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Summary 

 

Additive manufacturing (AM) has become in a competitive method for short production and high flexibility 
applications. Few constraints in the manufacturing process involve a great design freedom, allowing weight 
minimization by internal cellular and lattice structures and keeping the minimal mechanical requirements. 

An optimization method based on genetic algorithms (GAs) and CAD/FEM simulations is proposed to optimize the 
cellular structure design and minimize the weight for AM parts. New optimization strategies based on GA and surrogate 
models are evaluated and compared to reduce as far as possible the number of simulations by FEM. 

Keywords: additive manufacturing, weight minimization, genetic algorithms, surrogate models, finite element method, 
linear interpolation based on Delaunay triangulation, feasible/unfeasible border. 

 

1. Introduction and objectives 

The use of AM technologies and CAD-MEF allows 
minimizing part weight by cellular structures repeated 
without changing the previous external design. Results 
obtained in the FEM simulations allow knowing the 
mechanical behaviour, enabling the evaluation of the 
fitness function and applying GAs in the optimal 
searching. 

AM technologies are very competitive especially in 
applications where short-medium production series and 
high flexibility are required. Weight minimization not 
only means a greater efficiency in multiple applications, 
but also significant reduction of manufacturing costs, 
either material savings or manufacturing time. 

However, as it relates to short production, the 
accuracy in the optimal design searching has no a 
significant impact in the cost per unit as occurs in large 

production cases. Hence, in AM applications does not 
make sense employing an excessive time in the design 
optimization if the achieved manufacturing cost reduction 
is not as valuable as the extra cost related to design. 

For these reasons, weight minimization will be made 
through repeated cell geometries (from a pattern) inside 
the part, which implies less variability of individuals and 
a smaller number of design variables (less than 7), but 
greatly facilitates CAD and optimization tasks, reducing 
the design costs significantly. 

On the other hand, evaluation of the fitness function 
of each one of the individual generated during the GA 
evolution requires FEM simulations. This would involve 
an excessive computational time1. Hence, it is approached 
the use of surrogate models to estimate the FEM results 
without doing the simulations and then reducing the 
number of the computationally expensive analysis as 
much as possible2. 
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have been added in this phase. After that, the MAPE of 
the last added point (response estimations compared to 
simulations) is evaluated. If the MAPE is bigger than 1%, 
then the metamodel is uploaded with this last point and 
this GA is executed again. And so on until the MAPE 
value is lower than 1%. 

Subsequently a final GA (configuration 6 with 200 
generations) is run, using LIDT to calculate the fitness 
function value. The best individual is simulated by FEM. 
If it is in the feasible zone, it will be the optimum, 
otherwise the will be added to the data and the 
metamodel will be uploaded to execute again this final 
GA. And so on until reaching a feasible optimum.  

In 10 different runs of the reference problem, the 
optimal fitness function average was F=1603.715, very 
close to the fitness value of the theoretical optimum 
(1600.809), with an average of 62 evaluated designs. A 
case study with FEM simulations (see Figure 3) in which 
it is pretended to minimize the weight of a blade for wind 
power micro-turbine lightened by cellular structures (3 
design variables) keeping the maximum deflection under 
15mm (constraint) was also solved. 

 

 
Figure 3. Case study geometry 

 
The optimal value obtained after 40 FEM simulations 

has a mass of 1632.55g. This same problem was also 
solved by an optimization method based on Box-Behnken 
DOE and optimal estimation by response surface method 
(BBRS), an optimization strategy available in the 
commercial software of design and FEM simulations, 
SolidWorks. This method achieves an optimal of 
1690.07g with only 14 simulations. The proposed 
methodology reaches an optimum 3.52% better but 
requires quite more simulations. 

5.3. Version 3 

The last 2 phases of the program (based on GAs) were 
tested by excluding different data set in order to evaluate 
the convergence of the program to the optimum. The 
conclusions obtained in this analysis are listed below: 

-The points added in the internal border 
approximation do not influence in the quality of the 
optimum, so that this step was excluded. 

-The phase of border approximation along the edges 
is done only edge by edge, getting a deviation from the 
real border line lower than 1% at each affected edge. This 
helps to select correctly the best corner of the 
feasible/unfeasible border for the next phase of the code. 

-The addition of new middle points between the best 
border corner and the remaining adjacent corners 

involves incorporating a lot of points. It was observed 
that only combining the best border -
best remaining adjacent corners the method also 
converges to the theoretical optimum. 

Version 3 was run 10 times with the reference 
problem, obtaining as optimal fitness function average 
F=1606.0.50, with an average of 44 sampling points. The 
new version converges to a solution 0.15% worse than 
the previous version, but requires only 44 instead of 62 
simulations, reducing in approx. 29% the CPU time. With 
the previous case study (with FEM analysis), an optimal 
design of 1634.85g and only 29 sampling points was 
found. This optimal design has incremented the mass a 
0.14% versus the optimal of version 2, but the number of 
evaluated designs was reduced from 40 to 29 (approx. 
27.5% of CPU time reduction). Compared with the result 
of BBRS method, this program improves the optimal 
3.38% but requires more sampling points (29 versus 14). 
However, it ensures the convergence to the theoretical 
optimum due to the refinement loops, while the BBRS 
method does not guarantee the convergence to a feasible 
design and his refinement is quite limited by the equation 
shape to be fitted. In addition, it should be noted that the 
sampling point number 18 (added during the border 
approximation along the edges) improves the optimum 
obtained by BBRS method with only 4 more simulations. 

6. Conclusions 

A new optimization method for cellular structures in 
AM has been presented, based on a 2-level full factorial 
DOE and central point, border approximation along the 
edges, addition of new middle points between the best 
border -
corners, addition of new points along the border using 
GAs (proximity penalty and LIDT) and a final optimal 
searching through a GA (with LIDT). 

The border approximation phase along the edges 
allows getting good designs with a low sampling (in 
many cases the optimum is in the domain boundary). The 
proximity penalty in the GA allows adding new points 
along the feasible/unfeasible border, exploring these 
interesting zones. The linear interpolation metamodel 
reduces the FEM simulations drastically, obtaining a 
methodology which guarantees the convergence to the 
optimal design with a low sampling density. 
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