later. Radius q is
defined as:

q(p) = arg
r

sup{φr(p) > 1.0} (3)

that is, the minimum radius r of a ball Br(p) that encloses a sum of gradient
φr(p) that exceeds 1.0. Then, the value of the Distance Map from Unthresholded
Magnitudes at each point p is given by:

Γ (p) = q −
q∑

r=1

φr(p) (4)

DMUM values Γ (p) will be higher for points placed in sparse gradient regions
and lower for points with a high gradient or points placed in dense gradient
regions. Its application to a binary image produces an output similar to that
produced by DT, as seen in Fig.2. Measuring pixel value differences between
Fig. 2(b) and Fig. 2(c) returns a dissimilarity smaller than 1.5%.

The accumulation of φr(p) values in Eq.4 introduces a linear weighting factor.
The first and smallest area contributes q times to this accumulation, because it is
also contained on bigger areas. The second one contributes q−1 times, the third
one q− 2 times and so on, while the area that satisfies the condition contributes
only once. While raw q values could be used as the desired output, resulting maps
would feature isohypses of heights instead of more continuous values. This linear
weighting modifies DMUM values according to local magnitude conditions. Fig.
3 shows this effect. The γ, γ ε(0, 1.0] parameter in Eq.2 allows DMUM output
values to be softened while computing output values, so no previous filtering
is needed. Because region areas grow exponentially (1x1, 2x2, 3x3...qxq), the
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Fig. 3. 3(a) Original image. 3(b) Raw DMUM q values. 3(c) The accumulation of
innermost regions results in smoother DMUM maps.

(a) (b) (c) (d)

Fig. 4. 4(a) Original image. DMUM computed with γ = 1.0 4(b), 0.1 4(c) and 0.01
4(d).

γ parameter dampening effect will be much stronger in small areas with low
gradient accumulations. Fig.4 shows the effect of different γ values on the same
image. Notice how high gradient values are preserved, effectively working as an
anisotropic filter.

DMUM values represent the pseudo-distance from a given image point to the
closest most relevant gradient accumulation. Due to the limit condition in Eq.
3, φr(p) <= 1.0, φr(p) ∈ [0, q] and Γ (p) >= 0, being zero only for those points
which gradient equals 1.0. This satisfies the positive definiteness condition of a
metric. However no symmetry and thus no triangle inequality can be defined.
Therefore, DMUM map values can only be considered a pseudo-distance, though
most works consider both terms interchangeable.

2.1 DMUM Algorithm

Computing the DMUM value for each pixel p in i consists of finding the smaller
area Bq(p) which gradient sum φq(p) is equal or higher than 1.0. As only squared
regions around p are considered, due to the adoption of the Chebyshev distance,
the sum of gradient values can be costlessly computed using the integral image
[14] of g. The following pseudocode summarizes the whole process:

Require: RGB image source sized n x m
Require: γ ∈ (0..1]
Ensure: Floating point image DMUM sized n x m

DMUM [i, j] ← 0, i ∈ [0..n), j ∈ [0..m)
gradient ← gradient(source)/max(gradient(source))
integral ← integral(gradient)
max r ← min(n/2, m/2)
for i ∈ [0..n) do

for j ∈ [0..m) do
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(a) (b) (c) (d)

Fig. 5. 5(a) Image with both binary and grayscale regions. 5(b) Sobel gradient. 5(c)
DT values. 5(d) DMUM map.

r ← 1
enclosed gradient ← gradient[i, j] · γ
gradient accum ← enclosed gradient
while enclosed gradient ≤ 1.0 and r ≤ max r do

gradient accum ← gradient accum + enclosed gradient
r ← r + 1
enclosed gradient ← (integral(i+ r, j + r)+ integral(i− r, j− r))− (integral(i+ r, j−
r) + integral(i − r, j + r))
enclosed gradient ← enclosed gradient · γ

end while
DMUM [i, j] ← r − gradient accum

end for
end for
return DMUM

3 Results

The main difference between classic DT (computed from a Canny edge map)
and the proposed approach is shown in Fig.5. Although both operations behave
similarly in binary regions, details on grayscale parts are removed in the DT
image. Ideally, the perfect set of Canny parameters would produce an optimal
distance map, but finding them is not easy. Each image, even consecutive frames
of a video sequence, may need different values. Besides, unevenly lighted images
may require parameters to be adjusted locally. However, DMUM is computed
from local gradient values (see Eq.3) so the original image structure is better
preserved (See Fig. 5).

It was already shown in [1] that distance maps applied directly to grayscale
values increase object recognition rates using Chamfer distances. The solution
proposed in [?] was specifically designed for OCR applications and computa-
tionally expensive. DMUM offers a more general solution that is two orders
of magnitude faster and introduces an anisotropic filtering mechanism. Experi-
ments were focused on the analysis of the structure of distance maps and their
stability in video sequences.

3.1 Spatial Structure Analysis

Watershed algorithms[13] [2] perform an oversegmentation of a given image,
creating groups of pixels that share similar features and reducing the amount of
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Fig. 6. Watershed region-error ratios and time stability measures

data needed to describe the image. The sorting and region growing mechanism in
the basic watershed algorithm reveals relevant morphological relations between
pixels.

A total of 5074 images were watershed-segmented, including the Berkeley
Segmentation Dataset [8], showing a wide range of indoor and outdoor images
and different sizes and noise factors. Sobel gradients, chessboard DT images,
Deriche [5] gradients and DMUM values computed both from Sobel (DMUMS)
and Deriche (DMUMD) were used as input for the watershed algorithm. Both
the number of final regions and the sum of absolute differences between pixels
from the segmented image and the original image were measured. These values
were normalized with respect to the maximum number of regions (that equals
the number of pixels) and the maximum possible error (sum of maximum error
for every pixel on each channel) respectively, obtaining the region reduction ratio
and the error ratio respectively.

Region reduction and error ratios for each method are depicted in Fig.6. Clas-
sic DT creates the lowest number of regions, but also the highest error, which
reveals the loss of information suffered in the binarization step required to com-
pute the classic DT. As DMUM computes pixel values from local regions, differ-
ences between neighbouring pixels tend to be smoother, while noisy pixels have
a smaller influence on the final outcome.

While DMUMS creates less regions that Deriche, the application of a Tukey-
Kramer multiple comparison test on error ratio values reveals that Deriche and
DMUMS error ratios are significantly similar, with a confidence level of 99%.
DMUMD creates even less regions with a slightly higher error, but introduces
the computational complexity of computing Deriche gradients.

3.2 Temporal Stability Results

It is important for most operators working on video sequences to be stable in
time, meaning that the same values should be returned if operational conditions
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have not changed significantly. Even small light changes like those coming from
the almost imperceptible flicker of a fluorescent bulb may affect the scene, and
they certainly affect some image operators like the Canny edge detector.

Three different video sequences were used for measuring stability. The first one
is an indoor sequence with no visible changes. As nothing moves, the difference
between consecutive frames would be ideally zero, although visually unnoticeable
light changes introduce pixel value variations. The second sequence shows a video
from a static security camera placed above a harbor, showing images from dawn
until dusk. Light conditions change smoothly and some objects cross the scene.
Finally, the third sequence is an outdoor video that includes dynamic objects
and backgrounds, different settings and changes in lighting conditions.

Classic DT, Deriche gradients, DMUMS and DMUMD were computed on
each frame. Temporal coherence was measured computing the sum of absolute
differences between pixel values of consecutive frames for each method, avoiding
prior filtering. Fig. 6 depicts measured differences. DMUM values are clearly
more stable in video sequences than Deriche and classic DT on the three se-
quences, showing also a smaller variance.

A new Tukey-Kramer multiple comparison test applied to the time stability
test results reveals that DMUMS and DMUMD values are significantly similar
to each other, and different from DT and Deriche. Once again, DMUMS seems
more appropriate for real time applications due to the computational cost of
computing Deriche gradients.

4 Conclusions

This paper describes a new method to compute distance maps from unthresh-
olded magnitudes that includes an inexpensive anisotropic filter. It is suitable
for still images and real time applications. The approach is conceptually sim-
ple and can be easily reproduced following the proposed algorithm. Similarly to
classic DT, DMUM computes a pseudo-distance from any pixel to the closest
most relevant gradient accumulation.

Two different experiments were perfomed. A first test compared watershed
segmentations created from five different methods: Sobel gradients, DT, Deriche
gradients and both DMUM computed from Sobel and Deriche values. The num-
ber of created regions and the per-pixel error between segmented images and
their original values was measured. It was statistically proved that the proposed
approach obtains a better region-to-error ratio than the rest of considered meth-
ods, suggesting that pixel value relations are more natural in DMUM images
and supporting the goodness of unthresholded methods. The proposed operator
is also more stable in video sequences, obtaining the lowest pixel value differ-
ences between consecutive frames. This stability is critical in object detection or
tracking schemes. It was also shown that DMUMS was statistically as stable as
DMUMD. Being Sobel gradients much simpler to compute, DMUMS results
appropriate for real-time applications. Further image processing stages would
certainly benefit from DMUM increased stability, as there exists a stronger cer-
tainty that changes in values correspond to true changes in the scene.
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Different optimizations are being considered in order to improve overall speed,
considering that DTs usually take place in the first stages of a visual system.
Further research related to DMUM includes the application of values to Haus-
dorff matching for object classification and tracking, and its application to depth
maps to guide object segmentation.
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